o3

Project MAC ‘ | July 11, 1974
Computer Systems Research Division Request for Comments No. 56

A Security Kernel Model for Page Control

by R. J. Feiertag

This paper describes a gedanken experiment in isolating
those elements of page control which are necessary to assure
system security. These elements can then be included in a system
security kernel whose correctness is certifigd to assure that
page control will operate securely. The remainder of page control
may then be implemented as an uncertified part of the system
without loss of security. .

The work described here is the preliminary part of a larger
effort intended to define a security kernel which contains
capabilities sufficient to build a Multics like ogeratiqg system,
yet which can be proven to meet some useful security criteria.

For the purposes of this paper a security kernel is that
part of the system which assures secure operation of those
facilities provided by the system. There are many other possible
definitions of kernel, but this one serves well for this
experiment. The choice of which facilities are provided by the
system itself Is crucial to the design of a kernel by this
definition, however, that problem is beyond the scope of this
paper. Page control was chosen as the object of this experiment
because it is likely to be a facility provided by many systems
and because it can be easily and well defined.

Definition of security
A system operates securely if there can be:

l. no unauthorized release of information,

2. no unauthorized modification of information,

3. and no unauthorized denial of service.
In systems in which resources are multiplexed among processes in
a manner observable in some form by the processes (e.g. a user
can observe the time delay caused by a page fault which results
from multiplexing primary memory) there is no known method of
attaining (1) above. This is because a process having authorized
access to certain information can pass that information to an
unauthorized process by encoding the information in its use of
the multiplexed resource in a manner observable by the
unauthorized process. Although such information paths may be
very noisy and difficult to exploit, there is no known technique
for assuring that no such paths exist. For this reason the
proposal presented below will not attempt to fully realize

security ob#ective (1) above, but wil)l realize the more 1imited
objective of preventing unauthorized direct access to

This note is an informal working paper of the Project MAC
Computer Systems Research Division. It should not be reproduced

without the author's permission, and it should not be referenced
in other publications.

-2-

information. Since most of page control will not be in the
certified kernel it wil} be assumed that page control is
unauthorized and will, therefore, not be allowed access to the
information contained in pages. The implications of the above
restriction on security objective (1) in the case of this
experiment will be discussed later.

In this paper, paging is considered to be a facility
provided by the system and page control is the part of the system
that provides the paging service. Since page control provides the
paging service it is not possible to prevent page control from
denying the paging service. Therefore, in order to assure
security objective (3) it is necessary to include all of page
control in the certified kernel. This increases the size of the
kernel and makes certification of the kernel more difficult. For
this experiment it was decided to leave page control outside the
kernel and sacrifice security objective (3). It will be shown
that this permits a considerable reduction in the size of the
kernel. It is hoped that allowing page control to deny service
will not cause more serious security compromises in other parts
of the kernel that use page control. These and other
implications of sacrificing security objective (3) will be the
object of further work. The model for a kernel described below
will, therefore, address the restricted security objective (1)
and security objective (2).

A model for paging

The model described below is in a preliminary state of
development and is, therefore, not vet complete. This is
primarily because | wish to include the paging model in a larger
model which will include other system functions and, in that
context, it is not yet clear how to complete the model. However,
the model as presented below does yield some interesting results.

The basic unit of reference in the model in the PAGE. The
PAGE is the element that holds information or data. A PAGE
consists of several COPYs. Each COPY contains the data that was

associated with the PAGE at some point in time. There is always
at least one COPY that has the data associated with the PAGE for
the current time. A COPY has a set of attributes, described

later, and has a FRAME. At any given point in time the memory of

the system (this includes all forms of storage used in paging) is
divided into disjoint blocks called frames. A FRAME has a set of

attributes and a place to hold the DATA of a COPY. In summary the
basic units of the model and their constituents are:

PAGE definition of a page object
NUMBER_OF_COPIES integer
' COPY(NUMBER_OF_COPIES) CoPY array of COPYs
CoPY definition of a copy object
COPY_ATTRIBUTES bit binary attributes

FRAME FRAME frame defined below

FRAME definition gf a frame
FRAME_ATTRIBUTES bit binary attributes
DATA - bit array of bits

one of the COPY_ATTRIBUTEs is named CURRENT. If a COPY is
CURRENT then the DATA of the FRAME associated with this COPY
contains current data for the PAGE to which the COPY belongs,
i.e. this COPY is up to date. For the remainder of this paper,
when | refer to the DATA of a PAGE, | mean the DATA of a FRAME of
a CURRENT COPY of the PAGE.

The DATA in a PAGE is broken up into a contiguous array of
bits. The bits are identified by sequential positive integers
with the first bit being numbered 0.

The two basic operations on the DATA of a PAGE are read and
write. The operation

read (PAGE , offset)

returns the contents of the bit of DATA specified by the integer,
offset, in the given PAGE. Since it is possible for more than
one COPY of a PAGE to be 'CURRENT and since the read operation
should be deterministic, it is necessary that all CURRENT COPYs
of a PAGE must have identical DATA. That this property always
holds will be shown later. Since the DATA of all CURRENT COPYs
must be identical the read operation can read the DATA of any
CURRENT COPY.

The operation

write (PAGE , offset , value)

modifies the bit of DATA specified by offset in the given PAGE.
In order to maintain the DATA of all CURRENT COPYs of a PAGE
identical, the write operation modifies all CURRENT COPYs.

The read and write operations are part of the system kernel.
They will be used by other areas of the kernel such as parts of

segment control and access control to produce the final read and
write operations visible to the user. They serve here to

illustrate the restrictions that page control must place upon the
read and write operations. The only way to access or modify
information in a PAGE is to use either read or write.

In order to permit page control to perform its function

properly, it must be able to manipulate COPYs of PAGEs. At
various times, COPYs of PAGEs will reside in primary memory,
cache memory, secondary memory, etc, and page control must see
that the COPYs are in the appropriate places at appropriate times
to try to attain maximum efficiency. In order to permit page
control to perform these functions easily two new kernel

functions are provided.

make copy (PAGE.COPY(n) , FRAME)

causes the creation of a new COPY for PAGE at the given FRAME
with the DATA and CURRENT attribute of the current nth COPY of

-l -

PAGE. That is, make copy creates a new COPY identical to an
already existing COPY except that the DATA is located in a
different place in physical memory.

delete copy (PAGE.COPY(n))

causes the nth COPY of a PAGE to be deleted.
In addition there are two operations to establish those
COPYs which are current:

set current (PAGE.COPY(n))
remove current (PAGE.COPY(n))

These above operations on PAGEs, FRAMEs, and COPYs are
sufficient to allow page control to implement a wide variety of

possible paging.schemes. I will show later how these operations
can be used to implement the Multics paging scheme.

Security of the model

Before demonstrating the applicability of the model, | will
demonstrate its security. At this writing, no formal proof of
security has been obtained, however, the following discussion
should convince the reader that a formal proof is possible
without undue difficulty.

| wish to demonstrate that the kernel operations defined
above do not violate the modified definition of security defined
above. The first modified security objective is that there be no
unauthorized direct access to information. The only operation of
the six defined above that accessses information contained in
pages is read. However, as stated earlier, the read operation
defined above is not directly accessible to page control, but
instead is filtered by access control to permit only authorized
read operations. Therefore, non-kernel programs, including page
control, do not have access to arbitrary pages, but only to pages
which are authorized to them.

The other security objective we wish the kernel to assure is
that there be no unauthorized modification of information. The
only operation of the six above which permits arbitrary
modification of information contained in pages is write. For the
same reasons as with the read operation, no unauthorized calls to
write can occur. Unfortunately, there are other means of
modifying information in a limited way. For example, a program
could use the make copy operation to make a COPY of a PAGE in a
FRAME already belonging to a COPY of a different PAGE thereby
modifying the latter. Or a program could set current a COPY of a
the PAGE, thereby madiFoTSeCORY bReRot, the most recent version of
clear that, 1ike read and write, the other four kernel operations

must be more carefully contro]led. . .
This is done by iIntroducing two new attributes. First, we

introduce FREE as a FRAME_ATTRIBUTE. If a FRAME is FREE then it
can be used to make a new COPY of a PAGE, i.e. it can be used as

the second argument to make copy. The make copy operation then

-5=

removes the FREE attribute from the FRAME so that it cannot be
overwritten until the COPY is deleted. The delete copy operation
requires that the FRAME associated with the COPY being deleted
not be FREE. The delete copy operation makes the FRAME FREE after
deleting the COPY.

The second new attribute is a COPY_ATTRIBUTE called

MOST_RECENT. A COPY is MOST_RECENT if no othgr COPY of thg same
PAGE has been modified more recently than this COPY. As with

CURRENT COPYs, all MOST_RECENT COPYs must have identical DATA.
When a PAGE is created all of its COPYs are MOST_RECENT. When a
new COPY of a PAGE is created make copy will make the new COPY
MOST_RECENT only if the COPY being duplicated is MOST_RECENT.
Only COPYs which are MOST_RECENT can be made CURRENT, and this is
enforced by the set current operation. And finally, in order to
assure that MOST_RECENT COPYs are truly the most recent, the
write operation revokes the MOST_RECENT attribute on all COPYs
that are not CURRENT, i.e. those COPYs that are not modified.
These restrictions insure that read and write always access
consistent and the most up-to-date COPYs. ‘

At first glance one might believe that the CURRENT and
MOST_RECENT attributes are the same. However, the MOST_RECENT
attribute is maintained by the kernel and is needed to constrain
the CURRENT attribute which is settable by non-kernel procedures.
The set of CURRENT COPYs is a subset of the set of MOST_RECENT

COPYs. This will be made clearer later when the model is applied
to Multics.

More on security modifications
At the beginning of this paper | argued that the unmodified

first security objective was unachievable and, therefore, |
modified the objective to make it achievable. It is interesting
to note now, that the four kernel operations directly accessible

to page control (i.e. make copy, delete copy, set current, and
remove current), do not release any information whatsoever. None
of these four operations return any values. The model thus
described does meet the unmodified first security objective.
However, without any information, page control cannot function,
so there must be some means by which page control can get
information about PAGEs, COPYs, FRAMEs, etc. This information can
be provided explicitly by an additional kernel operation. Once
page control has this information there is no way the kernel can
stop it from releasing the information. However, the information
released has been strictly controlled by the kernel. Of course,
the more sophisticated the page control algorithms, the more
information they are likely to need. However, the trade-off is
very explicit. The kernel will release to page control the
information required by page control and only this information is
subject to further release.

| also stated earleir that the third security objective,
prevention of denial of service, is unachievable without a large
amount of page control in the kernel. | went on to say that
abandonment of that objective allows that part of page control in
the kernel to be very small. It is now clear exactly how much of

-0

page control must be in the kernel, namely the data about PAGEs,
COPYs, and FRAMEs given in Appendix A and the operations given in
Appendix B. These Ooperations are all quite straightforward. What
does not have to be included in the kernel are the strategy
algorithms such as allocation of page frames to pages and the
page removal algorithms. These strategy algorithms often tend to
be complex requiring the manipulation of a lot of data and are,
therefore, difficult to certify.

A question of interest arises when we observe that other
parts of the kernel will wish to use page control to manage their
pages. The question is how the modifications made to the security
objectives for the Page control part of the kernel will affect
the other parts of the kernel using page control. Does the fact
that the page control part of the kernel does not prevent denial
of service simply mean that other parts of the kernel can be
halted or can other security objectives be compromised in the
kernel as well?

An example: Multics page control

In order to give the reader a better feel for. this model |
will now briefly describe how the model relates to Multics page
control. To do so in detail would require much writing which the
reader familiar with Multics page control can deduce for himself
or herself. | will therefore simply sketch the more important

sS.
ponntl begin by noting that the operations described above make
no allowances for errors. What happens if a program attampts to
make a new COPY in a FRAME that is not EREE or tries to make
CURRENT a COPY that is not MOST_RECENT? The purist point of view
would say that such errors sould not occur because the non-kernel
page control should have obtaied enough information from the
kernel so that it always takes correct action. Any incorrect call
to the kernel should be ignored. A less pure approach would be to
report errors either by error code return argument or condition
type mechanism as in PL/1. One must be wary of these techniques
because they can release information and one must certify that

such release is proper. . .
The problem is not so simple if one carefully considers the

read and write operations. One error that can arise in these
Operations is that an attempt is made to read or write a PAGE,
but no COPY of that PAGE is CURRENT. This corresponds to a page
not being in primary memory in Multics. One could require that
all PAGEs have at least one CURRENT COPY or that a PAGE have a
CURRENT COPY before it is accessed. The former of these
possibilities is impractical in practice and defeats the purpose
of paging and the latter solution precludes demand paging. It js
therefore necessary to insist that some error mechaniem exist iIn

order to permit demand paging to occur. This error mechanism
could be an error code refurned by read and write indicating that
no CURRENT COPY for the PAGE exists in which case the caller of

read or write must then invoke page control to make a COPY
CURRENT and then reinvoke read or write, or it could be some kind
of mechanism in read and wrjte which immediately calls page

~’

A 4

-7 -

control with an indication of the PAGE being referenced. Even
though this call would come from within the kernel, non?kernel
page control would still not have kernel privileges. Thls.latter
technique corresponds to the page fault mechanism of Multucs..
Both mechanisms do release information, however, the information
is necessary for the proper functioning of page control and
cannot be withheld. . .
Implementing the Multics page control algorithm in terms of
these kernel operations is quite straightforward. When a page
fault (no CURRENT COPY error) occurs, page control is called. A
new COPY is made to a FRAME which is in primary memory from a
COPY with a FRAME on the paging device, or if there is none on
the paging device, from the disk. Since the paging device always
has more up-to-date COPYs than the disk this will assure that the

new COPY is MOST_RECENT. Once the COPY is in primary memory it
can be ;g;_gg%ggn;. Note that in Multics each PAGE has only one
CURRENT COPY two COPYs would be CURRENT if Multics had a cache
with store through on writes). Multics also imposes the further

restriction that a copy must be in primary memory in order to be
CURRENT. A CURRENT COPY on disk makes no sense because it cannot

be directly accessed. When a COPY is to be removed from primary
memory, a check is made to see if there -is a MOST_RECENT COPY on
the paging device or the disk. If so, the COPY in primary memory
is simply deleted. This case corresponds to the modify bit off in
the page table word. If there is no other MOST_RECENT COPY then a
new MOST_RECENT COPY is made on the paging device or disk and the
primary memory COPY is deleted. The removal algorithm for the
paging device is similar (there is the added complication for the
paging device that COPYs must be temporarily moved to primary
memory and then to the disk, but this presents no difficulties to
the model). .

The implementation of the page control kernel for Multics
can be accomplished without much trouble on the existing

hardware. Unfortunately in the present implementation of Multics,
the information about PAGEs, COPYs, and FRAMEs which must be kept
by the kernel is quite spread out. The list of COPYs of a PAGE is
scattered among the page tables, core map, and paging device map.
The CURRENT attribute of a COPY is indicated by the lack of a

directed fault in the page table word. The MOST_RECENT attribute
of a COPY is encoded in the modified bit of the page table word
and the modified_from_disk bit in the paging device map. The FREE
attribute of a FRAME is in the core map for primary memory, the

paging device map for the paging device, and in the File System
Device Control Table for the disk. This information must be

collected so that it can be protected by the kernel. For easier
access some of the information might be represented differently.
Of course, a significant redesign could greatly simplify the
kernel. In any case, it is fairly clear that the kernel described
above could be implemented on Multics in an efficient manner.

An anomaly
| have just shown that Multics page control can be easily
implemented in terms of the kernel operations described. A1l the

-8~

paging schemes with which | am familiar can be implemented in
terms of these operations. Multics does, however, have an
interesting feature that does not fit well into the scheme. This
feature is the discarding of pages of zZeroes.

When Multics page control is about to remove a page from
primary memory, and that page contains only zeroes, instead of
writing the page to the paging device or disk, it is simply
discarded. Any page that has no copy of its data is then assumed
to contain all zeroes so that when it is paged into primary
memory it is simply necessary to provide a frame of zeroes. This
feature is provided to save the costs of transferring the copy to
and from secondary memory and keeping the copy in secondary
memory.

Unfortunately this efficiency gain produces a security
breach. In order for page control to know not to make a copy of
the page on secondary storage it must know that the page contains
zeroes. Giving the non-kernel portion of page control this
information is a direct breach of the modified security objective
(1). In order to preserve security objective (1), it would be
necessary to place much more of page control within the kernel.
This, if course, is counter to the desire that the kernel be
small.

There appears to be a fundamental conflict here. One must
trade efficiency for security. At least, in this case, the
trade-off is fairly clear.

Completion of the model

This discussion has not considered the creation or deletion
of PAGEs. This is because several different kernel operations can
be used to provide these functions and | have not yet determined
which alternative is most useful. For the sake of completeness |
will briefly outline one set of alternatives, it is not intended
as a permanent part of the model. The kernel operation
create page creates a PAGE with one COPY with a new attribute
NULL. This attribute indicates that there is no FRAME associated
with this COPY. The COPY is MOST_RECENT, but is not CURRENT and

cannot be made CURRENT. When make copy is invoked on this COPY
places zeroes in the new FRAME, makes the new COPY MOST_RECENT
and deletes the NULL COPY automatically. create page returns the
created PAGE to its caller. The operation delete page (PAGE)
FREEs all FRAMEs of PAGE and deletes all COPYs and the PAGE

itself. The operations create page and delete page are not

directly callable by non-kernel procedures. As with read and

write they are subject to constraints imposed by other parts of
the kernel such as” access control and segment control. in order

to insure that page control_can not, in effect delete_a PAGE
the delete copy operation will not delete the fast MOST RECENF

COPY of a PAGE. The addition of the ggggjg_g%gg and delete page

operations to the kernel do not affect any ot the security
arguments given earlier.] .
Finally | will say a few words about initialization and

shutdown of the kernel. In the abstract model presented above,
all that need be initialized are the kernel operations described

.

it

«Q-

above (i.e. they have to be placed in directly addressable
memory) and the list of FRAMEs. No PAGEs or COPYs need exist when
page control is initialized. When the system is to be shut down,
all PAGEs must be deleted.

Conclusion

This paper has presented a preliminary model for that part
of an operating system security kernel dealing with page control.
The significance of the model is that the author believes it both
certifiably secure and easily implementable. It is not the only
or optimum model, but simply serves to demonstrate the
feasibility of this approach. Further research will broaden the
model to include other operating system functions, improve the
model (i.e. make it more easily certifiable and more easily and
efficiently realizable), and explore the implications of the

;ggg:ictions on security described at the beginning of this

-10-~

Appendix A - Data protected by the kernel

For each PAGE
l. A list of COPYs of that PAGE

For each COPY

1. Whether or not the COPY is CURRENT
2. Whether or not the COPY is MOST_RECENT
3 The FRAME associated with this COPY

For each FRAME

1. Whether or not the FRAME is FREE
2. The DATA of the FRAME

-11=-

Appendix B - Required functions of kernel operations

read (PAGE , offset)

1.
20
- 3.

write
1.
2.
3!
4.

locate a CURRENT COPY
if no CURRENT COPY indicate error or call page control
return bit at indicated offset

(PAGE , offset , value)
locate a CURRENT COPY

if no CURRENT COPY indicate error or call page control
remove MOST_RECENT attribute from all non-CURRENT COPYs

replace bit indicated by offset with value in all CURRENT
COPYs :

gg copy (COPY , FRAME)

de

C’U"IJ:'\NND—'
e

. .

1.
2.
3.

if FRAME not FREE return
copy DATA from COPY to new FRAME

remove FREE attribute from FRAME

. create new COPY in PAGE of COPY

make new COPY not CURRENT
make new COPY MOST_RECENT if and only if COPY is

MOST_RECENT
make FRAME be associated with new COPY

] (COPY)
if COPY is only MOST_RECENT COPY of its PAGE return

delete COPY from PAGE
make FRAME of COPY FREE

set current (COPY)

1.
2'

if COPY not MOST_RECENT return
make COPY CURRENT

remove current (COPY)

1‘

remove CURRENT attribute from COPY

