PROJECT MAC July 2, 1974

Computer Systems Research Division Request for Comments No. 55

M.S. THESIS PROPOSAL: A Simple Implementation of Processes as Basis for a
Certifiable Computer Utility
by David P. Reed

Attached is a copy of my proposal for a Master's thesis dealing with simplification
of Multics traffic control algorithms and interfaces. I've been working on

these problems since I completed the proposal, so it is slightly out of date

with respect to my own current thoughts. Consequently, I will hopefully be
generating further memos as my thoughts crystallize. I am exceedingly interested

in others' thoughts on these matters; feel free to come talk to me.

This note is an informal working paper of the Project MAC Computer Systems
Research Division. It should not be reproduced without the author's per-
mission, and it should not be referenced in other publications.

Massachusetts Institute of Technology
Project MAC

Cambridge, Massachusetts

Proposal for Thesis Research in Partial Fulfillment
of the Requirements for the Degree of

Master of Science

Title: A Simple Implementation of Processes as Basis for a
Certifiable Computer Utility

Submitted by: David P. Reed Signature of Author:
9 Hearn St., Apt. A
Watertown, Massachusetts

02172

Date of Submission: May 15, 1974

Expected Date of Completion: January 1975

Brief Statement of the Problem:

In order to make sure that the data in a Computer Utility is
secure, it 1is important that the operation of the supervisory
programs be certified correct by either human auditing or
mechanical means. Since a natural structure for a
multiprogrammed operating system employs many asynchronous
processes to accomplish its many tasks, the method of realization
of these processes plays a major part in the realization of the
operating system as a whole. A simple and reliable
implementation of processes such as that proposed herein will
serve as a useful basis for structuring such an operating system
in a certifiable way. The ideas will be tested by a detailed
design forimplementation within the Multics operating system.

Supervision Agreement:

The program outlined in this proposal is adequate for a Master's
thesis. The supplies and facilities required are available, and
I am willing to supervise the research and evaluate the thesis
report. :

M. D. Schroeder, Asst, Prof. of Elec. Lng,

Reed Traffic Control Thesis

I. Introduction

A currently important direction in computer systems research is
the development of techniques for construction of large
multi-access information utilities which can serve the needs of
society for information handling in a reliable, secure way.
While the reliability of the hardware part of a computer system
has been under continuous research and improvement, until
recently there has been 1little effort to systematize the
generation of correctly functioning software operating systems to

support nulti-access information utilities.

To reach this goal of correct functioning it 1is important that
the algorithms which make up an operating system for an
information utility such as Multics be simple enough that a few
hours' study of its structure would be enough to convince the
average programmer that the system 1is correctly programmed.

Unfortunately, systems such as Multics, TSS/360, and even 0S/VS2
generally provide an exceptionally large number of features

within an ad hoc structure that is expressed with many tens of

thousands of lines of source language.

I propose to attack a small part of this problem in my thesis.
The specific set of algorithms which I would like to study in

this context are the algorithms which are grouped under the

Reed Traffic Control Thesis

classification traffic control.

Traffic control is that portion of the functionality of a
computer system which is devoted to multiplexing processor and
Primary nemory resources among usef computations. Since the
functionality of traffic control is essential to any
multiprocessing operating system, it is important that it be
correct for the correct operation of the computer system as ga
whole, Unfortunately, the +traffic control function of many
computer systems is one of the most coﬁplicated parts of the
system, and certainly causes many of the subtle bugs in those
systems. For this reason, research into ways to simplify the
structure of the traffic control algoritims and certify their
correctness is important in the context of computer systems

research today.

Since traffic control serves as a basis for many of the operating
systems functions, its functional interface generally exerts a
pervasive influence on the structure of the rest of the operating
system. The structure of operating systems algorithms which
perform asynchronous 1I1/0, for example, 1is constrained by the
particular primitives (properly a part of traffic control) which
allocate the processor resources to tiie I/0 control algorithms,
In many computer svystems these primitives are defined by the

concept of "interrupt", and are collectively known as the

interrupt structure of the operating systen., While recognizing

Reed Traffic Control Thesis

that the hardware implementation of interrupts is exceedingly
simple, resulting in more reliable hardware, I also note that the
software algorithms concerned with handling & coordinating
interrupts are often among the most complex algorithms in a
computer system. DBy centralizing the software mechanisms which
interpret and coordinate interrupts in traffic control, and
hiding‘the very existence of interrupts from the rest of the
operating system algorithms, we can hope to obtain a much simpler

operating system structure.

As proof of the viability of the resulting design, I will propose
a detailed implementation within the current Multics operating
system. The Multics system is valuable as a testbed for these
ideas for two reasons. First, it is a good example of a
state-of-the-art computer utility, and provides good examples of
the types of problems which make the implementation of traffic
control very difficult. Hevertheless, the Multics system is
better structured than most existing operating systems, so I
expect few problems to result from issues unrelated to traffic
control per se. The problems of Multics traffic control are thus
more clear than they would be in another operating system.
Secondly, the Multics operating system is a "real" operating
system, serving real users, so any positive results of this
research are thus more obviously practical than those dealing

with limited purpose systems such as, for example, Dijkstra's

Reed Traffic Control Thesis

THL operating system, [1] or the MITRE PDP-11/45 system kernel. [2]
A final reason is that the Multics system is within reach, It is
currently under development at IMIT, and the author has

considerable experience with the system as a wuser and system

programmer,

To summarize, the proposed research will attempt to simplify both
the internal structure of the Multics traffic control algorithms,

and the external interface structure of these algorltnms

1) Dijkstra, E., "The Structure of the 'THE ' ~Multiprogramming
Systen", Communications of the ACM, Vol. 11, No. 5, May 1968.

2) Schiller, W.L. "The Design of a Security Kernel for a
PDP-11/45", MITRE Technlcal Report MTR-2709, June 30, 1973.

Reed Traffic Control Thesis

IT, Simplification

A large quantity of recent computer research has been devoted to
the problem of proving that programs satisfy certain assertions
about their behavior. This proof process, which I will call
"validation", consists of showing that certain properties of data
are preserved by the application of the program to the data,
under some semantic model of the program. As a consequence of
this research, the technique of structured prograrming is being
developed as a technique for constructing programs which can be
proven to satisfy assertions about their behavior. Several
techniques have been developed as part of the structured
programning methodology which are particularly applicable to the
problems with which I am attempting to deal. I propose to use
these techniques where applicable in the context of my new

traffic control design.

The concept of "levels of abstraction", which forces the design
of the system to correspond to a lattice of models of its
behavior, scems to be a useful technique. The design of a system
is constrained by this approach to be a lattice of program
modules which is similar in structure to the lattice of models.
A homomorphism from modules to models allows an easy proof of
correspondence between the properties of the models and the
properties of the program modules taken as a whole. The

important requirement of such a design is that the homomorphism

Reed Traffic Control Thesis

can be easily dermonstrated. Ag a consequence of this, program
modules are necessarily small in size, and sinple in
construction. Of course, the individual models in the lattice

must also be simple.

Another useful technique is the modularization of a designed
system of modules based on Parnas's[l] rule of "hiding of
information". This rule requires that interfaces between program
modules be simply defined, and that all interaction between
program modules occur at the interfaces. This rule allows the
technique of "stepwise refinement" to proceed in an orderly
manner, as well as aiding in construction of proofs of
correctness which are invariant under changes to the methods
used by modules to achieve their goals. This latter feature is
useful in the development of algorithms for operating system
programs, which must of necessity change with time and with the

requirements of the operating system customers.

A third important program development technique has been
described by Wulf,[2] and seems to be primarily applicable to
developing operating systems and other multi-purpose environment

support software. This techinique is called policy/mechanism

l) Parnas, D.L., "A Technique for Software *“odule Specification
with Examples", Communications of the ACM, May 1972.

2) Wulf, et. al., ™"Hydra: The Kernel of a Multiprogramming
Operating System", memorandum from Computer Science Department of
Carnegie-Mellon University, June 1973.

Reed Traffic Control Thesis

separation by Wulf, and consists of an attempt to seqregate into
different program segments the necessary, or mechanism-related,
features of algorithms, from the policy-enforcement algorithms
required by the particular utilizations of the system. Of course
there 1is no hard and fast dividing line between the two areas,
but by choosing an arbitrary line, one can come up with a design
which allows a fair amount of flexibility, while retaining those
properties which one wishes to prove correct in all conceivable
utilizations of the system. A consequence of the division is
that the policy algorithms need not be validated with respect to
the properties preserved by the system exclusive of the policy
mechanisms. Thus failure of the policy mechanism need not
necessarily result in "hard" failure of the system. This is not
to say that one might not want to validate the policy mechanisms
for other reasons, e.g. to verify that the enforced policy
corresponds with the expectations of the specifiers of that

policy.

An extension of the policy/mechanism separation technique seems
to be especially applicable to operating system algorithms in
particular. Taking note of the fact that operating systems serve
two purposes in multiprocessing environments, resource allocation
and resource usage optimization, we can divide the mechanism of
traffic control into two parts. I will call these two parts
"necessary mechanism" and "optimizing mechanism" for further

reference. An example of a necessary mechanism would be code

Reed Traffic Control Thesis

which assigns processor resources to individual processes, since
it is necessary to provide processes with CPU resources, The
code which assigns priority to processes in order to maximize
system throughput, response time, or other system performance

measures would be an optimizing mechanism.

If the separation between optimizing and necessary mechanisms is
performed properly, then it will hopefully be the case that the
optimizing mechanism need not be validated to the same extent
that the necessary mechanism has to be. Once again, the
necessary mechanism will operate "correctly" in the face of
failure of the optimizations. Obviously the division is
arbitrary, since all of an operating system can be viewed as
superfluous optimization, or alternatively, all can be viewed as
necessary to correct operation of the systen, The crucial
criterion is exactly what "correct operation" encompasses for the
person validating the system, or ultimately on the partial model
of the system which the system is being validated against. I
will attempt to perform a useful division of this sort on traffic
control with two kinds of goals in mind. The first goal is to
make traffic control's necessary mechanism simple enough so that

it may be validated against a security model. The second goal is

to make the optimizing mechanism of traffic control operate in
such a way that it need not be validated as strictly to ensure

correspondence against the model.

Reed Traffic Control Thesis

III. Specific ‘Problem Areas of the !Multics Traffic Control

Implementation

As I see it there are four specific problem areas in the current
Multics traffic control design that relate to issues of
conplexity and certifiability. 1In this section I will discuss
‘each of these areas separately, to give the reader an idea of the
precise problems I will attempt to solve; in the next section I

will discuss a variety of angles of attack on tliese problems.

A major problem with respect to certifiability is the complexity
of the current Multics traffic control code. I know of no one
person who has understood all of the functions of the Multics
traffic controller in just one sitting with the listings of the
code. There are two reasons for this. First of all, all of the
code is written in assembly language, resulting in code whose
higher order purposes are largely inscrutable. Secondly, the
modularity of the code does not cérrespond easily to the
functions provided by traffic control: the design 1is too
well-integrated to isolate separable features. For example, the
subroutine “getwqu" in the current traffic controller
implements, as well as its natural function of giving up the
processor to the most worthy process(mechanism), the priority
. scheduling algorithm (policy), loading/unloading of processes

(optimization), process initialization(mechanism), and several

Reed Traffic Control Thesis

other functions. The problem is that these functions are

implicitly provided for by the code, in such a way that they are

not functionally separable. Simplifying the code of traffic
control will thus be a task of decoupling the code for

conceptually separate functions of the traffic controller.

Traffic control's impact on the complexity of other parts of the

system kernel is primarily due to the simplicity of structuring
separable parallel computations as sequential processes. Dennis

explains this as well as anyone:

If two parts of a system are independently designed,
then the timing of events within one part can only be
constrained with respect to events in the other part as
a result of interaction between the two parts. So long
as no interaction takes place, events in the two parts
may proceed concurrently and with no definite time
relationship among them. Imposing a time relation on
independent actions of separate parts of a system is a
common source of overspecification. The result is a
system which is more difficult to comprehend,
troublesome to alter, and incorporates unnecessary
delays that may reduce performance. [1]

Unfortunately, in the current Multics implementation, tiiere are a
number of process~like tasks which do not take advantage of the
existence of parallel sequential processes in Multics. One class
of these tasks consists of those parts of the system which handle

I/0 devices such as disk, teletype, network, etc. These are

1) Dennis, J.B., "Concurrency in Software Systems",
Computation Structures Group Memo 65-1, Project MAC, MIT,

June 1972.

Reed Traffic Control Thesis

presently coded as "interrupt-driven" algorithms, which must be
coded 1in an extremely awkward manner. The other class is not so
obvious, consisting of algorithms which perform the ongoing tasks
of binding and unbinding phvsical and virtual resources to each
other. One example of the latter class is the core resource
allocation algorithm. Currently coded as the "findcore"
algorithm of page control, this algorithm is logically a process
which operates in parallel with the demand paging code, and
interacts only to a limited extent with that code. In
particular, the part of the "findcore" algorithm which deals with
moving pages out of core can proceed in a relatively parallel
manner with wuser program execution, and need not run only when
the user code encounters a page exception, requiring that a page
be brought into core. "findcore" is also an optimization
algorithm, the details of which are mostly inessential to the
success or failure of the rest of the operating system to operate
correctly, while the demand paging algorithm is a necessary
mechanism of the virtual memory system. Clark has tentatively

explored the construction of a page control algorithm which is
structured as a set of parallel processes, and this construction

shows promise in terms of simplifving the page control

algorithms.

The problem with implementing these process-like computations as

processes in Multics is that traffic control as currently

Reed Traffic Control Thesis

implemented cannot provide the functions needed by I/0 interrupt
handlers and resource allocation algorithms for two basic
reasons. The first is inefficiency, which results from the fact
that there are properties of the interrupt handlers and resource
allocation algorithms which allow them to wutilize a smaller
amount of resources than that currently required by the smallest
process. The second is delay, due to the relatively large cost
of scheduling a process under the current traffic control
implementation, as well as delays which may be introduced due to
a deterioration of the locking scheme used by traffic control
under a heavy scheduling load. Ultimately, both of these
problens result from a poorly structured traffic control
algorithm, since the inefficiency and delay are caused by traffic

control's attempt to make features available to these processes

whether or not they are required by the processes.

The third problem is that certain functions in traffic control
itself are most easily viewed as processes, For example, the
loading (allocating resources to a process so that it is
runnable) of a process is currently handled by the last process
to run before scheduling the process to be loaded. Thus the
process doing the loading bears no relationship to the process
which requires the loading. The process doing the loading must
wait before doing anything else wuntil the process is loaded.

Thus processes have unnecessary knowledge of other processes'

resources, making the system as a whole much less secure (due to

Reed Traffic Control Thesis

violation of Parnas's information hiding principle). This
problem is more general, since any process can be forced to do
computations logically part of another process, and on another
process's data, by an interrupt. This global knowledge of data
about individual processes, even within the confines of the
supervisor, is cause for greater difficulty in the certification
than is necessary. One must prove that the supervisor algoritims
do not let such privilieged data out to the user algorithms in
the same process, rather than showing that the supervisor has no

ability to know such data in the first place.

The last specific problem area in traffic control is the
diversity of poorly interacting interprocess syncronization and
communication primitives. As well as the two classic mechanisms
described by Saltzer[l] and Rapaport[2] there are several others
which serve slightly different purposes. A partial list of these

mechanisms, which I will call IPSC mechanisms, includes:

A, Block-wakeup (Saltzer's mechanism, improved in several
ways)

B. Process Wait and Notify (PWN, due to Rapaport, but
simplified by llebber; very similar to Dijkstra's
senaphores) ~

1) Ssaltzer, J.H., "Traffic Control in a IMultiplexed Computer
System", Sc.D. thesis, MIT, 1966; Project MAC Technical Report
MAC-TR-30.

2) Rapaport, R., "Implementing Multi-Process Primitives in a
Multiplexed Computer System", S.M. thesis; Project MAC Technical
Report MAC-TR-55.

Reed Traffic Control Thesis

C. Page=wait and Page-notify (like PWN, but with a different
priority scheme)

D. Loop-wait (used in some unusual locking strategies)

E. Interrupt masking (used where locks cannot be wused for
synchronization, because a process is potentially being
multiplexed to look like two processes)

F. Interprocess Signals (IPS, used in rings other than the
supervisor ring to arbitrarily interrupt a computation)

G. Process Interrupts (a low-level mechanism used to
implement IPS)

While these mechanisms are defined in an operational way by the
behavior of the associated code, there is no simple axiomatic
abstraction of the semantics of these mechanisms, Such an
abstraction would be useful in an .attempt to understand the
interaction of these nmechanisms, but the interactions are
probably too complex to allow a simple model. Worse, several of
the mechanisms (e.g., interrupts) violate the transparency of
control flow normally associated with an algorithn in a
sequential process, thus complicating the semantics of any code
written to execute in a process. Such questions as, "What will
happen if I get an interrupt here?" result from this
complication, and make the kernel of the system full of

unfathomable interactions.

Reed Traffic Control Thesis

IV. Proposed lMethod of Attack

Basically, my goal in the proposed thesis research will be to
generate a design for a traffic control system similar in
capability to the traffic controller presently implemented in the
Multics system. An attempt will be made to solve the problems
noted in the previous section by applying techniques described in
the section on simplification. As a result of application of
these techniques, the new design should be conceptually simpler

than the present Multics traffic control algorithm,

A necessarv prerequisite for contruction of a simple traffic
control design is that the functionalitv of traffic control be
modeled in a conceptually simple way. The levels of abstraction
concept can wusefully be applied here. A particular example of
the use of the principle will be the separation of
multiprogramming function (a necessary mechanism) from scheduling
policy. To separate these concepts in the model, one must
introduce two concepts: a readied-process and a general process.
A readied-process is a process which can be assigned a processor
at any time, without interaction with schedulers, memory
nanaqers, or other unrelated system modules. Thus it is
analogous to Dijkstra's Level 0 process abstraction. The general
process concept 1is analogous to the Multics definition of
process, and is subject to schedulinag policy, memory management

decisions, etc. It will then be the job of a scheduler to make

Reed Traffic Control Thesis

the processes for which it is responsible into readied-processes,
by using a create-readied-process primitive which initializes the
relevant parameters of a readied-processfrom the description kept
by the scheduler. Unscheduling will wuse an analogous destroy
primitive. These primitives seem to be a reasonable start on an
interface between the necessary mechanism of traffic control and
the policy/optimization mechanisrs. It will of course be
necessary to extend the set of ‘primitives to deal with the
problems of interprocess communication and other functions which

rnust be implemented at a higher level.

Further, I propose to use réadied—processes in the implementation
of some of the higher-level traffic control functions, such as
loading (allocation of certain necessary resources needed by a
process before it can become a readied-process), timer

managerent, and scheduling policy algorithms.

These readied-processes may also be of use in constructing a more
restrictive type of process which can be of use in replacing
interrupt handlers in the current Multics design by processes
executing the interrupt handler code. These processes need not
be as general as the general process implemented in the design,
for interrupt handling does not require many of the features of
general processes., This 1last consideration 1leads to the
realization that other levels of abstraction may exist in

building up the concept of general processes. I propose to try

reed Traffic Control Thesis

to determine a natural set of abstractions for use in this

construction, using a similar approach to that which led to the

idea of readied-processes above.

The traffic control algorithms in the design should be capable of
being coded in a higher-level language. This requires taking
note of the relative costs of features in the higher-level
language of choice in order to choose the most efficient
implementation. The higher-level language chosen will be PL/1,
since the Multics operating system uses this language for much of

its implemenation.

An attempt will be made to unify the IPSC mchanisms, by
constructing them on a common base mechanism. It was once
thought that Saltzer's block-wakeup mechanism was sufficient for
implementation of an operating system, but Rapaport describes the
"lost wakeup" problem which results., I will attempt to provide a
basic mechanism similar to block-wakeup which is both simple, and

capable of supporting all of the present mechanisms.

Finally, I will investigate the security problems of traffic

control, by attempting to describe the communication paths
between processes caused by the alcorithms used to implement the

basic functions of traffic control. There are serious research

questions here, sinice the necessity of sharing limited resources

Reed Traffic Control Thesig

among a set of suspicious processes causes a number of potential
information pathways which seem to be very hard to block, I will
try to deal with these problems by eliminating as many possible
paths from the design, as well as describing the ones which

cannot be eliminated.

- 19 -

Reed Traffic Control Thesis

V. Research Plan

I plan to pursue the proposed research in three phases. The
first phase will involve characterizing the functionality of
traffic control as presently implemented in Multics. The final
form this characterization will take is probably a combination of
a high level description of the interfaces provided by traffic
control and a lower-level description of the algorithms actually
used. Part of this work is already completed, but I am not
satisfied with the clarity and completeness of the
characterization. A reasonable estimate of the time needed to
complete this work would be one or two months over the summer,

though some of the work can proceed in parallel with the second

phase.

The second phase will involve the generation of a design for
traffic control which supports the same functionality, but which
is simpler in structure. Tiis will require the development of an
abstract model of the traffic controller function against which
the design can be compared; I expect that such a mnodel can be
generated using the results of the first phase. The time require

for this phase will be on the order of a month or two at most.

The third phase will involve verifyving the success of the second

phase, and can proceed in two ways. First of all, a test

- 20 -

Reed Traffic Control Thesis

implementation within the Multics system can be made. This will
allow a determination of whether the design works at all.
Secondly, I will attempt to outline the correspondence between ny
model of the traffic control functions and the actual code which
implements those functions. We can thus determine whether the
valuable properties exhibited by the model are retained in the
actual design. I expect that the time required by this phase
will be several months. I will require Multics development
machine resources during this phase, also, as well as corputer

time to develop the test implementation.

.;21_

