Project MAC February 4, 1975
Computer Systems Research Division Request for Comments No, 67

A NETWORK=WIDE FILE SYSTEM FOR MULTICS

by David D. Clark

INTRODUCTION

There exists a network protocol whose function 1is to allow
programs on one machine to access the file system of another
machine through the network. This protocol, called RSEXEC, was
developed by Bob Thomas at BBN, and is currently being used to
allow the various TENEX systems on the network to interact., This
memo describes one way to make the RSEXEC protocol applicable to
the Multics system as well. Using the implementation described
here, a Multics wuser would be able to access files on another
system as follows: He would be able to create a link from a
directory on his system to a segment on a foreign system, he
would be able to set his working directory to be a directory on a
foreign system, and he would be able to add directories on
foreign systems to his search rules,

THE RSEXEC PROTOCOL

RSEXEC is a user level protocol designed for communications
between systems., It differs from other wuser level protocols,
such as TELNET or file transfer protocol, in that it is not
intended to be used directly by people, but 1is rather (intended
for communication between processes. The information transmitted
back and forth between systems is in general not strings of ASCI |
characters, but rather binary data structures, When a user
indicates his intention to reference files on a foreign system,
RSEXEC logs in on that foreign system a "helper" process, which
will transmit back to the local system status about files or, as
appropriate, the files themselves. The RSEXEC protocol is used
for communication between these various helper processes, and the
main process of the user at his local site. The RSEXEC protocol
essentially defines the number of commands which the main process
may request the helper process to execute on its local system.
The following list identifies the most important commands, using
the equivalent Multics command name where possible:

This note is an informal working paper of the Project MAC
Computer Systems Research Division. It should not be reproduced
without the author's permission, and it should not be referenced
in other publications.



login (to create the helper process)
who

send_message

list

status

rename

delete

change_wdir

copy (local to the foreign system)
concatenate (two files on the foreign system)
copy (between two systems)

COMMAND ENVIRONMENT SEEN BY A USER OF RSEXEC

The intention of the RSEXEC scheme is that the above named
commands shall be used by a subsystem running on the user's local
system to provide an environment which allows sharing of files
between systems, and at the same time imitates closely the normal
command environment seen by a user of his own system. Thus,
while the protocol defines a standard interface between systems,
it is expected that implementation of the RSEXEC environment on
differing systems need have little resemblance to each other,
The most important aspect of the RSEXEC implementation on a
particular system is the fashion in which it allows the user to
refer to files on a foreign system., The TENEX implementation of
RSEXEC (the only currently existing implementation) represents
files on a different system by amalgamating a directory on a
local system with directories on one or more foreign systems to
create a '"big working directory in the sky'", which the user then
references as one directory. This approach seems inappropriate
on Multics, where the user is already familiar with the idea of a
world containing many directories., A better representation of
foreign file systems to the user on Multics would be the model of
a network~wide hierarchy in which the user may reference
directories as if they were all on his local system,

The simplest and most direct way of referencing a segment in some
other part of the hlerarchy is to initiate It, using an explicit
pathname. Let us consider what modifications would be required
to the initiate routine in order to allow this across the
network., First, we must have some syntax for constructing a
pathname which describes a segment lying in that portion of the
hierarchy which is in some other system. For example, if a
pathname begins with the character string ">arpanet>site" the
first components of the name would identify the system on which
the segment existed, and the rest of the pathname would identify



the segment using whatever syntax was appropriate for that system
(*). With such a scheme, the initiate routine could determine
whether the segment in question existed on this system or on some
other, and could take appropriate action. If the segment exists
on some foreign system, the appropriate action is to make a copy
of the segment on the local system, since an attempt to initiate
a segment is wusually followed by an attempt to touch the
segment. Therefore what the initiate routine should do if the
pathname identifies a segment on a foreign system is to copy the
segment to someplace in the hierarchy on the local system, and
then initiate that segment.

The change to the (initiate routine just described currently
represents a modification to the Ring 0 portion of the system.
Notice, however, that if the restructuring of the KST currently
proposed by Dick Bratt were installed, this change would
represent only modification to user ring modules. Because of the
experimental nature of the RSEXEC protocol, it would seem
inappropriate to implement the ideas described here unless Dick
Bratt's schemes are first made a part of the standard Multics
System,

Given this modification to Initiate, little else is required to
allow a user to link to a segment of a different system. In Dick
Bratt's scheme, the only function which directory control
performs for. a directory link is to serve as the repository of
the character string which defines that link; the interpretation
of that character string is done in the wuser ring. The
modification to the initiate routine has already been described
which will allow it to linterpret a path-name referring to a
segment of another system, Thus no further modification is
required to implement cross-system links.

It is equally clear that changing one's working directory so that
it is located in a distant system is not especially difficult
either. when one sets one's working directory, what one is
really doing is saving a character string which is used under
certain circumstances as an argument to the initiate routine.
Since the initiate routine, as modified above, will accept
pathnames referring to segments in other systems, changing the
working directory to be on a foreign system requires no further
changes to Multics software.

The other way in which users refer to other components of the
hierarchy is to add directories to their search rules. In the

+ It Is necessary that both the site name and the network name be
specified; one might in principle try to reach the same site
through two different networks. If performing a character
string comparison on the first component of the name seems too
ad hoc a way to detect a network pathname, some different
initial character, such as ">>", could be used, in addition.



version of the user ring linker which exploits Dick Bratt's KST
manager, the search rules are stored as a series of segment
numbers. Each of these numbers represents a directory in which a
search is to be made for the name 1in question., For this reason,
we cannot directly use the trick of storing a pathname which
represents a directory on a different system. A very efficient
and effective way to implement search rules is to create on the
local system a dummy copy of the directory on the distant system
which 1is to be used as a component of the search rules., In this
dummy directory we will create for every name in the distant
directory a link to that segment, It was discussed earlier that
part of the act of initiating a segment on a foreign host
involves making a copy of that segment on the local system,
Clearly, the place to put this segment 1is in the dummy
directory. In other words, we will start out with the dummy
directory containing nothing but 1links, and as a segment
associated with a particular link is initiated the link will be
replaced with a copy of the segment itself, having the same name.

REWRITING OF MODIFIED SEGMENTS

When a segment has been copied from a foreign system to a Jlocal
system as a result of an initiation, and has been subsequently
modified, the question arises as to when it 1is appropriate to
rewrite an updated copy of the segment back to the foreign
system, There are two obvious ways in which to do this. One s
to perform a rewriting operation on all modified segments at the
time the "finish" condition is signaled in the process. This s
effective unless Multics crashes or the user hangs up. Another
technique which avoids the problem of crashes but is more costly
is to provide, as part of the user's process, some procedure
driven by a timer which makes a periodic sweep of all the dummy
directories, writing back all the segments whose date-time
modified is later than the last sweep. It is also clear that the
user may wish to explicitly express rewriting under certain
circumstances, and that certain special commands may have
sufficient knowledge of their environment to command a rewrite.
For example, rewriting might always be appropriate at the time a
segment is terminated.

The obvious location for the dummy directories in the local
hierarchy 1is off the process directory., Locating directories
there avoids the necessity for providing permanent quota for
these directories: however, it does mean that they are destroyed
if the system crashes. It might be an option to locate the dummy
directories somewhere else in the hierarchy, where they would
have a more permanent existence. This would reduce the necessity
for taking frequent sweeps through the dummy directories.



LOGGING IN THE HELPER PROCESSES

Whenever the user indicates his intention to access a segment on
a particular system, RSEXEC must login a process on that system
for this purpose, so the user must make available to RSEXEC a
user name and password for the relevant system. Either this
information can be stored in a segment which RSEXEC may
reference, or the user may supply the information from his
keyboard each time it is necessary to login. On service sites
where the access control mechanism can be presumed to work there
is no reason why the information may not safely be stored in the
file system. If this mechanism were used from the Multics
development machine, however, it would seem appropriate to enter
one's foreign password from the keyboard.

The fact that it is necessary to login a server process using
the RSEXEC protocol causes a problem in implementing the server
process mechanisms on a Multics system, Only the answering
service may create a process on Multics, and the answering
service expects the login protocol to be a particular format,
which does not happen to be the same syntax as the RSEXEC
protocol, For this reason it will be necessary to modify the
answering service so that it will accept the name and password
in the RSEXEC syntax. The network file transfer protocol caused
the same problem, and one such module has already been added to
the answering service; thus it does not seem inappropriate to do
it a second time. Warren Montgomery is proposing an extension to
the answering service which 1is intended to solve exactly this
sort of problem. An additional problem with the RSEXEC protocol
is that it permits the login sequence to occur at any point in
the dialogue with a foreign system. In other words, the user may
open communication with a helper process on a foreigh system, and
at some arbitrary point request that the identity of the process,
the process-group-id in Multics terminology, be changed. Multics
does not permit this function. The answering service, once it
has created a process with a particular identity, insists that
the process maintain that identity for its entire lifetime. It
appears that 1[It s possible to arrange the RSEXEC environments
running on other systems so that they will agree to obey the
convention that if they intend to issue a login sequence they
will do so only at the beginning of any transaction. If they
send an RSEXEC request other than a login as their first request
the Multics implementation will presume that they are willing
to run the entire transaction using a system provided process
whose access is probably very 1imited, It would be appropriate
to use this process if, for example, all the distant user
wished to do was to execute the '"who" command on Multics and
then go away.

LIMITATIONS OF THE RSEXEC PROTOCOL

There are two obvious 1limitations of RSEXEC as it currently



exists: It is probably inefficlent for large files, and it does
not protect against simultaneous update of a segment by two or
more RSEXEC users. RSEXEC is inefficient for large segments
because it has no way for copying part of a segment only, Thus
if a user touches only one word of a large segment he will
discover that his computation is delayed while the entire segment
is transmitted through the network. The extent to which this s
a serious problem depends, of course, on the usage patterns of
RSEXEC. The extension of RSEXEC to allow the transmission of
parts of files is probably an interesting research project, since
it must be done in a fashion which expands to a variety of
operating systems.

The other problem is that RSEXEC contains no mechanism to prevent
two or more users from attempting to update the same file
simultaneously. It is presumed that any given file will be
accessed by only one user at a time. While this is a potential
source of great confusion, the probability 1is small under the
expected usage patterns that a shared file will be in use by
means of RSEXEC. The status information which RSEXEC transmits
between systems includes date-time modified, which can be wused
to try to identify simultaneous updating situations,

EXTENSIONS TO RSEXEC

RSEXEC can be characterized as a mechanism for referencing and
manipulating segments., It is not for sophisticated manipulation
of directories and file systems. The set of RSEXEC commands
listed above included only four file system commands: 1list,
status, rename, and delete. Clearly, such Multics functions as
manipulation of access control lists and adding muitiple names to
the segments are not possible through RSEXEC. RSEXEC does,
however, accept the idea of extensions to the protocol for
communication between particular systems. Thus, for example,
the TENEX systems use a specialized protocol for communication
which contain a few TENEX-specific file system commands. In
addition to delete, TENEX supports an "undelete" command and a
"delete it for real" command. It is easy to imagine Multics
extension to RSEXEC which allows the setting of ACL's, for
example,

MAINTENANCE OF REDUNDANT SEGMENT COPIES

The RSEXEC environment described earlier on TENEX allowed users
to take directories on several systems and amalgamate them to
form one global working directory. One advantage of this
approach is that the same file can be stored in several systems,
and RSEXEC can update each of these copies so that there s
redundant storage of a file throughout the network, This means
that if one system goes down the files are still accessible, and
the user does not have to think explicitly about where each



file is stored. The representation of the foreign systems as
members of a global hierarchy does not lend itself so well to
this particular function of RSEXEC. Providing redundant copies
automatically 1is an interesting and wusful service, so some
thought should be directed toward integrating this idea into the
Multics realization of RSEXEC,





