PROJECT MAC 08707774

Computer Systems Research Division Reguest for Comments No. 58

A KERNEL FOR ACL-BASED PROTECTION MECHANISMS

by Oougtas H. Hunt

This RFC explores a specification and part of the Interface of a
sys tem kernel which can support an ACL-~basea protesction
mechanism, such as the Muitics mechanisme. The proposed kernel
does not implement any naming hierarchy, or directories, or even
names of segments. Implications of building a systenm llke
Mul tics on such a kernel are explored. ’

This note is an [nformal working paper of the Prolect MAC
Computer Systems Research Division. It should not be reproduced
without the author®s permissiony and it should not be referenced
In ather publications.

Hunt Page 2 G8/37/74

Introduction and Definitions

System certification involves deteérmining whether or not a
set of software moaules satisfies a specification, or set of
proper ties. The gifficulty of certitying a software syster is
positively corretatea with the compiexity ot the specitication.
That Is, the more properties one must prove about a system, the
more dlfticuit the proot procedure is llkely to be. Therefore,
there is an incentive to limit the scope of the specification, in
order to ease the certification processe.

A protection specitication, in particular, may focus on
those objects that are protectec by the system anc the means for
accessing theme Finding a reasonable protection specification is
a very ditficult problems A speciticatlon such as “the system ls
secure®, while able to be stated simplyy is not weli-defined. A
speciflcatlon which states that "information flow =along control
paths must be prohibited™ is an example ot a specification which
Is too all-encompassings slince researchers have reallzea the
impossibility of solving the confinement problems On the other
hanc, a specification like *“the active process table cannot be
directly moaitied by users®, while more specitic and
unders tandable, Is of such 3 trivial nature that one is urnwilling
to trust one®s private data to a system with such 3
speciflcation. Accordinglyy the first step in the system
certification process is to arrive at a specification which s
complete enough to be useful, tut not so over-constralnec that

either (1) any system which satisfies it is too restrictive, or

Hun t Page 3 08707774

(2) technigues for verifying the system with respect to the
specification do not exist.

In order that any non-trivial property be true of a system,
3 certain amount of (software) mechanism must exist to irplement
that property. The abstract ‘objects and information channels
referencea in a specification arey, after atl, software
constructs. As an example of 3 property of ga sysfem and the
sof tware modules which support ity consider the following
Informal specificatlon about the Multics supervisor:

The system will not add a3 segment to 3 wuser®s acgress
sSpace, nor even Inform rim of Its exlstence, unless his
attributes are In agreement with the access attributes of
the segment.
By Inspecting some of the lowest Jevetls of the Multics
supervisor, say traffic control and page control, one carnot
affilrm or deny the specification since access to segments |s
controlled by higher=tevel modules. By Inspecting the entire
supervisor (in |ts current form) one obtalins superfluous
Intformation, since the actlon ot such supervisor modules ss the
dynamic linker should not affect the specification. The relevant
set of modules to Inspect are those "“up to andg inctuging™ the
modules responsible for segment control.

It an operating system €an be viewed a3as a collection of
(partialty) ordered levels, then any object can be considered to
be Implemented by some coliection of levels together with alil
ltevels below them, The higher tevels do not affect tha
speclification, Given a security specificatlon=-a collection of

properties--there Is a nested famlly of system modules which, by

Hunt \ Page 4 08707/74

hypothesis, satisty ift. The <certitication approach involves
determining the least member of this family, and attempting to
show that it satisfies the specification. A member of this
tamily Is the least memoer in the sense that ignorling Jlevels
which are not in it does not prevent the specification from being
proven, while falling to consider any Jlevel internal to the
member makes it no longer possible to prove at least one of the
properties in the specification. This least member of the family
will be referred to as a kernel of the operating system, with
respect to the security speciflication. The concept of a kernel
is meaningful only when taken together with a specification about
the operation of the system; l.e. for each distinct speciflcatlion
there is a distinct kernel, The advantage of attempting to
verlfy the coliection of modules which compose the kernel, rather
than any of the members of the nested family which contain ift, is

that the relative effort is likely to be minimal.

A Irial Sceciticatlon

One goal of this research is to arrlve at a specification of
a system which protects oblects by means of access control lists.
Consequently, the ACLs themselves would be kernel-implementea
oblects. The kernel, which is assumed fo be bullt on top of
harcware similar to the current Multics hardware base, should
provide sufficient facilities to support a system such as
Mu|fics, or another ACL-baseag system. It is the =zuthor®s
contention that arn adequate oprotection specltication can be

forgulated, such that the kernel need not provide many of t he

Hun ¢ Page 5 08/07/774

interfaces now providea by Multjcs olrectory controi.

The first task at hand is then to produce an asdequate
speciflication tor 3 protection mechanlism,. Since there are
advantages in keeping the Specitication as simple as Possible,
the specification witi not deal with contro} Paths In the system,
nor with denial of service Issues. (1) At this point, there hss
been only modest ettort devoted to choosing a particular
specification, since there is a potentially Intinite variety of
Specifications which M3y seem appropriate for given user
comrunitijes, The intention |s to choose a rather rudimentary
specification, one which |s probably a3 subset of a targeﬁ
Custom=-tajilored class that varjous users will desire, Having
arrivea at a specification, this proposal wiil focus on its
implications == j.e. Whether Multics={ike systems can be bulit
upon it == ana also on verification methodologies which can be
applied to it (Ne741]. It is hoped that the wverificatlion
methodologies can bpe extence¢ to kernels satisfying other
Specificationse.

Tre proposed specification wit} deal with a particular
information repository -~ the segment =~ 3nd the methods by which
the segment and |ts attributes cén be accessed. The first
attempt at an informal specification will include four properties

describing access to segmentse. Tre tirst of these properties has

{1} Ffor example, even though the system will return the same
message for "not found" anc “no access" situations, a penetrator
may be abie to distingulsh between them by timing tests,. The
penetrator is said to be exploiting a control path in the System,

Hun t Page & NBID7T/74

already been stated in the above exampie. The other trree are

the foliowingt

The system will not aliow a user to reference the access
attributes of a segment, nor even inform him of treir
existence, unless his attributes are in agreement with
the access attributes of the access attripbutes of the
segment. (1)

The system will not allow a user to reference the &sccess
attributes of the access sttributes of a segmenty nor
even iIinform him of their existence, unless the user is
the locksmith of the segments

The locksmith attribute ot a sSegment Is speclflied a4t
segment creation time, anc cannot be changed,

The locksmith attribute gdenotes (the process of) the agent who is
ultimately responsible for the secgment. These properties providge
for a Jimit on the number of fevels through which one can recurse
before locating the agent ultimately responsible for enforcing
access to a segment. The primary reason that this particilar
specitication is given is that these access attributes are
sel t-definingt only the attributes of the desired segment need
be examined to determine it it (or any of its attributes) car be
referenced. A funcamentail oalifference between this sor} of
tlocalized authority and the authtority hierarchy which is a part
of the Multics flle system 1is that in the first casey each
segment can potentially have a different locksmith, whereas in
the fatter case there Is at least one indlvidual who is the

focksmith for every cegment in the system [Ro74]. Since in the

{1} The requlirement fthat atteibutes be in agreemeny i
del lberatety left a bit vague at this point. UOepending on the
kincds of access rights and the ruiles for comparing them, theve
can be many implementations which satisty this property.

.

Hun t Page 7 08/07/74

proposed scheme all access attributes are associated witrh the
segment, there 1Is no concept of access attributes which are a
part of a parent dlrectory. Hence thils specification decouples
access authority from a naming hlerarchy.

Unfortunatiey, this speclfication describes an access
control!l mechanjism nhlchtls reélly .foo ‘1nflex1ble for general
appllcation. Rdministrative control over . access Is needec in
order to remedy oroblems such as (1) persons whdvieave a project
but who faii to transfer access controlr rights to shared
segments, (2) persons who fail to delete obsolete segments. (3)

system errors which result in mangied ACLs, and (&) user errors

with ACLsy, In which a user accidentally removes a certaln access

mode and then cannot re-create it. An access control interface
such as the one described here‘can be‘deélgned to ellminate the
fourth cSISS‘ of problems, so that }&e U§§n cannot wipe himself
out, However, the | first threé“i;roblems persist. = One
characteristic of the three problems is that they need to be
dealt with only infrequentiy, Therefore, authority centers, such
as the "offices"™ described in [Ro741, could pe Invoked to deal
with them,

A complete specification of ‘aH“access controi{ mechanism
would describe not oniy the use of ACLs; ‘but also the use of
authority centers In the systeme. ~wEach segmenf, with an ACL
mechanism |ike that described’here;Vw;uidzbg subord1nafé-fo some
office which is named at segment céeafion times An offjice may

have very limited control over a segment:‘for‘example it may be

Hunt o Page 8 08707774

able to delete it after a time infterval has expired, or after a
user Is no longer registered on a project, With an augmented
specification which includes offices, the ACL mechanism can stitl
operate in much the same manner as described here. Therefore,
even though a specification for authority centers is not offered
here, some implications ot a system in which access authority and
naming are decoupled can be exploreo,

0f course, properties describlng the means by which segments
can be accessed would form only a part of a»reasonable protection
specification for an opersting system. For exampie, properties
of the terminal I/0 mechanism must be stated. Users need to be
assured that the characters displayed on their terminals are the
same lmodulo‘ any documented line control conventions and
can;nlcaljzatlon) as thase seen by the systenr. Secongary
properties, such as statements regarding how much influence users
can«have over resource allocation, could be Included In fthe
specitications However, thls 1is oprobably not appropriate.
Rathery, @ high-level speclfication should emphaslze properties of
the resources that the operating system makes available to users.
Hence, thé system makes avallable a varlable number of
pseudo=processors, each with ‘a virtual memory composed of a
number of segments. The segments are the only oblects In fhe
sys tem which can be protectec by user-controlled access
attributes. These remarks, together wlth the four properties
about segments, will serve as the (very) informal top-level

specification. As will be seeny this speclficatlon lIs sufflcient

Hun t Page 9 08/807/74

to characterlize a kerne! which can support Multics~-like systemse
0f course, a high=level speclfication such as this one may be
p.ogresslvely refined, in the sfructured programming sense, to

obtain more specific properties.

A Kernel Intertace for Accessing Seoments and_thelr Attributes

Given current bhardware architectures, it is evident that
procedures for terminal management, processor multiplexing, and
memory management will be contained in the kernel correspondlng
?6 this specification. The kernel! will also contaln modules

which manage segments and their access attributes. A major

- purrpose of this research is to specify more carefdlly those parts

of the kernel which would correspond to Multics segment control
and dlrectory contro! functions. Therefore it iIs reasonable to
ask which functions the kernel must make available in order to
confore to the four properties concerning access to segments.

A possibte implementation of the segment and directory
control functions necessary to support the speciftication will now
be cescribed. Each segment wilil have associated with it a number
of access control attributes, such as an ACLy domain names _(or
ring brackets), and an access class (or classification). The'
specification describes how access is granted not onily to
segments but also to the access attributes themselves. Assuming
that access classes laéf the lifetime of the segment anu that the
setting of domain names depenas on rights in an ACL entry, the
mechanlism for controlling access to the access attributes boils

dowr to controlling access to ACLs. There are a number of

Hunt . Page 10 ' 08/07/74

ditferent modes or rights available on an ACL; some of these,
such as read, write, and execute, can be Interpreted directly by
the hardware. There 1s another ACL y contalning “status® and
“modlfy” modes, which controls access to the first ACL. The
modes on the secona ACL corresponc to the “access attributes of
the access attrlbutes” mentloned in the propositions above. To
avold confuslon, the tirst ACL, which governs references to the
segmenf. will be called the “reference ACL"™ and the second ACL,
which governs references to the reference ACLy will be called the
adrinlistrative ACL. Although the reference ACL and the
administrative ACL may be Implemented as 3 single Ilsty they are
conceptualiy separate entities. Each segment also has a
tocksmith attribute, which 1looks like a process principal
identitier. The access rules srould now be ev%denf. A process
can édo a segment to lts address space only 1t its name, leee the
process group id, appears on the reference ACL. It c¢an access
the reference ACL only if iIts name appears on the zdministrative
tCL. A process can access the administrative ACL onity If it s
the process of the {ocksmith.

A kefnel ‘which satisfies the four oproperties need not
implement a hlerarchys, or directorlies, or evern names of segrents.

The kernel will manage access attrlbutes of segments, and wlll
refer to segments by uniaue id (UID)e A hlierarchical scheme tor
reflecting quota usage and other accounting attributes would be
discarded, In favor of the abllity to associate a segment with a

par ticutar accounting pool a? segmant creation time. Trie f{hrree

Hunt Page 11 08707/74

most important reasons for a hierarchy seem to be to provide (1)
@ naming structure, (2) an access control *“chaln of command,"™ and
{3) accounting pools. From the pcint of view of the kernal, each
of these needs has beer aecoupled from a hierarchy, so the kernel
heec not implement one. Of coursey, a hierarchicsal naring
structure Is very useful and Can be implemented outsiage the
kerrel using the kernel primitives, For example, a simple
directory implementation would be a8 segment fuill of name and UID
pairse

The proposed kernei Iinterface offers a number of aavantages,

when compared to a systen kernel which maps access authority onto

‘a naming hierarchy. First, there s the Issue of ease of

verifiability, which has alreacy been stressed. Since the
proposed interface manages simpler objlects and Is easier to
describe, there is good reason to believe that the verification
effort will be less. It is worthwhile noting that the Case model
describing a2 simple kernel with no segment hijierarchy is also
quite simple [(Wa74l. Secondly, some protectlion ancmallies varish
under the proposed scheme. One would like to state that only the
access attributes of an obJect are relevant in the
3CCess~granting decision. Since Multics wishes to adhere to this
rule, it Is possible to add directories to the acaress space of a
process, even though the process has no access rights to trem,
Withr the proposed kernel, it is always possible to add & segment
to an address space without consulting any intervening

directories, since segments are refereﬁced by UID. Thirdg, the

Hunt Page 1ic 08/07/74

proposed kernel interface atlows wusers to construct arbitrary
directory structures. A user can implement his own hierarchy,
invent his own segment attributes, or [mpiement a set of
directories whlch are not tree=-structured. Fourth, one may
imptement not only directoriess but other higher-level oblects as
extendea type objects supported by the kernel. The kernel would
assoclate each extended object type with a domain which supports
ite This particutlar facility is not expilored further In this
#FCo

Before aescribing the part of the kernel Interface which
manages segments anc address spacesy the segmen?.at?ributes which
the kernel must manage should be jtemized.s Since the kernet is
intended to support Multics-like systems, all attributes ir a
Mul tics segment branch are potential candidates. First, the
kernel must certainty maintain the file map and the device id of
a segment. These attributes are iInvisibie to the user,
Secondlys the kernel will manage all access attributes of a
segment, These are the reference ACLy the adminlistrative ACL,
ring bracketsy access classy locksmith, call limiter, and maxliaur
fength. {For purposes of litustration, ring brackets are
referred to in the description belowe In a more general system,
they would be repliaced by domain names.) Third, the kernel wiill
stitl gather data for accounting and backup purposes, since this
data Is accumutatea by the paging software. These attributes are
date-time-used and date-time-mocified, records used, current

tengthy and time=page proouct.

Hunt Page 13 08707774

The kernel interface for managing segments would consist of
functions to create and delete segment oblects, functions to
li.pect and modify each access attrlbute of a segment, and
tunctions to display the accounting attributes. The entry points
and thelr arguments are shown below.

1. create_segment {focksmith, admrin_acl, ref_acl, ringbr,
acc_classy call_limy max_length, acct_name, uid, status)

2. delete_segment (uic, status)
3. tist_admin_acl (uia, output_structure, status)

4e change_admin_acli(ulid, old_entry_structure,
new_entry_structure, status)

Se list_ref_acl(uid, output_structure, status)

6. change_ref_acl(uid, old_entry_structure,
new_entry_structure, status)

7 llsf_rlngbr(ﬁlc, output_array, status)
8. <change_ringbr(uid, input_arrsy, status)
9. list_acc_ctass(uia, acc_classy status)
10. change_acc_class(uid, new_acc_class, status)
11. list_caili_tlm(uid, cali_1tim, status)
12 change_calli_Iim(uid, new_cali_Jlim, status)
13. list_max_length(uid, max_tencth, status)
14. change_max_length{uid, new_max_length, status)

1%. list_acct_infoluld, dtu, dtm, cur_length, rec_used,
time-page)

Most of the parameters have slready been described. The
“acct_name™ parameter in the “create_segment” entry is used to
specify an accounting pool, tixed for the 1lifetime of the

segrent, with which the segment is to be associataed. In a

Hun t . Page 14 08/07/74

protection specification which included offices, the accounting
pool would be an ottlce Instead, and the {previously negotiated)
access modes for the office would also be specitied in the
“create_segment™ call. Of course, many of these parameters have
default values. For instance, the default value of the locksmith
is the process group ld of the creating process. These entries
are listed separately for purposes of discussionty in an
implementationy some of them might be combined. Some of btremg
jor example the entry for changing an access class, may be
avallable only through a oprivileged gate. Two other entries
which could be made available are an entry‘fo get the eftective
access mode and an entry to truncate a segment. However, threse
need not be in the kernel.

The kernel Interface to manage address spaces would consist
of entries to allocate and free segment numbers, ana 2 fautt
handler to generate a sagment descriptor for a process, assuring
proper access mode. The call side consists of the following two
entriese.

1. Initiateluia, segno, status)

2. terminate(uld, status)
The initiate entry merely allows the kernel to associate a UJID
with a segment numberj there is no access checkinge The address
space manager is also invokea to handle a segment fau!t. The
segment fauit handler wili map the faul ting segment number into a
UIDs using a per=process table, similar to the Known Segwrent

Tabte In Multlicse (1) The segment fault handler can map the UID

Hunt Page 15 08707774

Inte the segment attributes anc file map wusing a paged,
system=-wide UID mapping table, It the access comparison |s
successfuly, a SOVW jis Connected to the AST entry for the segrant

faulted upon.

Bullgdirg Soohlsticated Svstems on_the Progosed Kernel

Tre next sectlon of this proposatl is devotea to some of the
Implications of providing a kernel wlth the Interface descritec.
First to be explorea are the consequences of implementing
directories, ji.e. name=to-UID bindings, outside ot the kernel.
To begin with, since names are implemented outside the kernel,
the binding of names to UIDs cannot be guaranteed by the kernef.
The kernel deats with Segment UIDs, but users rely on names both
for their private use and for describing shareg information.
Ever the Sysfem software may rely on a naming structure to
establ ish “home directories” for users, Thus, name=-yID bindings
must not be changed without the knowledge of those relying on
ther. A user who changes a name-UID binding potentialiy has the
Same power as the locksmith of the segment, since he may trick
the tlocksmith Into performing the “*“right® operation on the
"“wrong®” segment. QOne who references a segment vja 3 directory

may elilminate the possibitity ot unauthorized renaming by making

(1) This description will suffice for 3 segment fault handler
nhich is Invoked synchronousiy in a brocessy or a hancler which
runs in another process, The tirst phase of the segment fault,
mappling the segment number into 3 UIDy can be carrieg out [n a
separate process it that Process can access the “segno ==-=-> UIp*
mapping table in the taulting process {by absegs, for axamplie),
or If there are system-wlde segment numbers,

Hunt ‘ Page 1t : G8/7037/74

his directory read-only to others. On the other hand, he <an
allow renaming by selected parties by giving them write access to
a user-domain directory or rename access to a privilegea-dgorain
directory. An lmportant observation here is that these controls
on renaming are analogous to those currently avaitable on
Mul ticse This proposed kernel Interface does not present any
problems for name-UID binding that do not alreaay exist in the
Ml tics tlle systeme.

In a system which supports private hierarchies, there |Is a
neec¢ for obtaining UIDs of thre segments which comprise the
initlal process environment. In adcition, there is a need for
obtaining UIDs of shared Information made avaliable by ather
users. Therefore there must be repositories of UIDs wricn
processes can use'fo bootstrap thelr environments. As a resulft,
many ilnstaltations may use tile system hierarchiesy but the
nierarchles will be Implementec outside the kernel. it is
possible to bulld a naming hierarchy out of segments which can ci
referenced In a user ring {domain)s The top tew levels of the
hierarchy would be reacable to everyone, but writeable only fto
system administrators. Thus the same mechanism which allows
reac-only segments can also preserve a binding of names to Ulds.

Users who wish to ensure the Integrity of the rame-uUlD
pincings whlch they use have the option of constructing their own
directorlies and directory- mansgenment procedu#es. They‘ need to
verlty correct operatlion of only thelr onn directory=-managerent

procedures, and no others. Of course, they aliso rely uporn a

Hun t Page 17 08/07/74

kerrel which operates as specified.

User-designed dlrectory management subsystems may well be
designed to run in a more privilegea domain in order to implerent
useful forms of Interpreted access. For example, append access
Could be implemented in such a priviieged-domain subsystem.
Alsoy locking (for the sake of consistency) would require
interpreted access provided by such a subsystem, since a user who
has only status access to list segment names must nonethefess set
and reset the lockse (The locking problem can be eliminated by
allowing writers to Increment version numbers, and by allowing
reacers to inspect theme) A privileged-domain directory
subsystem would require more veriflcation effort than a
user-domain subsystem, since it implements forms of lnterprefed
access to the directory segments.

The management of adaress spaces wil! not differ greatiy
from the way that function Is currentily performed in Muiltics.
The operation of initlating a segment will be reduced to its tare
essentjals: assoclating a segment number with a UID. The role
of Initiatlon 1Is Just resource allocation (of segment numbers)
there Is neither access checking nor interpretation of UIDs, At
segfault time, the existence of 3 segment with a given UID andg
proper access modes will be determlned. The checkling of access
at segfault time Is preferable to checking at [nitiate time,
slnce In steady-state system operstion there Is a possibility
that access may need to be re-calculiated on any segment

reference. Since the segfault mechanism must be able to

Hun t , Page 18 ' 08/707/74

calculate accessy it should alsc be Iinvoked on the first
reference to a segment by a process. There Iss however a
drawback to this scheme. The user cannot use the initiate entry
in the way that the “open tlie" operation on other systems |is
used - to ascertain access rights to a segment betfore
referencing ite Thusy an error in naming a segment could abort a
computation part way through a critical section. Of course with
immeal ate access revocation such an event coulcd always occurs but
adopting the preseﬁf proposal may increase the likelihood of such
an occurrences One solution to this probiem is to adc¢ an
“etfective mode” entfy to the kernel, to return effective wode
for a segment. Prior to entering a critical section, a process
could calculate if§ effective mode to each segment about to be
referenced.

Tﬁe addrégs Sbace manager must also construct segrent
descrlptoré for “éffrlbufe segments.“ The attribute segments are
repositories which con}ain attriobutes of segments. (Whether cor
not an aftribhte segmeht will contain its own attrlbutes Is still
unsettied.) The reason that segments are chosen to contain
attributes o;‘ségménfslls that secments are good places to store
variable-lehgfh: infbrmation, such as ACLs. Attribute segments
are Invisible to users, except that they require entries 1in the
descriptor segméﬁt of the processy Just as any other segnment
does. Alternatively, the descriptors tor attribute secments
could be keptlin aLSeparafe descriptor segment, accessible only

from kerneil domains.

Hunt Page 19 08707774

In this design, directory managing procedures and a dynamic
finking mechanism would both be regarded as non-kernel
wrocedures. Conseaquentiy, users can potentially supply their own
versions of either of these two tacitities. In order that a
sys tem pefaulf linker can rely on a user=suppllec directory
manager, these subsystems must cooperate through a stancard
interface. The polnt is that users must observe certain
protocols in writing their own non=-kernel subsystems, Just as 3
Mul tics user writing his own commangd must do presentily,

The proposed supervisor intertface has a ma)or effect on the
operation of a backup facility. Eackup cannot operste on a
System-protected naming hierarchy. Rather, it must work with the
UID®s of segments. The intertace to the dumper and the refriever
will take a segment UID (or 3 list of them) as an irput argument,

An issue to be explored rere is whether ér not any part of
the backup function must take place within the kernet, The
backup dumpling process, for examples must be informed about any
segments which have been modified ir the recent past, 1If segment
dumgcing is to take place only on user request, the aumper coes
not need any special kernel entry. Howaver, jf automatic dumging
Is cesired, then it is preferabie to allow the aumper to Invoke a
kernel entry to obtain a 1{ist of recentiy-modified segmentse.
Obtaining this 1ist s the only special privilege the dumper
reguires; otherwise it is subject to normal access controls. It
cannot dump a segment unless it appears on the appropriate ACL.’

The backup function for retrieving segments from removable

Hunt . Page 2Zu Tn/d7/74

medla should not reauire any special kernel interface. A user
retrieval request names a segment or collection of segments.
This set of names is mappec into a set of UIDOs by a
directory-management subsystem. The set of UIDs is in turn
passed to the retriever.

All references by the backup facility to on=-line secments
are subject to the access rulex whlch have been cescrites.
However, even though the backup process is subject to the &sccess
rules enforced by the kernei, the backup proceaures must be
verified to insure that they effect an accurate, memoryless
transfer of intormatlon between on-line segments and the
removable media.

By drawing rather ftirm modul3ar boundaries around some of the
!ouef—level system functions, & system built on the proposed
kernel can exhibit a rather high degree of information hicing
{Pa72]. This may result in performance degradation. For
example, the Multics kernei ls abte to save on storage for ACL
names of segments which it knows are in the same girectory. The
proposed kernel couid not make such assumptlons., The hope is
that a reasonable modularization will greatiy facilitate kernel

verlflcation, while not significantiy affecting perfarmance

Implications for System Veritication

A system bulit on this kernel wiltl implement directory
objects at a higher leveil of abstraction than segment objects.
What is really important it that the wav‘ in which ¥z

implementation of directories dspards on segments should be ¢acy

Hun t Page 21 08707774

to cescribe. Since the «oqomain which lmp[ements directorles
cannot affect the aomain which implements segments, aucltors can
verjify the operation of directory-management software, assuming
that the properties of ségments are true,

Isolating components of an operating system In a reasonable
manner seems to be a promising approach to the problem of
verifying its operation, with respect to s specification. This
proposal sketches how 3 naming hijierarchy for segments can be
constructed upon a particular kernel. Agﬂ 8 result, certain
system functions have been isolated in a welt=-defined way. This
same technique for isolating functional units can be applled to
‘fhe kernel itself. For example, the part of the kerne! which
manages ACLs is at a lower level of absfraétion than the part
which handlies segment faults,

Further work in this area can proceed aloné several fronrts,
First, more complete security specifications can be forwruiated,
Seconaly, there needs to be a more complete understanding of how
parts of a system depena on each other. Flhplly, there is the
problem of matching a kerne! to its specification. A pilece of
the system must be jdentifleds, which is both necessary and

sufficient to support the specification.

Hun t

i.

3.

be

{(Ne74].

{Pa721].

[(Ro741.

(Wa74l.

Page 22 08/07/74

References

Neumanns Ps Ges Fabryy Res Ses Levitt, K. Neoy et,
alesy "On the Design of a Provably Secure Operatirg
System,* Stanford Research Instlitute Computer
Science Groups Menlo Park, California.

Parnasy De Loy "On the Criteria to be Used in
Decomposing Systems [nto Modules,"” CACM, December,

1972+ ppe 105341058,

Rotenbergs Le Jeos "Making Computers Keep Secrets,"
Project MAC TR~-115, February 1974,

Haltery Ke Go, Ogdeny Ke Feoy ROUNdS, We Coy ete a8ty
"pPrimitive Models for Computer Security,”™ Alr Force
Electronlc Systems Dlivision Technical Report
ESD=TR=74=117,y January 23y 1974,

| 4

