
Restoration Note: Because of concern for revealing security
vulnerabilities in running Multics systems before patches were
distributed, CSR-RFC-59 was withdrawn immediately after it was
first circulated. As a result, neither an original paper copy
nor its word processing source file in RUNOFF format have been
located. However, the contents of RFC 59 were later reprinted
as part 5, pages 34–49, of Project MAC Technical Memorandum
TM-87, Ancillary Reports: Kernel Design Project, edited by David
D. Clark and published June 30, 1977.

As a (hopefully temporary) measure pending location of an
original copy of RFC 59, this cover page was fabricated and the
attached content pages were extracted from a scanned copy of
TM-87.

A date disagreement raises a question about whether RFC-59 was
revised. An RFC index published in May 1980 reports the
publication date as “8/5/74”. However, the table of contents of
TM-87 reports the publication date as “11/8/74”. The earlier
date reported by the index is more consistent with its position
in the RFC numbering scheme, and also with David Reed’s recall
of the timing of the reported work, and that earlier date
appears at the top of this page. However, until original paper
copies have been located, one should keep in mind that the
content reprinted in TM-87 may be a later revision.

J. H. Saltzer

PROJECT MAC! Originally published August 5, 1974
! Restored October 15, 2016
Computer Systems Research Division! Request for Comments No. 59

PATTERNS OF SECURITY VIOLATIONS: MULTIPLE REFERENCES TO
ARGUMENTS

by Harry C. Forsdick and David P. Reed

This note is an informal working paper of the Project MAC Computer
Systems Research Division. It should not be reproduced without
the author’s permission, and it should not be referenced in other
publications.

-34-

Patterns of Security Violations : Multiple References to
Arguments

by Harry C. Forsdlck and David P. Reed

1. l ntroductlon

A large class of potential holes In the security of an
operating system Is characterized by the use of an argument more
than once. On the surface, this situation appears to be
harmless: multiple references may be Inefficient, but they seem
to be functionally equivalent to a single reference. But, are
they? If the value of an argument could change between one
reference and the next, the possibility of an error In the logic
of the program using the argument exists. The assumption made by
the author of the program that an argument could only be altered
by the program or agents of the program Is violated . How could
an argument change In this Invalid way? A simple conceotual
scheme on a multiple process system Is for one process to execute
the call, supplying the arguments and a second process which has
access to the values of the arguments, to perform, at the
appropriate time, the alteration on the arguments. Whether or
not a multiple argument reference leads to a breach of security
depends on how the Information gained from each reference Is
used. If the results of a test on one reference to an argument
determine ho1~ the Information of a second reference Is used, then
a exploitable hole in the system probably exists. More specific
conclusions on the correctness of multiple references to an
argument depend on the semantics of the particular program under
analysis. Richard Blsbey of the Information Sciences Institute
of USC brought this subject to our attention. He described the
multiple referencing of arguments as a general pattern for a
class of security holes and cited several Instances of this
pattern In Multlcs.

With these Ideas as motivation, the Multlcs gate entrances
to ring 0 were examined to determine If such multiple references
to arguments were being made and If so, the ImPlications of such
flaws. Of the approximately 170 entrypolnts to ring 0 through
the hcs_ gate, about 50 were found to make multiple references to
their arguments. Nine of these Instances were potentially
serious breaches of security In the Multlcs system. All of these
breaches are easily fixed by copying arguments and then

-38-

procedures that are Internal to the protected part of a system.

5. Multiple References to Pointer Qualified Arguments: Quite
often a pointer to an argument Is passed to a procedure when the
actual argument Is a complex data structure. Again, the multiple
process scheme can cause the actual data Item to be altered
during the running of a called routine. Copying the pointer Into
a local variable and performing references through this local
copy does not solve the problem since the actual yalue of the
argument can be changed by the multiple process scheme.

4. t~ethods of Recognizing Multiple References

In a large system It Is very difficult to discover Instances
of the errors ourllned In Section 3. Two alternative methods of
attack were taken In out study of Multlcs. One technique Is to
perform an analysis of the text of all procedures that are
Interfaces between the critically sensitive part of the operating
system (ring 0 gates In Multlcsl and user programs. This
analysis Is aided by the cross reference listing produced by the
PL/1 compiler. Certain patterns In the cross reference listing
for arguments Indicate that multiple references are being made.
The main advantage to this approach Is that If done correctly, It
will yield~ Instances of multiple argument references. The
main disadvantage Is that It Is a time consuming task .

There are two defects In the cross reference technique .
First, all references are listed together; thus It Is Impossible
to tell by looking at the list which kind of reference (read,
write, appearance In an argument llstl occurred. The Inability
to distinguish In the cross reference listing between argument
list appearances and reads and writes makes the analysis more
difficult . The second defect of the cross reference technique Is
more serious. The appearance of a reference to a name In the
text of a PL/1 program does not guarentee that there will be a
corresponding reference to the value of the name In the
Instructions emitted by the compiler. There could be zero or
more references depending on optimizations performed by the
compiler and the form of the actual reference. As an example of
the last exception, the statement

x = convert(argument,zl;

doesn't actually reference the value of the argument. The value
of z is converted to a value whose type Is the sane as the~
of argument and stored Into x. Similarly, a reference to the
length of a string does not reference the string, but rather the
descriptor of the string. Thus, searching the cross reference
list for multiple references can cause false alarms . On the
other hand, the cross reference list provides no help In spotting

-40-

compiler may produce multiple Indirections through the argument
for one logical reference (this may or may not be a bug) .
Also, structure or array arguments may have subparts, all of
which are singly referenced, but through the same argument
pointer. Another problem Is that PL/1 sometimes co~les argument
pointers by indirection upon entry to a multiple entry point
procedure (the case occurs If the same name appears In different
positions In several formal parameter lists). This results In
only a single reference being detected by this technique, even
though multiple references may be made . The last problem Is
that arguments which are passed on to Internal routines will not
be caught, since PL/1 lndlrects through the argunent list once
to get the address of the argument which Is passed on. Even If
the argument Is referenced multiply by the Internal routine
which receives It, this will not be done via the Indirect chain
provided to the external routine by the transfer vector, and
will not be counted by this technique.

l~os t of the bugs whIch were found In the cur rent system by
the auditing method were also found by the monitoring method .
This suggests that the latter technique might be useful In
attempting to prevent possible bugs In the system from being
exploited, by crashing the user's process if an argument Is
referenced more than once. <This could be accomplished by
causing a fault on the second reference by using a fault tag 3
Indirect word as the second entry in a two element array of
Indirect words referenced by the Ide autolncrement mode,)
Certainly, such a firewall has its costs, both In runtime
efficiency, and In the fact that all Innocent multiple argument
references must be purged from the system, as well as the
security holes, in order for the firewall to work. Nevertheless,
this may well be worthwhile In attempting to prevent
retrogression in the security of the system for some users with
high security requirements.

5. The Semantics of Multiple References

Once multiPle references to arguments have been discovered,
there Is a final step needed to determine if a potential breach
of the security of the system exists . This requires matching the
information about multiple references gained from the essentially
syntactic check on the Program with the semantics of the program
in relation to the rest of the system and the basic assumption
that arguments can change at any moment . This step is quite
difficult. To be complete, a similar effort 1~ould be required to
justify that a multiple reference doesn't cause a security hole
as to justify that the program~ secure. But, shortcuts can be
taken: knowledge of the meaning assigned to arguments helps in
Isolating serious problems from harmless mistakes .

Of all of the steps in the technique for discovering errors
due to multiple argument references, this Is the most difficult
step to mechanize. A very large amount of knowledge about the
operation of the sYstem must be used to determine whether or not

-41-

a multiple reference Is a serious error. The najor benlflt of
searching for the pattern of multiple references Is that areas
of the program text which deserve close analysis are Isolated.

6. Results of Applying this Approach to Multlcs.

An analysis of the Multlcs ring 0 gate entrances was
performed . First, multiple references to argunents were
discovered using both the cross reference listing technique and
the monitor technique. Next, each entrypolnt that had arguments
that were multiply referenced was analyzed to determine the
effect of the multiple reference. A list of the entry points
tested and the results of those tests are found I n Appendix 1.
Numerous multiple argument references were uncovered. In most of
these cases we were able to conclude with a high level of
confidence that no errors result from these references. In a
number of other cases, however, serious breaches In security were
discovered.

The s lmplest and most glarIng error 1~as due to a mul tl ple
argument reference In "stop_process . " By exploiting the multiple
reference In the manner previously described, ~process In the
system could be stopped (Including the lnltlallzer process). A
less selective denial of service existed In "status_" and
"status_long"; by setting up a certain form of argument list,
these routines could be made to lock a lock that would never be
unlocked, This would eventually cause the system to crash . It
is possible to direct 11 tty_wrlte" to send an unending stream of
characters to a terminal. This has the effect of tying up the
entire system and causing the appearance of a crash.

Other errors were found that were either deemed less serious
or less obvious how to exploit. Because of a multiPle reference
to an argument In "add lnacl entries" It Is possible for a user
to specify the Initial-access control list f2L sny Lin& on any
directories that he may create. This seems like a serious error,
but It Is difficult to see how to exploit lt. In "prlnter_dcm"
It seems possible, once a printer has been seized, to address any
other printer. In "tdcm_message", multiple argument references
make It possible to print Inconsistent messages on the operator's
console, Finally, assuming that It Is possible to get past the
"hphcs_" gate, It appears possible to set up Inconsistent
Information In tables that record the state of tape drives by a
ca I 1 to "tdcm_add_d rIve" .

One additional error due to a multiple argument reference Is
now known . At first we had classified the entrypolnt "sfblock"
as being In the class of entrypolnts that did not have multiple
references. A subsequent communication from Richard Blsbey
Pointed out a fairly subtle error In this entry to the
supervisor. A portion of one of the arguments contains an Index
Into a bit string stored Into the PDS (an Important ring 0 data
base), and Is first validated to be within range. It Is then
used to select a bit in the bit string to be set to one. If the
second reference gives an out of bounds Index, then any bit In
the PDS may be set. Both of the multiple reference detection

-42-

techniques had failed to find this error. The monitor technique
failed because the argument Is referenced via a generated
pointer; the auto- Increment technique for exploiting such holes
will not work for this Instance. The cross reference listing
technique probably failed due to human error.

Several direct conclusions come out of our experience \~lth
Multlcs. First, each of the multiple reference detection
techniques discovered multiple references that the other did not
uncover. In addition, both missed at least one Instance of a
multiple reference. Tedium accounted for the missed occurances
In the cross reference listing technique; an automated version of
this method would presumably not suffer from this llnltatlon. In
the monitor method, multiple references were mlsserl because some
program paths were not taken. Second, even when all multiple
references have been uncovered, one must be~ conservative In
analyzing programs for correctness . Further, when such programs
are modified, there Is a strong chance that harmless multiple
references may 1 ead to serIous ho 1 es; such programs 1~1 11 need to
be audited on each new Installation. In many cases this Is an
extremely tedious task for which people are not ~~ell suited. To
be entirely sure that a multiple reference Is harmless, ~paths
that a program may take must be traced. Clearly there Is a need
to develop algorithms which would perform the analysis
mechanically.

All of the security holes reported above have been fixed in
the current Multlcs system.

7. Solutions to the Problem.

In the past there have been a number of different reasons
for copying arguments. Most of these are characterized by the
need to avoid a fault (directed faults: segment, page, no access,
ring violation; or Indirect address fault: linkage, fl, f3,
Illegal procedure) while a lock Is locked. In May, 1967 a
protocol similar to the one described below was detailed In MSPM
80.9.02. The suggestion was made that all arguments to a
procedure be copied and that only these copies should be used In
the procedure. As various Improvements In the system have
occurred, some of the reasons for copying arguments have been
eliminated and some programmers have ceased to copy arguments.
The results of this work sho1~ that because of the difficulty In
analyzing the effect of multiple references to arguments, All
arguments should be copied and validated upon procedure
Invocation. To be entirely safe, the following pattern of coding
should be followed for all ring 0 Interfaces:

-44-

Appendix

Classification of Entry Points In hcs_

Of the 170- odd entrypolnts In the hardcore gate hcs_, some 50
have multiply referenced arguments which were found by the
auditing and online monitoring techniques . We may classify these
further Into five classes:

1 . Those which are probably not security holes. To the best of
our knowledge, with the way the system Is currently
structured, these multiple references do not cause any
problems. Of course, we would feel even safer If al 1
arguments were copied and the copies referenced.

2. Multiple references which cause the procedure to be fragile,
but which probably do not cause security violations. By
fragile, we are trying to dramatize the fact that the multiple
references to arguments cause the procedure to be very
dependent on the current order In which tasks are carried out .
Alterations In the procedure are very likely to upset this
delicate balance.

3. MultiPle references that have not been explored to the depth
necessary to assign them to one of the other classes.

4. Multiple references which look as If they produce holes in the
system, but we can't think of a way to exploit the hole.

5. t~ultiple references which cause holes ~1hlch we know h0\'1 to use
to penetrate the system.

The following list of entrypolnts tells t~hlch arguments< If any,
are multiply referenced. The notation ' entrypolnt (1,31 1 Means
that the first and third arguments of entrypoint are referenced
more than once. If any arguments are referenced MOre than once,
retnarks are made about which of the above five classes the
references belong to.

Initiate
In it I ate_count
lnltlate_search_rules

lnltlate_seg
lnitlate_seg_count
i oam_ 1 I s t (1)

loam_release
loam status
i pc_ T n I t (6)

level_get
level_set
11 nk_ force
1 I s t_ac 1 (3)

llst_dlr
list_dlr_acl (3)

llst_dlr_lnacl (3)

1 i st_i nacl (3)

make_ptr
make_seg (1, 2, 5)

makeunknown
mask_lps
pre_page_lnfo
prlnter_attach (2)

prlnter_order
prlnter_wrlte_spec la l
prlnter_detach (1)

prlnter_wrlte (1, 2, 3)

proc_lnfo
quota_get (2)
quota_read
quota_move
read_events (1, 2)
replace_ac l
replace_ dlr_acl
replace_dlr_lnacl (6)

(7)

-47-

1 -- Probably O.K . Twice referenced
In copy operation .

3 -- Don't know, haven't looked at
It close enough.

1 -- Probably O.K. Twice
referenced In copy operation.

2 -- Fragile, but probably O.K .

2

2

2

User can cause fault, but no
locks locked.

Fragile, but probably O. K.
See list_acl
Fragile, but probably O.K.
See 1 I s t_ac 1 •
Fragile, but probably O.K.
See llst_ acl.

2 --Fragile, but probably O.K. Can
cause strange KST state with
blank name.

~ -- Hole without obvious
explol tat Jon . Event channel
saved In user area, then
referenced.

Not checked . No listing available.
Not checked. No listing available.
5 --Hole. Can cause Inconsistent

attachment states, since
device index is validated,
then used.

5 -- Hole. Can write on different
printer than the one assigned.

1 -- Probably O.K.

1 -- Probably O.K.

~ -- Hole without obvious
exploitation. See

