PROJECT MAC October 25, 1973,

Computer Systems Research Division Request for Comments No. 41

DESIGN OF A DYNAMIC LINKER RUNNING OUTSIDE THE SECURITY KERNEL OF
A COMPUTING UTILITY.
by P. A. Janson

This note is an informal working paper of the Project MAC Computer Systems
Research Division. It should not be reproduced without the author's
permission, and it should not be referenced in other publications.

Massachusetts Institute of Technology.
Project MAC.
Computer System Research.
Cambridge - Massachusetts.
W‘Proposal for Thesis Research in
Partial Fulfillment of the Requirements for the
Degree of Master of Science.

Title:s Design of a Dynamic Linker Running outside the

Security Kernel of a Computing Utility.

Submitted by: Philippe A. Janson bignature of the Author:

26 Clinton Street
Cambridge - Mass. 02139.

Date of Submission: October 15, 1973.

Lxpected Date of Completion: Jenuary 1974.

Brief Statement of the Problem: In order to enforce the
security of the information stored in a computing utility, it
is necessary to certify that the protection mechanism is correctly
implemented so that there exists no uncontrolled access to the
stored information. Certificetion requires that the security
kernel be much gimpler and smaller than the supervisors of
prescnt general purpose opereting systems. This thesis will
attempt to prove the feasibility of reducing the security
kernel complexity by removing the linking mechanism for program
modules from the supervisor. The dynamic linker of Multics will
be usced as a test case. A complete design will be proposed for
a linker running in the user's protection environment. Key
components will be implemented to prove the correctness of the

design.

Supervisor Agreement: The program outlined in this propossal

is adequete for a Master of Science. The eupplies and facilities
required are available, and I am willing to supervise the
research and evaluate the thesis report.

Michael D. Schroeder, Asst. Prof. of L.E.

I. Security, Protection and Certificaetion of a Computing Utility:

The concept of a computing utility immediately suggests
the ides of & community of people sharing the resources of
a computer and in particuler the information stored in the
computer. It is obvious that different members of such a
community have different goals and intentions which may be in
conflict. The fact that a user stores information in a computer
system should not make it possible for any other user to
freely destroy, modify, use or steal that information.
Information belonging to some pPerson should be just as secure in
the computer system as it would in the person's locked drawers.
In order to enforce security, the stored information should
be protected against unauthorized access. The protection mechanism
is the set of components of the computer system which allows
e user to impose access restrictions on his information
(programs and date) which prevent other user's computations
(processes) from accidentally or willfully accessing the
protected information unless they are authorized to do so.
A protection mechanism is useful only if it is trusted by the
useres. And the users will trust it only if it effectively
protects their files. It is the responsability of the designers
of the system to certify that the system is correct and that
there exists no way to circumvent the protection mechanism,

IT. Security Kernel.

The security kernel of a computing utility is the set of
all programs and date bases anyone of which if tampered with,
could cause unauthorized release, modification or use of
information. The security of the whole system depends upon its
security kernel being certified to correctly operate and being
protected from subversion by executing programs.

Successful certification requires that the security kernel
be small, simple and methodically designed. Size, complexity and
obscure design make the certification much harder, if not impossible.

Protection from other executing progrems must be sufficient
to prevent such progrems from breaking, circumventing or modifying
the mechanismes implemented by the security kernel., In other
words the security kernel must be isoclated from all programs and
data bases not concerned with protection mechenisms.

The security kernel of present commerciel systems is
isolated from the rest of the system by various techniques: master
mode vs. user mode is the most frequent technigue (IBM, Burroughs);
execution of certain priviliged functions on separate physical
processors prevents the users from subverting the protected
functions (CDC 6000): the notion of ring, very close to the
domain concept (1), is a powerful and most interesting protection
means (Honeywell Multics).

Unfortunately, for most commercial computing utilities, the
security kernel does not meet the protection and certification
objectives outlined above. For various reamsons it conteins
programs and data which implement functions irrelevant to the
control of access to information. Yet, they run in the same
protection environment and have the same capabilities as any
module actually desling with protection of information. Therefore,
they could potentially subvert the protection mechanism and
cause the unauthorized release, modification or use of information.
Moreover such modules increase the complexity of the security
kernel. As e result, security kernels of present computer systems
may not be well protected, are hardly auditable and never certified.

III. The Linker.

The proposed thesis will show that the security kernel of
a commercial systme can be reduced in complexity and that its
protection can be improved by removing from it a set of programs
referred to as the linker (or linkage editor).

A linker is a program or set of progrems which is used to
link separately produced procedure or date modules together. The
action of linking modules together is the replacement of symbolic
names in external references and calls by machine language entities
(pointers or addresses) to be used at run time to correctly
interpret these external references.

In many current computer systems, the linker is part
of 'the security kernel. This is usually justified by reasons
of feasibility, ease of implementation and economy at run time.
The linker/loader of CDC 6000 (2) computers is executed in a
peripheral processor. It is provided as part of the system and is
invoked by the scheduler when appropriate. The call function
of Burroughs 5500 (5) systems allows linking end loading of
segments by means of interrupts causing the Master Control
Progrem to run in privileged mode. The Honeywell Multics (4)
dynamic linker is also invoked on interrupts and runs in the
ring (domain) of the security kernel. In this lest case, the
design was perticularly influenced by the initial high cost of

domain crossing at run time.

IV, Motivations.

There is one fundamental reason why & linker should run
outside the security kernel, in the user's protection
environment. As is clear from the function of e linker, it
handles information directly derived from source code provided
by the users of the system. There is fair chance that such
code contesins -purposely or not - inconsistencies capasble
of causing the linker to malfunction or perform unexpected
operations. In order to certily the security kernel we have
to prove that melfunction or unexpected behavior cannot happen.
It is hard to think of appropriate security checks on user
code because potential inconsistencies in object code are
numerous, vague and essentially unpredictable. Therefore, the
only solution to the problem of certification is to remove the
linker from the security kernel so that its eventual malfunction
cannot aflect the protection mechanism of the whole system,

It is not sufficient to show - as above - that the linker
should be removed from the security kernel. We have to show
that it cen be removed i.e. that it does not need to be poxt
of the security kernel to perform its linking function, eand
thaet the security kernel does not need the help of the linker
to perform its task. These are the goals of the proposed thesis.
The Multics syetem will be used as a test cace.

;\4'

V. A test case: MULTICS (4).

The Honeywell 6180/ MULTICL system was chosen as a test
system for two reacsons, Firstly, the system is available, -’
maintained and developped ot M.I.T. Secondly, among all commercially
available systems, Multice is the only one which had protection
of stored information as an initial design goal. Beczause Multics
attempts to implement secure information storage, it will be a
good system in which to evaluate the proposed changes.

The equivalent of a domain is a ring in Multics. The
only conceptual difference is that domains in general can
have totally different capabilities while rings can be viewed
as nested domeins (concentric circles) for which capabilities
decrease as perimeter increases. There are eight rings in the
address space of a Multics process. The innermost ring, called
ring zero (o) has the most capebilities. Ring o is the domain
where the security kernel is isolated as a protected subsystem.

' The Multics linker is & dynamic linker, Instead of

being linked before they are executed, modules are linked
dynamically when an external reference is issued. The dynamic

linker is invoked on a "linkage fault" interrupt each time

the processor encounters a marked word, such a word indicates

that access is needed to an external segment and thaet the link

has never been snapped (set up) since the initialization of the
current process. When invoked by a linkage fault, the linker _
executes in ring o.

The thesis will propose a completely new design of the
dynamic linker. Instead of forcing control to transfer to
procedures in ring o, a linkage fault will invoke the linker
in the user's protection environment. Control will be trans-
ferred to the linker in the ring where the linkage fault
occured. The link will be snapped in that ring.

Tt will be shown that the linker does not need to be in
ring o to correctly perform its task: it needs no more
capabilities than the faulting ring to snap a link.

It will also be shown that the security kernel does not
need the linker to perform its task: the concept of dynamic
linking is abscnt in ring © as the security kernel is prelinked
when the system is initielized.

In order to demonstrate the correctness end the feasibility
of the proposed design, selected key parts of it will Dbe
implemented.

References.

(1) M.L. Schroeder - Cooperstinn of Mutually buspicious
Subsystens in a Computer Utility. TR 104
MIT Project MAC - Cembridge - lMass. - sept. 1972,

(2) Scope 3.4 Wworkshop Handbook
CDC 6000/7000 Development Services - 1970

(3) A Narrative Description of the I 5%00 ilagter Control Frogram
vurroughs Corporation - Detroit - Michigan - Uct. 1969.

(4) Multics Programmer's Manual - Part I
Revision 12 - MIT Project MAC - Cambridge - Mass. - l.ov., 1972.

et st e e

VI. Proposed Work.

The work regquired for this thesis can be divided into
two phases: the design and the implementation of the dynamic
linker.

The purpose of the design phase ies to conceptuglly prove
that the linker can be removed from the security kernel. This
phase is almost completed.

The purpose of the implementation is to demonstrate the
feasibility of the design and to take advantage of it in future
versions of the system. There seem to be three parts in the
implementation phase: the programming of the dynemic linker
iteelf; the modification of date bases and programs of the
security kernel to cope with the new dynamic linker; and the
programming of new features required in the security kernel
to support the initieglization of the linker. These three parts
seem feirly seperate and could be undertaken in parallel with
no- trouble., Within the scope of the proposed thesis, we will
concentrste on the third part of the implementation, It seems
to be the most complex part and therefore a potential source
of mistekes which the design must avoid. It also is the most
interesting and educational part of the implementation in
terms of computer system design and development.

