PROJECT MAC April 9, 1974

Computer Systems Research Division Request for Comments No. 49

A PROPOSAL FOR REMOVING NAME SPACE MANAGEMENT FROM RING ZERO
by Richard G. Bratt

This RFC, which is a first cut at a thesis proposal, describes
a design for removing name space management from ring zero. The design
described has the interesting property that directories may be directly
initiated by a process. This leads to a very clean interface to the
ring zero address space manager. In addition, it allows the processing
of links and the resolution of pathnames to segment numbers to be handled

in the outer rings.

This note is an informal working paper of the Project MAC Computer Systems
Research Division. It should not be reproduced without the author's per-
mission, and it should not be referenced in other publications.

Work has already begun to move non-security related
system components out of ring zero. The hope is that as more and
more extraneous functions are removed from ring zero 1t will
approach a reasonable, certifiable primitive security kernel.
This incremental approach means that we may not end up with as
coherent a kernel as might be obtained by starting from scratch.
However, it does have the strength of being constantly usable
throughout its development. Phil Janson has already completed the
design of a dynamic linker which runs in the outer rings
requiring minimal ring zero support. This proposal suggests a
design which removes the function of name space management(and
some related functlons) from ring zero.

Name space management consists of controlling the
binding of names to objects in the environment. In the context of
Multics , this proposal will consider name space management to be
the controlling of the binding of names to segment numbers. This
indirect binding is necessary because of a '"defect" in the
Multics hardware base. The hardware cannot represent an arbitrary
object in a reasonably sized Multics hierarchy in its segment
number registers and instruction fields. This requires that the
objects which a process wishes to address first be mapped onto
the space of segment numbers. This is accomplished by @
we will call address space management. Since processes tend to
save segment numbers it would be untenable for the security
kernel to attempt to simulate a machine in which all objects of
interest could simultaneously be accessible. We therefore have

two distinct steps in binding a name to an object. First, we must:

invoke address space management primitives to bind a segment
number to an object. Second, we must invoke name space management
primitives to bind a name to that segment number. Likewise, to
completely reverse a binding of name to object two steps are
required. Both of these functions are currently performed in ring
zero.

The objects in the Multics environment with which name
space management is concerned are segments and directories.
These objects are organized into a single system-wide hierarchy (
several special objects such as the system controller addressing
segment are not members of this hierarchy). In point of fact,
segments are the only really primitive objects In the Multics
environment. Directories are merely segments which are only
directly accessible in ring zero. This allows the ring zero
directory control primitives to exercise complete interpretive
control over access to directorles. It can be argued that
directory control need not reside in ring zero. It could just as
well be located in ring one or perhaps in the user ring! This
would effect a tremendous reduction in the size of ring zero.
This proposal will not deal with such a removal of directory
control from ring zero. The reason that | choose to leave
directories in ring zero, for now, is that the access control
list and physical storage map of a segment are stored in its
containing directory. To move directory control out of ring zero

page 1

et

would involve moving these items out of directories. This would
involve a major overhaul of the system, backup, and the salvager.
Rather than make a change of this magnitude while moving name
space management from ring zero, it seems reasonable to proceed
one step at a time. After name space management has been
sucessfully decoupled from address space management and removed
from ring zero we can investigate the more complex issue of
removing directory control from ring zero. Our primitive
security kernel abstract machine, therefore, will support, for
this proposal, the concept of a hierarchy of directories and
segments.

Before describing my proposal, | will briefly list some
of the current address and name space management mechanisms.
These mechanisms all reside in ring zero.

* functions explicitly accessible to outer rings
* assign an available segment number to a segment
* assign a reserved segment number to a segment
* render a segment or directory inaccessible and make
its segment number available for reassignment
* render a segment or directory inaccessible and
reserve its segment number
* functions implicitly accessible to outer rings
* assign an available segment number to a directory

* functions explicitly accessible to outer rings
* assocliate a name with a segment's segment number
* list the names assocliated with a segment number
* disassociate a name from a segment number
* get a pathname for a segment number

* functions implicitly accessible to outer rings
* associate a currently valld pathname with a
directory's segment number

The main data base for these address and name space
management functions is the Known Segment Jable. The KST is a
per-process, ring zero segment. Logically it contains four items.
First, it contains an array of KST Entries. KSTEs are indexed by
segment number and contain all per-process information necessary
for the proper care and feeding of the segment or directory
associated with the indexing segment number. Second, it contains
a hash coded mapping from the space of Unique JDentifiers onto
the space of segment numbers, or equivalently the space of KSTEs.
This mapping provides the means of locating the KSTE of an
already initiated segment should it subsequently be initiated by
a different name. Third, it contains a hash coded mapping from
the space of names onto the space of segment numbers. This
association is mainly of use to the dynamic linking mechanism.
Forth, it provides a repository for per-ring search rules. This
later KST function will be considered no further as the new

page 2

dynamic linker proposal removes this information from the KST.
The current contents of a KSTE and their major usages are given
in the following table.

KSTE field Use

forward pointer,

backward pointer Used to chain the KSTE onto a list
of free or reserved KSTEs as
requlred,

unique identifier Used to validate UID hash searches

and to properly identify the
corresponding branch after an
on-line salvage.

name pointer Used to chain together a list of
the reference names associated with
this segment or directory and the
rings in which they are known.

inferior count Used to prevent a directory from
belng terminated while it has known
sons. |f this were not done
segment faults would fall!

parent segment number Used at segment fault time to
locate this branch's parent. It
also is used to translate segment
numbers into pathnames.

offset of branch Used to locate the branch within
the parent directory.

directory switch Used to special case access setting
for directorlies at segment fault
time,

transparent modification,

transparent usage switch " Used to control whether this
process' usage and/or modification
of this segment or directory should
be transparent to the system,

Currently a process' name space has two distinct
components: a segment name space and a directory name space. The
segment name space associates names with non-directory segments.
This name space is under explicit user control. That is, the
process is free to associate any name or group of names with a
segment. Furthermore, a process may dynamically modify its
segment name space. The directory name space which associates
names with directory segments, however, is not subject to
explicit user control. Instead, it Is managed by ring zero. Names

page 3

of directories are constrained by ring zero to be absolute
pathnames of the directory.

| submit that there should be no distinction between
segment reference names and directory reference names. A process
should be free to associate any name it chooses with a directory.
Let us be uniform. We special case directories too often.
Consider how easily the working directory and search directory
concepts fit into such a scheme. All we need do is control the
binding of reserved names such as: "working_dir" and
"search_dir_n"!

It has been argued that the removal of reference names
or directory path names from ring zero has the serijous
consequence that these names can no longer reflect name changes
in the hierarchy (no such facility currently exists!). It seems
obvious, to me, that a process does not want its name space to
change without its consent. Changing a segment's name does not
change a process' access to it. A prime advantage of reference
names is precisely this ability to insulate a process from name
changes in the hierarchy. We must distinguish reference names
from directory entry names. A reference name is only a name we
temporarlily assign a segment. A directory entry name is a
selector of a particular entry in a directory. We need directory
entry names only to physically select a branch for the first
time, after that we should be free to call it whatever we choose.
If any valid reason exists for notifing a process that the names
on something it Is using have changed, the system could signal a
name_change_on segment_x condition. This would require the
addition of some sort of KST trailer mechanism to the system.
This may eventually be necessary if for no other reason than
Multics will eventually run for extremely long uninterupted
streches. If a process were to stay permanently logged in it
would required notification of on-line installations. This in
itself is a difficult problem which | do not intend to address
here. The only point | wish to make is that the process and not
the system should control the duration of name bindings.

The removal of name space management from ring zero
obsoletes the (directory pathname, entry name) interface to
address space control. This proposal suggests a radical change In
the ring zero address space manager. ! propose that processes be
allowed to initiate directories directly. Currently there exists
no means of determining whether a process should be permitted to
initiate an arbitrary directory without searching the entire
subtree rooted at that directory. This problem stems from the
fact that the ACL of a branch and its physical storage map reside
in its parent. Since we wish the ACL of a branch to exercise
complete control over access to that branch we must permit a
process to initiate all superiors of the segments it has access
to regardless of its access to these superiors! However, we also
wish to prevent a process from detecting whether or not a given
directory exists unless it has access to some inferior of that

page 4

directory. This is desirable since names of directories can
potentially carry a very high information content. To avoid
having to search the subtree of the hierarchy rooted at a
particular directory to determine if the process should be
permitted to initiate that directory, Multics inexorably couples
the initiation of a directory with initiating an inferior
segment. This inability to initiate directories directly has lead
to many needlessly complex mechanisms for manipulating
directories. In addition it has forced us to always refer to
directories by pathname which is quite inefficient. If we allow
ourselves to have pointers to segments why not for directories
also?

This scheme of coupling directory and segment
initiation has another drawback. Since a process cannot read the
access control list of a segment until its parent is known, the
system must permit a process to initiate directories which it may
not have the right to know exist! By causing the initiation of
these superior directories to occur in a single, indivisable ring
zero call, the system could, in principle, prevent security
leaks. This could be accomplished by terminating those
intermediate directories which had to be initiated only to find
that the process had no access to the terminal segment, before
returning to the caller. Unfortunately, the current system does
not do so. This allows any process to determine the existence of
any postulated directory. Certainly one approach is to correct
this flaw in the current system. However, there seem to be many
ways of forcing such a scheme to compromise information. The
problem is, of course, that if a process can cause the system to
malfunction if and only if It performs an operation which it must
pretend not to perform to protect information, then it can cause
the system to compromise Information. For example, suppose a
process filled up its address space Intentionally and then called
ring zero to initiate >secretd>x. |f ring zero was not very
careful it might cause the process to die due to a KST overflow
if and only if >secret existed. This would allow the existence of
>secret to be inferred by whether or not the process died.

I propose that we take a very different approach to the
problem of initiating directories. Instead of worrying about
whether or not a process has the right to initiate a directory
let us allow all processes to initiate any directory - whether or
not it exists! The key to this scheme is preventing the user from
detecting any difference between an Initiated directory which
does not exist and an initiated directory which exists but which
the user has not proven his right to know exists. How this is to
be done will be discussed later. The ring zero address space
manager interface resulting from this approach seems quite
natural. Ring zero no longer concerns itself with pathnames.
Instead, it accepts directory segment numbers for directory
specifiers. To allow this scheme to bootstrap itself the segment
number of the root directory will have to be agreed upon by all
processes. Initiation of segments will be controlled by

page 5

initiate_seg. Initiation of directories will be controlled by
initiate_dir. The rationale behind providing seperate primitives
for directory and segment initiation Is that a process usually
has a preconceived idea about the type of a branch it wlshes to
Initiate. When reality does not support this preconceived idea
the process is usually in error. Forcing the process to make
explicit the type of branch it is expecting allows ring zero to
immediately catch all such errors. This prevents a careless
process from bumbling along thinking all is well only to die when
it attempts to access a directory as a segment or vice versa.

These new ring zero primitives accept identical
arguments, The first argument is the segment number of a
directory. The second argument is the name of the entry in the
directory which is to be initiated. The third argument is the
segment number of the target. If the forth argument, which is a
reserved switch, is "1"b then the segment number is input
otherwise an available segment number is assigned if necessary
and returned in the segment number argument. The final argument
is a file system status code. '

An important consequence of not handling pathnames in
ring zero is that links can no longer be interpreted in ring
zero. When initiate_seg or initiate_dir encounter a link they
must return a status code. This code informs the outer ring
procedure that a link was encountered. It must then call a new
ring zero primitive to read the contents of the link. This
procedure, called get_link, has arguments similar to initiate_seg
except that the third and fourth arguments are replaced by a
character string varlable in which the link is returned. Having
read the link the outer ring procedure may then try the new path
which it contains, Since this is happening In an outer ring we
need no longer have a standard interpretation of links. That is
unless the function moves out of the kernel but not out of the
supervisor. |[If ,however, it resides in the user ring the process
may interpret links in any manner it chooses. Why not let 1inks
contain relative pathnames ,offsets, or even arbitrary character
strings? The important point is that while the kernel may be the
keeper of links it does not interpret them. Naturally the
restriction on link depth, which was intended to keep ring zero
from getting into trouble, vanishes.

We can use this same mechanism of reflecting
information out to an outer ring by setting a status code to
indicate the fact that a segment's copy switch was set. This
allows the concept of a copy switch to move out of ring zero.
Whether it is still handled within the supervisor but In a higher
ring or within the user's ring depends on whether it is to be
considered a basic, unchangable system function or not.
Personally | would move it to the user ring!

To complete our new ring zero address space manager
interface we must introduce a terminate primitive. This

page 6

primitive accepts three arguments. The first argument specifies
the segment number to be terminated. The second argument
specifies whether or not the released segment number is to be
reserved. The final argument is a status code. It should be
noticed that this primitive may be called with either a segment
or directory segment .number. In the case of terminating a
directory one constraint is enforced. Since the system requires
that a known segment's parent also be known, terminate will not
terminate a directory with known inferiors.

Since this scheme removes the important function of
name space management from ring zero we must provide a name space
manager in the outer ring. Again it is a matter of opinion
whether name space management should be handled in the supervisor
or in the user ring. If it resides in the supervisor it cannot be
clobbered by the user -- neither can it be changed. It Is my
opinion that it should reside in the user ring. Perhaps the
system could also provide a secure address space manager which
could be used by those users not interested in providing their
own. 1| will assume that name space management will be moved to
the user ring. Regardless of where it is placed all ring zero
primitives which currently accept pathnames will have to become
write arounds in some outer ring. These write arounds must first
call an outer ring procedure which, through appropriate calls to
the outer ring name space manager and the new ring zero address
space primitives, translate pathnames into segment numbers. This
corresponds to the function now performed in ring zero by find_.
These segment numbers may then be passed to the new ring zero
primitives which will not accept patnames.

So far everything seems rosey. This scheme seems to
remove many functions from ring zero and to simplify the ring
zero interface in the bargain. Where is the hitch? Do we get all
this for free? The answer is, of course, no. | have glossed over
one important point. In order to decouple directory and segment
initiation we must either be able to tell, at a glance, if a
process has the right to initiate a given directory, or be able
to sucessfully cloak the physical initiation of directories from
a process' detection until it has established its right to know
of the existence of the directory. This right may be established
either by having non-null access to the directory or by having
non-null access to its parent or by initiating an inferior of the
directory to which the process has non-null access. The reason
that non-null access on the parent of a branch establishes a
process' right to know of the existence of that branch is that
either status permission or append permission Is sufficient to
allow the process to detect if the branch in question actually
exists. Since Multics does not allow an ACL entry to contain
modi fy permission without status permission any non-null access
to a directory allows a process to determine the existence of a
given son of that directory. | will call a directory detectable
if a process has established its right to know that the directory
exists. It should be noted that the value of this attibute is a

page 7

function of the process' history and the ring of execution. A
directory is detectable by a process in rings zero through the
highest ring in which the process has non-null access to the
parent of that directory or to some initiated member of the tree
rooted at that directory. This highest detectable ring number of
a directory is kept in its KSTE. After extensive investigation
it seems that the most appropiate strategy involves cloaking the
physical initiation of directories.

What we wish to do Is prevent a process from detecting
any difference in the initiation of an inferior segment or
directory which does not exist and the initiation of an existing
but undetectable inferior segment or directory. If a process
could detect a difference in these two cases then it could
establish the existence of any postulated path in the hierarchy,
This would constitute a clear violation of security. To
accomplish this means abandoning the current one-to-one and onto
mapping which exists between occupied segment numbers and known
segments and directories. This mapping will remain one-to-one
and onto for segments, however it must become an onto mapping for
directories. The reason for this is simple. Since the ACL of a
segment completely controls the right to initiate that segment
there is no need to allow a process to initiate a segment to
which it has no access. This allows us to hide the physical
existence of a segment from a process which has no right to know
if the segment exists by returning the ambiguous status code
does_not_exist_or_no_access in response to an initiate request.
This simple mechanism fails for directories since we must always
allow a process to initiate an existing directory incase it has
access to some inferior of that directory. This forces us to
return more than one segment number for a directory In some cases
in order to prevent the process from detecting the existence of
physically initiated but logically undetectable directories. If
initiate_dir returned the same segment number for two different
entries then the process could be assured that the corresponding
directory exists! This requires that we return a new segment
number if a process reinitiates a directory which is still
undetectable with a new name. In fact we will even return a new
segment number if it tries to initiate an undetectable directory
with the same name twice. |If we returned the same segment number
then inorder for directories which do not- physically exist to
appear the same to the user ring, ring zero would have to
remember the name of every phoney directory. This Is a needless
complication of ring zero.

This scheme will merrily allow a process to initiate
vast trees of directories which do not exist! These directories
will be indistinguishable from real undetectable directories.
When multiple segment numbers are assigned to a real directory
only one segment number, designated as the primary segment
number, is actually used by ring zero to read and write the
directory. The system will insure that if the user attempts to
reference through any directory pointer in an outer ring he will

page 8§

get the appropriate access violation whether our not the segment
number he used was primary or secondary or corresponded to a
phoney directory. Whenever the user passes directory control a
segment number as a directory specifier it will first translate
secondary segment numbers into the corresponding primary segment
number. This is accomplished by adding a primary bit to every
KSTE to determine whether it is primary or secondary. The
forward pointer of a KSTE will point to the primary KSTE if its
primary bit is off. The backward pointer of the KSTE, if non
zero, will thread together, in a circular list, all KSTEs
associated with a given directory.

The action to be taken by ring zero in response to a
request to initiate a directory depends on five boolean state
variables of the system and accessing process. These variables
can be encoded as a bit string with the interpretation of each
bit given below.

state codes
state meaning
10000 parent is phoney
01000 non-null perrission on

parent in calling ring

00100 target exlists
00010 target already has KSTE
00001 target detectable

in calling ring

The possible actions which ring zero can take in response to a
request to Initiate a directory are encoded below.

page 9

aas

ans
ene

end

msd

rps

sd

sdz

action codes

assign a secondary segment number and

chain to primary KSTE .

assign a new primary segment number

return a status code indicating that

the directory does not exist

return a status code indicating that the
directory either does not exist or that the
process has not established its right to know
that it exists

update highest detectable ring field of
superior KSTEs to the maximum of their current
value and the highest detectable ring field
calculated for the target KSTE

return primary segment number and a status
code indicating that the directory was
already known

set highest detectable ring field of

the target KSTE to the maximum of the
highest ring in which the process has
non-null permission on the parent, and

the highest ring in which the process

has non-null access to the target

set highest detectable ring field

to zero

The encoding of the relevent state of the system and the possible
actions to be taken by initiate_dir allows us to compactly
characterize the functioning of initiate_dir in the following

table. Entries

in the state column encode a possible state.

Entries in the action column encode the actions to be taken given
the state represented in the state column.

state .

000~-- ans,sdz,end
00100 ' ans,sdz,end
00101 ans, sd, msd

00110 aas,sdz,end
00111 _ rps '
010-- ene

0110~ ans, sd,msd

0111~ rps

lve-- ans,sdz,end

The only possible objections | can see to this scheme
are that it can potentially waste segment numbers and it requires
inspecting the parent's ACL. A close examination of the
preceeding chart indicates that there are only two ways to assign

page 10

a segment number which is not directly connected to a directory.
The first way is to reinitiate an undetectable directory. The
second is to initiate a phoney directory. Neither of these
operations should occur in normal operation. They could, however,
arise in an attempt to use a misspelled pathname. To eradicate
this problem initiate_dir will return a :
does_not_exist_or_no_access status code if it initiates a phoney
or undetectable directory. These status codes will be fgnored by
the outer ring variant of find_ unless the terminal segment
cannot be initlated. In this case the procedure could terminate
those directories which might be phoney. This would prevent a
habitual misspeller from cluttering up his address space. It
seems that with this addition a process must go out of its way
inorder to clutter up its address space. |If that is what it
wants fine! Even if a process wastes all its segment numbers 1t
can recover by terminating no longer needed segment numbers. The
apparent inefficency of inspecting the ACL of the parent of a
branch during initiation of that branch is not serious since it
is normally not required. Only when a process has null access to
a branch and has not previously established detectability for
that branch is it necessary to inspect the ACL of the parent.

In the old KST scheme, the names stored with each KSTE
provided a means of telling what rings still had the associated
segment or directory initiated. Since these names will no longer
be kept in the KST some new mechanism must be invented to supply
this information. This is easily accomplished by adding an eight
bit field, called rings, to each KSTE. If the i th bit(0
origined) in this field is on then the corresponding ring has the
segment or directory initiated. This allows ring zero to detect
when a segment or directory may be physically terminated, thereby
preventing one ring from terminating a segment or directory that
is being used by another ring. .

It should be carefully noted that the termination
primitive terminates a segment number - only if the last segment
number for a directory is being terminated will the directory be
physically terminated! We can use the same method to describe
the action of the terminate primitive as was used to describe the
action of the initiate_dir primitive. '

state codes
state meaning
1000 KSTE Is primary
0100 KSTE has secondaries
0010 KSTE known in other rings
0001 reserve requested

page 11

action codes

np make first secondary KSTE the new primary
rn return known in other rings error

rr reset this ring's known bit

rt rethread secondary chain

tf ‘ thread KSTE onto free chain

tr thread KSTE onto reserved chain

state action
0-00 tf, rt
0-01 tr,rt
0-1- rn,rr
1000 tf

1001 tr

101~ rn,rr
1100 np,tf,rt
1101 np,tr,rt
111~ rn,rr

In summary, this proposal calls for the complete
removal of name space management from ring zero. As a result the
concepts of pathname and file system links also depart ring zero.
In the process of removing name space management from ring zero,
| have reorganized and improved the ring zero address space
manager. The important new ring zero interfaces are summarized
below.

initiate_dir initiate a directory
initiate_seg initiate a segment

get_link retrieve a file system link
terminate terminate a segment number

The KST has been simplified and contains only two components: a
KSTE array, and a UID hash table. The contents of each KSTE and
their major uses are summarized below.

page 12

KSTE field

forward pointer

backward pointer

unique identifier
inferior count

parent segment number
offset of branch

directory switch

Use

Used to thread KSTE onto free or
reserved list as required. When
KSTE is assigned and it is marked
as secondary this points to the
primary KSTE for the associated
directory.

Used to thread KSTE onto the free
or reserved list as required. When
the KSTE is assigned this field
chains together all associated
KSTEs. If it Is zero this iIs the
only KSTE for the given directory.
Unchanged.

Unchanged.

Unchanged.

Unchanged.

Unchanged.

transparent modification switch,

transparent usage switch

rings

phoney

primary

detectable

Unchanged.

An eight bit field containing one
bit per ring. Whenever ring i has
this segment number initiated then
bit i of this field is on.

A one bit field which is set if
this KSTE corresponds to a
fictional directory.

A one bit field which is set if
this_KSTE is a primary KSTE.

A number which specifies the
highest ring in which this process
has established its right to know
of the existence of this directory.

page 13

The proposed ring zero segment number manager interface is as
follows.

initiate_seg(dirsegno,ename, rsw,segno,code)
initiate_dir(dirsegno,ename, rsw, segno, code)
dirsegno segment number of the parent (input)

ename entry name of target(input)

rsw reserved segment switch(lnput)

segno segment number of target(if rsw then input)
code status code(output)

get_link(dirsegno,ename, 1ink,code)
dirsegno see above

ename see above
link file system link(output)
code see above

terminate(segno,rsw,code)

segno segment number to be terminated(input)
rsw see above
code see above

To help clarify the ideas presented in this proposal
let us consider the following senario in which a process trys to
initiate the segment >a>b>c>d>e>f in ring four. We will assume
that directory e and segment f do not exist and that the process
has no permission on a,b, or d, and append perrission on ¢ in
rings zero through five. To simplify matters we will ignore the
existence of the outer ring name space manager and we will assume
that we are operating in a virgin environment. What follows Is
how the outer ring find_ would proceed in this case.

step 1 call initiate_dir(0,"a",segno_of_a,0,code)

The directory will be initiated, its detectable field
in the KSTE will be set to zero, and the status code
does_not_exist_or_no_access will be returned.

step 2 call initiate_dir(segno_of_a,'"b",segno_of_b,0,code)

The directory will be initiated , its detectable field
in the KSTE will be set to zero, and the status code
does_not_exist_or_no_access will be returned.

step 3 call initiate_dir(segno_of_b,"c",segno_of_c,0,code)

The directory will be initiated, its detectable field
in the KSTE will be set to five, and a zero status code
will be returned. In addition this initiation
establishes the process' right to know of the existence
of superior directories at least in rings zero through
five. This is reflected, in this case, by setting the
detectable field in the KSTEs of »a and >a>b to five.

page 14

step

step

step

step

call inltiate_dir(segno_pf_c,"d",segno_pf_d,o,code)

The directory d will be initiated, its detectable field
in the KSTE will be set to five, and a zero status code
will be returned.

call initiate_dir(segno_pf_d,"e",segno_of_e,o,code)

The non existant directory e will be assigned a KSTE
which will be marked as phoney and the status code
does_not_exist_or_no_access will be returned.

call inltiate_seg(segno_pf_e,"f",segno_pf_f,o,code)

No KSTE will be assigned and the status code
does_not_exist_or_no_access will be returned.

call terminate(segno_of_e,0,code)

The segment number assigned to e will be released on
the grounds that e may really not exist.

page 15

