Project MAC February 14, 1975
Computer Systems Research Division Request for Comments no. 68

ON MULTICS SYSTEM INITVIALIZATION

by Allen W. Luniewski

In this paper the Inlitlialization of Multlcs Is discussed. The
current method 1ls presented briefly and Its shortcomings are
polnted out. A new method of Initiatizing Multics 1Iis proposed.
It seems to be a cleaner, easier to understand and maintain

method.

This note is an Informal! working paper of the Project MAC
Computer Systems Reserch DOlvislon. It should not be reproduced
without the author®s permission, and It should not be referenced
in other publjications.

In this paper I shall discuss the Initliallization of Multlcs.
My concern is with that part of initialization which occurs
between the transfer of control from 30S to Multics (currentiy in
the form of “bootstrapl®™) and the time Multics first leaves
ring 0. I am not concerned wWith any possible Inltializations
performed after Multics leaves ring 0 as by then we are in a
“real"™ Multlics environment. This paper will cover three areas.
The first part will be a discussion of how initialization is done
today and some observations on what I percelve to be wrong with
ite In the second part a dlscussléf witl be made of general ways
to simplify Initiatizatlon so as to correct the problems
perceived with it. The remalnder of the paper will deal with a

proposed scheme for Inltiallzation.

Motivation

The Initlatlzation of Multics Is an Involved operation and
currentiy 1t does work. As the Inner worklngs of Multics change
so must the system Iinitiatization routines. When these changes
are made, care must be taken to obey the implicit conventlons
about what can and can not be done at a given time during system
inltialization in order to keep initiallzatlon working. The net
effect Is that modiflcations to Initiatizatlon routines are
frequently hard and the routines themseives hard to understand.
Another motivatlon is one of certification. The current method

ot Inlitiatlizatlon, because of lts compiexity, Seems very hard to

certify. A more certifiable method seems deslirable.

Initlallzation Today

A brief summary of how Inltializatlon is performed today
will now be presented. A more detailed summary lIs presented in
Appendix A and an involved discussion Is avallable iIn +the
Honeywell PLM AN70. The Inltialization of Multics Is basically a
bootstrapping process. BOS first reads in a small program (which
in fact lIs the first part of “bootstrapl®™) from the MST (Multics
System Tape or bootload tape) and transfers to It. This program
proceeds to set up a very oprimitive environment (absolute
addressing, no external Interrupts, no tegal faults). I+ then
reads In another program (actually the rest of "“bootstrapil™).
This program sets up a more complicated environment, reads In
additlonal programs and transfers to them,. In this way the
entire ring g environment s ultimately bulilt. The major
mitestones passed (In order) during Initializatlon are!

1. Establish an appending environment

2. Set up the stack mechanism

3. Enable symbolic references {establlishing the PL/T

environment)

4. Initiatize the SST (System Segment Table)

5. Bring up the disk storage system

b6« Enable the correct handling of page faults

7. Set up a KST (Known Segment Table)

8. Access (construct) the root for a warm (cold) bootload
9, Segment faults and the file system now work
10. Initlialize the traffic controlier
11. Initlatize the teletypes
These eleven ltems present In a brief way the major path taken by

initiatization.

Problems With Initialization Today

To complete our look at the way system Initlalization occurs
now, we now will see what makes It hard to understand. Three
areas come *to mind. First 1is the sheer wvolume of system
inltlatlization. During the course of initiallzation almost all
of the data basés in ring 0 are iInjitiatized. This results 1In a
farge number of Initializatlion routines. This type of complexlity
is inherent and related to the complexity of the supervisor. The
targe number of routines has a compounding effect on the next two
difticultiese. A second problem is understanding why things are
done In the particutar order that they are done In. It takes a
careful reading of the documentation and programs of
inltiatization to understand which parts of the standard ring 0
environment are workling at any glven point durlng Inltialization.
This makes It dlfficult to write and malntain initiatization
routines. The last problem concerns the operations performed at
initiatizatlon time. One can view Initlatization operations as

operators on the environment - they transform Initiatization from

one environment to another (presumably closer to the ring 0
environment present when Multics is running). The problem with
these transformations Is that they are from one non-standard
environment to another. This makes establishing the correctness
of these transformatlions hard. An alternative way of looking at
the tlast two difficulties 1s the following. Initlalization
routines must be very carefu! not to touch, elther directly or
indirectly via a fault, lInterrupt or call, any data base or
program which has not yet been initialized or which 1Is iIn the
process of belng Initlalized. Thase seem to be the major
problems wlith understanding how inltialization 1Is performed

todaye.

Solutions

These ditflculties with initiatizatlon suggest three ways to
simpiify iInitlatlzation so as to Increase its understandibiility.
The first, and most obvious, simptification is to have
initliatlzation run, as much as possibley, in a well defined
environment. The logical choice for this environment 1Is the
standard ring 0 Multics environment, By running In this
environment, the problem of writing Initialization procedures Is
1ittle different from writing ordinary ring 0 code. The amount
of time between initiatization first being ™called" by B80S and
when the standard ring B environment |is working should be

minimized, thus maximizing the time spent in the standard ring 0

environment. This <can be done by moving current initialization
operations to one of two places. First they can be moved to MST
generation time. This amounts to making bindings at the time the
MST 1Is generated. These bindings can be such [tems as segments
to segment numbers and links to segments as well as bindlngs
relating to a minimal hardware configuration (in terms of Roger
Scheil!"s thesis (Project MAC TR-86) these are bindings to loglical
hardware resources). Second they <can be moved +to after the
standard ring 0 environment is working. This amounts to an
assertion that certain operatlons currently considered necessary
to proper Multics operation are not in fact necessary. The final
simptification (which 1Is retated to the second) occurs by taking
a different viewpolint of many Initialization operations. Instead
of regarding them as oné time only actsy we can look at them as
speclfic Instances of reconfiguration operations. 0f course
these operations must run In a standard ring § environment, but
if we can cause them to, we have achleved a simptification of
initiatization. I feelt that If these changes can be made,
initiatization witl be much easier to understand, maintain and
certify. The remalnder of thls paper wWill discuss a way to

achleve these simplifications.

A New Paradigm tor Injitialization

The basic course of the proposed initiatization scheme s a

four phase process. Phase one occurs at MST generation time when

a core image of Multics s generated. Thls core image 1Is
generated by making sultable assumptions about the hardware
conflguration and by making certain bindings. The nature of
these assumptions will be dlscussed later. At bootload tlime this
core Image 1is 1loaded into core and control passed to an
appropriate spot within 1t. The second phase now occurs. At
this time a small number of Initializations wilt be performed to
get the core lmage worklng as some standard environment, After
establishing this environment the third phase proceeds to
establish the normal ring 0 environments As shall be seen iater,
this princlipatly involves bringilng up the file system. The
fourth, and flnal, phase Involves I[nvoking reconfiguration
rout ines to adjust to the actual desired hardware and software
confliguration. For |iInstance, one wWould dynamlcally add the
paging device instead of demanding it to be there before the
standard ring 90 environment s running. On the software side,
one might dynamically adlust the number of AST entries of each
size instead of fixing the number for all time as part of
bringing up the standard ring 0 environment. By proceeding in
this ways via a core image and reconfiguration operations, we

eventualtly get to the desired Muttics configuration.

Generating the Core Image - Assumptlons

The remainder of this paper will concentrate on the core

Image and how 1t should worke. The assumptions one must make in

order to generate the core image represent the first major lssue.
These assumptlons should be few in number in order to Increase
the flexliblllity avallable at bootioad time. These assumptlons
can be of elther a hardware or software nature. Hardware
assumptions are assumptions about the physical configuration.
The number of these assumptions should be small for If too many
assumptions are made, the number of Instaltations the MST can be
used at ls reduced. We propose to make assumptions about the
amount of memory avallable and about the layout of memory. The
assumptions about the layout of memory will be of two sorts.
First we will assume that we have sufficlent low order memory for
our needs. This replaces the assumption currentiy made that
sufficlent memory is available but that It can appear In two
pleces. Qur assumption Is simpler than currentiy made although
siightly more restrictive. The second assumptlon about the
tayout ot memory is somewhat more involved. We will assume the
absolute core locatlons of the Interrupt and fault vectors, the
B80S toehold, the CONFIG deck and the load point of the core
image. Currently these are good assumptions - these locations
are not changed. It they were to be variable, [t would be
possible to allow the program which loads the core image *to
perform these relfocatlions (note that [If too much of this sort of
"adjustment™ is allowed, the resulting paradigm will be simltar
to the current one and correspondingly hard 76 understand). A
third assumption, also made by the current inltiatization

paradigm, 1ls that there no Jlocations “"regserved"™ above the load

polint. ™"Reserved®™ locations include fault and Interrupt vectors,
the BOS toeholdy, the CONFIG deck and the varlous mallboxes.

These seem to be the only hardware assumptions we must make to

generate the core Image.

Software assumptions should aiso be minimal. The binding of
segments to segment numbers Is clearly necessary. By making this
assumption, we are able to create segment descriptor words (SOWs)
and page table words (PTHs) for the core image as well as for the
rest of the ring 0 and initiatllzation routines. We are ailso able
to perform prelinking at MST generation time (bind 1lnks to
segments). If we were not to do it here, it would have to be
done as part of initiatizing the core Image. Thls is because a
tinkage fault within ring 0 is not permitted in Multics. 1If such
1inkage faults were to be allowedy we stlll could not allow them
early in initializatlon as the handling of Ilinkage faults
reaqulres a hierarchy which iIs not present Inltiality. No other
software or hardware assumptions seem necessary. It should be
noted that by making more assumptlions the core image can be
brought closer to the point where it wakes wup as a fully
func tional ring 0 environment, possibly reducing the time spent
initiatizing the core image and performing initial

reconflguration operations.

Ihe Environment Supported by the Core Image

Another 1Issue Is the capabllitles of the core image. The
goal is to get it to act as much a possible like the standard
ring 0 of Multics as soon as possible. We can get close to the
ideal of waking up in a standard ring 0 environment., In fact the
environment the core image supports is much 1lke that proposed
for an H-process by Bob Mabee in MTB-150. We will discuss this

by looking at varlous parts of the ring 0 supervisor.

The first area Is Interruptss When the core image wakes
up, LIt knows of no external devices as they will be reconfligured
onto the system tater. Thus there are no valid external
interrupts and the interrupt masks are simply set to refiect this
- all external Interrupts are masked off. There Is another sort
of Interrupt though - software generated Interrupts (such as
stop, preempt, IPS (Interprocess Signal), processor inltiallze,
system trouble and syserr {o0g). These interrupts must be enabled
at the appropriate system Interrupt levels. This can be done
either at the time the core image Is generated (by binding these
interrupts to interrupt cell numbers and iInterrupt levelis) or by
determining these asslgnments as part of initlalizing the core
image. If the first cholce Is taken, reconfliguration oprimitives
must be provided to change these asslgnments dynamically. This
s necessary so as to allow external devices to use the cells
preassigned to the software process interrupts. I choose the
tirst atlternative (binding at core image generation time with

reconflguration operations) as it provides more overall

_10..

flexibillty than the second as well as reduclng the amount of

core lmage Initialization which [Is necessary.

The second area is that of faults. It appears that all the
faul ts can be handied In their normal manner. Four types of
faul ts deserve special attention - 1linkage, segment, page and
bounds faults. Linkage faults should not occur during normal
ring D operation so the occurrence of such a fault in the ring 0
core image should cause the system to dle. If tinkage ftaults
were to become legal within ring 0, we stil! could not permit
them since the handiing of a linkage fault requires a hlerarchy
and file system which won®t be present when the core image wakes
up (more on thlis later). Segment faults can be handled In their
normal ways however, such faults should not occur as all needed
segments will be made active at the +time the <core Image Is
generated. Note that segment activation and deactivation will
not occur unless a segment fault occurs and we are carefully
avoiding causing such fauftse In this way we will not introduce
"new® segment faults after we start the core image running. If a
segment fault were to occur, we would be unable to handle it as
the KST would be almost null - no segments except the root are
known t0 the process. B3ounds faults must be carefully handled.
Since we may take bounds faults on segments whlich have no
branches in the hierarchy, the bounds fault handler must take
care not to attempt to modify the segment’s file map as It does

not have a branche. Under the proposed new storage system

{MTB-110) this problem uill not occur (file maps wWill always be
full slze and are not modlfled until segment deactivation time).

We will discuss page faults In a Jater paragraph.

The wvarlous flle system primitives are the third area for
consideration In regards the capabillties of +the core image.
sthen we first come up In the core image, we have no hlerarchy so
that atl fite system operations tack meaning. We can prevent
explicit operations by auditing Initlalization routines and
sultable programming conventionse. Implicit wuse is harder +to
stope. Two Impliclt operatlons come to mind - quota checking and
returning pages to the file systems Quota checking can be turned
off by a switch In the AST entry for the segment (this abllity
currently exists). Returning of pages {(which occurs implicitly
when page control detects an all zero page) can be prevented by
setting another switch in the segment®s AST entry (this ability
Ils also currently present). It some flle system operations
should occur, the system should die gracefully. This can be done
by noting that all file system operations depend on being able to
access the root. We set the root's PTHs so that a page fault
occurs when the root Is referenced. The page fault hanaler wilil
then catll a device driver to read the page in. This driver, an
initlatization routine, traps on.the read attempt and causes the
system to crashe Thus until the system is ready for file systen
operations to occur they will be prevented from occurring by

program auditing and programming conventions and if they do occur

they wiill cause a controlled system crash.

The above three areas seem to be the cruclial ones in dealling
with the core lmage. Al! other components of ring 0 should work
correctly. In particular, there seems no reason why fraffic
control can not be working at the Instant the core image comes
alive, thus allowing multiprogramming. In summary, the core
Image should have most of the capabilities of a standard Multics
ring p. Most operations work properly. One set, the file

systemy, definitely do not work.

Core Image Injitialization

The next toplic for discusslion is what must be done between
the time the core [mage wakes up and when [t provides |its
restricted environment, It is gduring this time that we are
running In an incomplete environment, so we want the operations

whlch must be performed to be simple and as few as possible.

Nine operatlons seem necessary to get the core [mage
WOrking, Everything else which is currenttly done at
initlalizatlon time will either be done at MST generation time or
as a feconfiguraflon operation after the core image Is running.
These operations must be done at bootload time as they are
inherentiy configuration dependent. Performing them at MST

generation time, while possible, Involves making additlonal

_13-

conflguration assumptions. These additlional assumptlons serve to
severely restrict the possible configurations the system can boot

ONe

When first transferred to by BOS there are two things the
core image must do very quickiy. First an appendling environment
must be establlished. This involves finding the absolute location
of the descriptor segment (or [ts page table as the case may be)
and loading the DBR (Descriptor Base Register) aoppropriately.
The second Important action Is to save any Information passed to
Multics by B0OS. Currentiy BOS passes the absolute core locations
of bootstrapis the IOM mailbox and the Interrupt vector as

“"parameters™ to Mul tics.

Having performed these initial operatlons, 1t Is necessary
to perform some configuration dependent operations. First
pointers must be set to point ¢to the clock In the bootload
memory, the presence of a clock being essential to correct
Multlics operation. Second the SCAS {(System Controfller Addressing
Segment) must be constructed. This Is a segment with a "page in
every memory®”. Initiallzing the SCAS 1Is «closely tied +to the
third Initializatlion, memory Initiatization. All of the memories
that the core Image lles in must be "“configured" in. Port
addressing words words for these memories must be set up as well
as adding unclaimed pages of these memories to the free core

tlet. These memorles must be special cased In thls way as the

\w

-1(’-

normal reconfiguration primitive to add a memory does not know
how to handle a memory that |Is already partially iIn use. A
fourth necessary operation |is the construction of the channel
maskse These should be made to reflect our initial, minimal
configuration of one CPU {(the bootload processor) and the system
controllers we are usings No other modules are part of the
system configuration so that the channel masks should only allow
communication between the bootiocad processor and the configured
system controliers. Note that setting the channel masks in this
nway prevents communication between the bootload processor and the
boot load tape. Establishing this communication 1ink Is part of
initiatizing the bootload tape, the fifth Initiallzations HWe
must initialize the bootload tape as it contains most of the
system programs. It Is an Initlalizatjion, as opposed to a
reconfiguration, operation since page faults, as discussed later,
will be handied from the bootioad tape. To anable the
communication link between the bootlioad tape controliing program
and the bootload tape (via its I0M) the channel masks must be
modi fieds This could be done in a brute force, lll-structured,
way simply by modifying the mask. A better way, however, is to
use a reconfiguration operation +to add the IOM to the system
{causing a structured change to both the channel masks and the
Interrupt structure - masks and handlers) and then use the IOM
manager to add the bootioad tape as a device. Doing it in this
way 1Is much <cleaner than the brute force approach as 1t uses

normal operators to do the necessary works O0f course care must

~’

- 15 -

be 4taken to lnsure that the necessary programs to perform these

operations are part of the core image.

Three Initializatlons remaln to complete the Initlalizing of
the core image. Flrst the six process Interrupts must be set up.
Masks and simulate patterns for them must be constructed. The
options for dolng this have previously been dlscussed. Second
the operators console must be Initialized, again by setting up
the communication path through an IOM (adding the IOM to the
system If it iIs not already present) and then wusing the IO0M
manager to add the operators console as a device. The last
initlallzation Is a minor one. The ¢time zone the system s
running In 1Is ascertalned as well as the time difference from
GMT. Hith thls initialization, the standard environment provlided

by the core image [s running.

Atthough it has taken a 1long time to discuss these
initiallizatlons, they are not that involved. There are only nine
of themy, and all of them are relatively simple. Much talk has
been devoted to the ldea of running In a known environment, so
that a short discussion of the initial environment, after setting
up the core Image as descrlbed, is appropriate. It Is a paged,
segmented environment. The stack environment 1is in operation
{allowing the normal call - return sequence). Symbolic
references (through 1inks) are possible. Communication with the

outside world (such as I0OMs and system controllers) is possible

W—Jvf(a‘,;f o el a T

)A“(U pir i G

O W ~v'~"V/ ,,LL,J [P, 1‘_

o

- 416 -

through normal meanss however only a !imjted number of external
devices are known. Page faults can be taken and will be handled
from the bootioad tape. Traffic control Is In operation. Within
thlis restricted environment the remaining initiatization

procedures will run.

Page Faylts

A number of times during thls paper the proposal to use the
boot load tape as a read-only source for satisfylng page faults
has been mentioned. A more detailed discussion of this proposal
wilt now be presented. Page faults will first be handled during
the third phase of initlalizationy, bringing up the file system.
The routlnes we wilt be faulting on will be those directly
associated wlth phase three. The first Issue is why bother to
handle page faults at all., Three reasons come to mind for
handiing these faults. The most persuasive argument is that the
system normally does handle these faults. To forbld these
faults, by refusing to handle them, serves to increase the time
spent In a non-standard environment, thus violating one tenet of
this proposal. A second reason for altowing these page faults is
one of programming ease. If they are not allowed, care must be
taken when calling a program to be sure that it is In core. This
places needless burdens on the programmer. The last motivation
Is to minimize core usage during initiatization. By being able

to read read-only pages from the bootload tape we reduce the core

- 17 -

requirements for bringing up Multics, enabling Multics to come up
on a smaller configuration. The core tradeoff is significant(*),
The core Image, 1f page faults from the tape are alloweda, wil!l be
from B80K to 100K in tength. Not atlowing such page faults, thus
adding the fite system routines to the core lmage, adds about 65K
to the size of the core image. This represents the difference

between being able to boot on a 128K system and not.

The use of a tape as a source of pages to satisfy page
faults s admittedly a strange idea. Page faults are generally
random Implying random access to the storage system. A tape Ise
however, a sequential access storage medlium. Its wuse as a
storage system seems to imply a lot of tape motion - forward
spacing lor sklps) and backspaclinge We would 1ike to minimize
such motion since it is not an efficient way to use a tape.
There are two Lmportant facts which wilt allow wus to minimize
such motion. They are the fact that the real storage and file
systems wll! be among the first subsystems brought up and two,
that 1Initialization takes essentially the same path each time It

runs, allowing optimal placement of records on the tape.

After Initlatlizling the core image, one of the first thlinas
which wlll be done wiil be to bring up the storage and file

systemss This will alliow branch creations, segment activation and

{*) The quoted flgures are approximations based on system 24.7.
They should be regarded as “ballpark™ figures onlye.

- 18 -~

deac tivatlon, and the Initiating and terminating of segments.
Most importantly it allows segments to reside on disk. Once the
storage system Is upy and knowing the order of pages on the tape,
It is a simple matter to copy, sequentially, the segments on the
tape to the real storage system, thus eliminating the use of the
tape as a storage system from then one. Wnile bringing up the
storage system page faults will be handled from the bootload
tapee. These could even be eliminated by placing the programs

necessary to bring up the storage system [n the core image.

The paging from the tape which may be necessary to bring up
Multics is not objJectionable but the wasted tape motlon Involved
Is. We can observe that iInltialization takes essentialiy the
same path through its programs and data each time It runs (for a
glven MST that is). We can take advantage of this by tracing the
page tault behavior of the system while it faults to the tape.
We then can renrlte the tape In an optimal! pattern so 1as to
minimize tape motion. This techniquey when combined with the
observatlon on bringing up the storage and file systems, and the
need to satisfy page faults jJustifies the use of the bootload

tape as an inltlals temporary, read-only storage system.

A minor Issue ralised by wusing the MST as a read-only
“storage system™ [s how to organize the tape. 1 propose to
organize the MST into three files.s The first file will contain

the core Image and any other data needed by the core [mage

- 19 -

loading program. The second flle will! contain the non-core
resident pages of the initially active segments. In other words
it Is our read-only storage systemy, and we will handle page
faults ftrom it. The third file will be anaftogous to the current
collection three on the MST. It wilt contain those segments
which go Into the hierarchy but are not needed to bring up the
system. One might think they could be a part of the second flle.
This however would require the segment to be active, creating a
very large number of active segments and a correspondingly large
AST. Since the segments In the third file are not needed to
bring up the system, this large AST does not seem Justifled, thus

the three file organization,

Jhe Remainder of Initiatization

Having now spent a considerable length of time discussing
core image reiated problems we can quickly deal with the rest of
initiatlzation. Once we have the core Image up and running we
can now proceed to wupgrade [t +to a standard Multics ring @
environment. The one hole In the environment provided by the
initiatized core image Is the flack of the storage system. Thus
the next set of operations to be performed are those needed to
bring up the storage system. IOMs and storage system devices
must be added to the system using reconfiguration primitives.
The root must then be accessed (or constructed if a cold boot),

tists of records on the devices accessed (or created) and

branches created for those segments (on either the second or
third flle of the new MST) which need them. Once the storage
system Is upy the complete ring 0 environment Is present.
Reconfiguration primitives are now Invoked to adapt the software
to the desired conflguration. Additional wunits of memory, a
paging devices 1!ine printers, teletypes and the various other
pleces of hardware present In the actual configuration are added
to the system. Reconfiguration operatlons are also invoked on
the software. The number of AST entries of each slze is changed
as desired, the syserr logging mechanisnm iIs started, traffic
control tables are brought up t6 sizes trafflc control parameters
regef and varlous other software reconfligurations are performed.
Appendix 8 has a list of reconfiguration primitives whlch seen
necessarye After performing a sultable number of thase

reconfigurations the system is up and runnNinge.

Remaining lIssues

In +this paper a number of ldeas and proposals have been
presented. However three issues have not been discussed. First
ls +the lssue of generating the new MST (and most importantly the
initiat core image)e. An appropriate analog to the current
“header flle™ must be developed as well as a new "generate_mst”
programe A second issue Is the loading of the core image. How
should [t be done? By whom? How do we protect agalnst the

fragillty (susceptibility to bit errors) of the core image? The

third unanswered Issue Is that of the various reconflguration
operatlons. How hard are they to buitd? Are they desirable In a
more global context? These iIssues are important but not central

to the issue of technical acceptlbllility ot this paradlgme

Conciusion

This paper has attempted to present three major issues.
First, how iIs iInitlatization done today and why Is it hard to
understand. Seconds 1IN a general way what can be done to make
the Initialization of Multics easier to understand. Third, a new
paradigm has been presented and discussed for initializatlon.
Hopefully the Iimportant issues have been raised and discussed

clearly.

Appendix A

Initialization Todayt A Summary

This appendix contains a time ordered tist of the malor

calls made during system Initialtization. It contains a tist of

programs and a brief description of their function. The programs

are listed In the order that they are called.

4.

5.

bootstrapit

bootstrap?

sit_manager

pre_tink_1

initiatizer

Read collection one. Establish an appending
environment. Set the interrupt vector fto ignore

al! Interrupts and faults.

Set up a stack frame on the segment “pds

Initiallze itselt. Return to bootstrap2 the

segment numbers of "pre_{lnk_1" and “pre_tink_2".

Pre-link collection one by "snapping™ all links

that can be snapped at thls time.

A call dispatchere.

init_collectlons$init_collectlion_1

A call dlspatcher.

inltiatlize_faultsgfault_Iinit_one

Set sys_info$clock and prdss$proc_contr_ptr to

8.

9.

10.

11.

-23.—
Appendix A

Initiatlzation Today? A Summary

polnt to the bootlioad memorye. Lockup and
timer_runout faults are transferred to
“wired_fimgignore™ which lgnores the faults. Page
and connect faults are directed to their correct
handlers. All other faults are Iignored by an
SCU-RCU instruction palir. Pointers are stored in
the text of some programs (™il" and “fim™ are two
exampies) as these programs can not generate them

when they are called.

lom_dgata_init

oc_data_init

dn355_inlit

scas_1Iinit

Initializes the IOM maitbox and the IOM manager.

All IOMs are added to the system.

The operators console s added to the system and

initialized.

Per-Datanet Information Is stored for each Oatanet
communication computer in the systems HSLA (High
Speed Line Adapter) and LSLA (Low Speed Line

Adap ter) indices are stored for future reference.

Verify the <configuration as specified In the
CONFIG decke. Set up the SCAS (System Controller

Addressling Segment).

12.

13.

14.

15.

16.

17«

scs_Iinit

¢2(+-
Appendix A

Initiatlzatlon Todays A Summary

Port addressing words are set up. The systenm
controller - control processor relationships are
set up for all CPUs and MEMs iIn the system.
Interrupt Initlalization 1Is performed (channel
masks, Interrupt masks, slimulate patterns and
interrupt handlers are set up). Interrupt cell

asslgnments are made.

initialize_taul tsginterrupt_init

clock_init

trace_Init

inlt_sst

Most interrupts are directed to their final
destinations. Per-processor information is set up

in the segment "prds™.

Determine the local time zone and Initialize

refevant varliables.

The system debugging facllity (to elther magnetic

tape or a tine printer) is set up.

Initiatize the segment Ysst™ by setting up the
header, core map, paging device map and hash

table, AST and page tables.

initlatize_dims

Find the master device. Determine the partitioning

18.

19.

20.

21.

22

23,

244

_25-
Appendix A

Initiaiization Todayt A Summary

of the disks In the system. Add the bulk store and
disks to the system. Access (or create If a cold
boot) the FSOCT. Set up the segment “pamap_seg™.
Set up the pagling device used list.
priveleged_mode_initgupdate_sst
Makes paged all segments which are currently
unpaged but which shoufd be paged. Create a paged
descriptor segment. Allocate an AST entry for the
root. Collect all free core not already known
about.
PAGE FAULTS NOW WORK.
syserr_tog_Init
Initialize the operators console 1ogginjy
mechanisme.
delete_segs$temp
Delete all unneeded collection one segments.
debug_check$copy_card
Set varijious system wide debugging options.

tape_readerg¢linit
Injtiallze the collection two tape reader.
segment_!bader
Load coltection two and then use "pre_Ilink_1" +to
pre-1ink collection two.

init_cottectlionss$init_collection_2

25.

26.

27,

28

29.

38.

31.

-26—
Appendix A

Initialization Todayt A Summary

A call dlspatcher.
inlt_str_seg
Initlatlze the AST trailer mechanism.
inlt_hardcore_gates
Initialize the hardcore gates by storing pointers
to their linkage sections in thelr ftexts.
bujid_template_dsegs
An obsolete data base Is constructed.
get_uidginit
Initialize the storage system unique ID generator.
Inlt_sys_var
The idenity of the initializer console is
determined. The device table is Initiallzed to the
nul! case (no devices). The time of bootload is
determined. Some error codes are stored In the
segment "sst™.
init_root_dir
Sets up a3 KST (Known Segment Table). The root is
made knowne The root ls constructed if thls Is a
cold bootload.
SEGMENTS CAN NOW BE CREATED, DESTROYED, INITIATED,
TERMINATED, ACTIVATED AND DEACTIVATED. SEGMENT
FAULTS NOW WORK.

initiatize_taut tsgfault_init_two

32«

33.

34

35.

36.

37.

38.

339.

-27-
Appendix A

Initiallzation Todayt A Summary

A1l faults are directed to their normal handlers.
Init_branches

Branches are created for all segments loaded In

collections one and two which need them.
detete_segs$temp

Delete altl unneeded collection two segmentse.
foad_system

Read the segments of <collection three into the

hierarchy.
tape_readerg$final

Rewind the MST. Shutdown the collectlon two tape

reader.
tc_inlt
Initlatize traffic controt. Create the first
processes (the Inltiallzer and ldle processes).
lo_Iinit

Initialize the teletypes In the system. Set up the
segment “tty_buf®,

delete_segsfdelete_segs_init

Delete all remaining inltiatizatjion segments.
inlt_procgmultics
Set up the system search rutes. Calt

"gystem_startup”™ in ring 1.

Appendix B

Needed Reconfiguration Primitives

This appendix contains a tist of reconfiguration operations

whilch seem %o be useful.

Add

Add

Add

Add

Add

Add

Add

Add

Add

Add

or

or

or

or

or

ar

delete
delete
delete
delete
delete

delete

a dn355 communication computer.

an IOM (Input Output Multiplexor).

a memory (and hence a system controller).
a CPU.

a paging device.

records from the usable record pool of

the paging device.

or

or

or

or

delete

delete

delete

delete

disk storage devices.
teletypese.
magnetlc tapes.

any other devices (such as line printers,

card readers and card punches).

Turn disk metering on and off.

Allow the size of usable space on disks to grow and

Change the

shrink (repartitlioning).

interrupt cell assignments for the six

process interrupfs.

Change the number of AST entries of each slze.

Expand

and

segment.

contract the size of the AST trailer

Change the traffic controil parameters dynamically.

- 29 -
Appendix 8

Needed Reconfiguration Primitives

Change the size of the trafflc control tables (APT,
ITT, DST).

Change the size of the segment "tty_buf".

Change system debugging options.

Change the size of secondary storage device overfiow
thresholds.

Turn on and otftf system tracinge.

Change the sjize of the system trace buffer,

Turn operators console logglng on and off.

