PROJECT MAC Aprll 2, 1975

Computer Systems Research Division Request for Comments No. 71

Accurate Performance Measurement on the Development Machinet
Initial Experiments

by Andrew H. Mason

Users of a computer utility are sensitive to prices and
price changese. Because prices are generally a function of the
system costss, the administrator in charge of the wutillty should
have the <capablility to dete~nine exactly how a change In his
system wili affect the system costs. He can then decide, on the
basis of this intormation, whetnar to instatl the change.

The ultimate goal of the research described here 1Is to
develop a "useful™ performance neasurement tool for the Multics
operating system. This tooly, which wlftl be in the/form of a
benchmark, can be used 10 predict system performance. Three
criteria are being used to detarmine the "usefulness” of such a
testt it should be inexpensive to use; the test should be
precise and repeatable; and the results of the test should
reflect the performance of the system under different operating
conaitions (i.e.y the test should be accurate).

Currentiy, the major cost factor Is machine time, so [f the

test ran in, say, ten minutes it would be cheap enough that it

This note is an informal worxking paper of the Project MAC
Computer Systems Research Dlvislione It should not pe reproduced
without the author®s permission, and [t shoula not be referenced
in other publications.

Page 2

could be repeated several times if hecessarv. If the test is not
repeatable, the validity of any qguantitative results is suspect.
As tor accuracyy iIf the resulits of tests on systems A and 8
indicate that system A is two osercent faster than system B, one
would like to have confidence that system A will actually run two
percent faster than system Bs. Tnis third criterlon is hard to
measure, S0 research to date nas concentrated on the first two.
The strategy for developing the derformance test has been to use
an existing benchmark as a 9%aslss modifying it in Qavs to
increase its speeu and accuracy.

Currently, Honeywell uses a modltied version of the
per formance benchmark developed by Roger Roach (see MTB-126 and
MAB-016) to evaluate system changes. This version of the test
will be called the standard test. It runs on the CISL
development machlne ana Is avaitable to all development machline
usSerse The primary value measured by the benchmark is the real
time required for a number of absentee oprocesses to run to
completion, To run this benchnark, a contfrol process or drjiver
Is logged in. The driver then logs in several slave processesS,
makes each one walt until all have logged Iny, and then starts
them all together., The run time is measured from the time when
alt slaves are started by tne driver to when the last slave
signals that it has finished. The coordination and inter-process
communication between the driver and one slave |[s deplicted in

Figure 1.

driver?
call Initlallze_meters;
iogin(slave);

block(synch)}

call start_meters;
wakeup(slavesstart);

block{finish);

call stop_meters;
call print_meters;

ends’

Figure T. Oriver - Slave

Page 3

sl ave?

wakeup{driver,synch)j

block(start)

wakeup{driver,finishl);
{ogout}

end;

Coordinatlon Before Modiflcation.

Page &4

Each slave process follows one of five standard scripts.
The commands In the scripts are nostly editing and complitation
commands. One of the scriptssy N0wWever, follows each command with
a "“ftush" command. The "flush'" command pages heavlly, Insuring
that the paglng device Is In constant use. In a typical run on
the devetopment machine, tweaty stlaves are measured, Ffour
following each script.

For the purposes of system neasurement, the standard test
presents two probiems? It 1s expensive to wuse and it is
imprecise. The standard test rJuns in a little under three hours,
out the total run time has been known to wvary more than ten
percent in tests made on identical systems and identical
configurations! This Impliles tnat if a ten percent change In
total run time is measured betw2en two systems, it is impossible
to tell how muche if any,s of the difference is due to the systenm
change,. The only way to produce meaningful results is to repeat
the test many times on each system, at great expense. When
enough tests have been completed, statistical analysis of the run
times will yield a mean and a standard deviation. Comparison of
the mean run times for each system will indicate which iIs faster
and by how much, and the stanada~a deviation will tell how precise
the test (S

As of fhls writing, four mnodifications to the standard test
have been finished. These modifications are not adequate to meet

the goals of the project. The~etfore, two other modliflications

Page S

will be proposed in this paper anlch should bring the performance
test closer td the goals. Figure II 1lsts the results of tests
made at each stage of modification. Some of the measured speed
u4p is due to the installation of cache memory on the development
machine. Thls occurred between nodifications 2 and 3.

The first completed modlfication Involved reducing the
number of’ slave kprocesses f~om twenty to five. 0One slave was
started following each script. The average run time for the test
dropped to about twenty minutes. This was a vast Improvement
over a three hour run times but the clscrepancy between identical
tests was stitl highe For one'system. one test ran in 20 minutes
and 2 seconds, and another ran in 22 minutes and 21 seconds. The
variatlon 1In run time was so large (about 18 percent) that no
attempt was made to obtain a statistically significant sample.

Instead, an effort was made to [lsolate the causes of the
large difference. As a result of this effort, a3 bug was found In
the logout seguence for absentee processes whilch indicated one
possible causet! As each slave 10g3jed out,y, It might encounter an
error conditlon which caused it to create stack frames until it
overran [lts stack. At this point, the process was terminated.
This extra activity demanded a large amount of system resources,
causing Interference with other 3laves.

Since this bug dia not occur with a known frequencys an
unpredictable amount of inte~ference was Introduced into the

test. However, the {ogout sequence is not a lojical part ot the

Page b6

SYSTEHM £ 0F_RUNS HIGH LOW MEAN

before modification 1 89390
after modification 1 3 1341 1202 1254
after modification 2 2 1132 894 1013
atter moditication 3 4 915 813 842
after modification & 3 753 702 730

Figure Il. Increases In System Performance Test Speed,.

(times are measJred [n seconds)

Page 7

test (see Figure I) ana should be completely removed!? At best,
if togouts are Includedy the resuits of the test should be too
siow by some constant factor, At worst, however, the error
introduced 1s some complicated function of many varlables.
Theretfore, a change to the test wWwas made by Steve Webber which
eliminated the logout seguence. Instead of logglng out, each
slave process signals tne driver that it has finished and waits
to be told to logout. When all slaves have finlshedy the control
process stops the test and then signals all slaves to logout.
This has the effect of eliminating the interference caused by a
slave®s logout while other slavas are still running. The driver
- slave coordlnation after this modiflication Is shown In Figure
III.

On a standard system, thera2 are three (ordered) schedullng
queues wused by the traffic controller. The queue in which a
process is waiting to run definas the process® priority and |ts
tine quantum. Each time a process interacts wlth a terminal the
process is promoted to the hignest priority queue. Absentee
processesy howevery do not [nteract wlith terminalss so all slave
processes drift down to the lowest gueue and stay there. Since
Muf tics ls primarily a time~-sharing facillty, service
instaflations normatly have many interactive processes and few
absentee processes.s To better ~eflect this situation, the stave
processes Should simulate te~mninal interaction. The third

modificatlon will do this? In the system data base, there (s a

Page 8

driveri siavel

call initialize_meters;

login{(slave);

block{synch);
wakeup(driver,synch);
block{start);

call start_meters;

wakeup(siavesstart);

block{finish)}

wakeup{driver,ftinish};
block(term);

call stop_meters;

wakeup{slave,term);

call print_meters;

end; fogouts

ends

Figure III. Driver = Slave Coordination After Modiflcation 2.

Page 9

parameter caltled "priority_sched_inc"., It Is usually set at 80
seconds. It means tnhat if a srocess has been blocked for more
than 80 seconds, it should be olaced in the highest opriority
queue when [t next triés to run. Setting this value to 1 second
has the effect of making slaves act more like Interactive
processess

The last modification also deals with the scheduling
algorithms In an attempt to ~aduce thrashing, the scheduler
tries to estimate a process® wo~king set at the time the process
goes blocked. When the process next wants to run, the working
set estimate Is compared to the \umber of free pages in core. If
the working set is larger, the process is not allowed to run.
Instead, the processor idtles. Unfortunately, when only five
slaves are run during a test, the processor is idle for this
reason about 1t percent of the time. In an effort to reduce this
amount ot ldle, parameters of tne working set estimator were
adjusted so ‘that all processes appeared to have working sets of
fifty pages. This cut down on idle time anq reduced the average
run time of the test and the numdoer of dlsk readse.

This last effect Indicates that some of the test variation
may be due to wvarjations in disk reference patterns, This
hypothesis is further reinfo~zed by the following evidence:
First, the test run time correlates to a high degree with the
number of disk reads made during the test. Second, the ftest run

time also correlates well with the mean page-walt time for the

Page 10

adiske Third, in a typical run ot the modified version, the test
takes about fifteen minutes, reads from the disk about 25,000
times, and has a mean page-nait time for the dlsk of about 60
mitliseconds. This implies that each slave spends about five
minutes of Eeal time waltling for the disk! Unfortunately, 1lttle
is known about the statistical distribution of page-wait times,
so there Is no way to judge its stabillty. Therefore, the first
oroposed mogification is to instail meters on the disk which will
preclisely describe this distrioutione. One possible method would
be to divide page-wait time into bins one or two milliseconds
wnide. In each biny keep track of the number of corresponding
‘disk reads and the total amount 2f real time between page-faults
and restarts. This information could be printed out In a3
histogram, glving a very good graphical picture of the page-waift
time distribution. (1) Knowing the distribution of page-waijt
times will not explain the 1oted correlations, pbut it might
indicate the nature of the variations in disk reference patternse.

Another disturbing element is that from test to test, the
order of slave logouts changes. In addition, as more slaves
togout, processor idte increases. Intuition would indicate that
it this Is the case, more resou~ces are availapble to each slave,

and the “computation rate”™ of each slave increases. This is not

(1) In 1973, Lee Scheffler f~om Honeywell installed meters
similar to the ones described nere. At the present tlme, it is
ynknown whether they worke.

Page 11

necessarjily the case. The commands executed by the slaves are
taken from the system libraries, so it is quite tikely that the
staves share pages. Therefore, the fact that one stave s usling
segment “pli'" may reduyce the number of page-faults taken by
another slave whilch 1is also Jsing segment “pl1"™. This Implles
that it one slave logs outy the effective computation rate for
the other slaves may, in fact, be reduced. To correct for
affects of this naturey, the driver - slave coordination should be
changed as In Flgure IV;' Heres the important point Is that after
each sltave finishes its assigned task, it should keep on running
In order to keep the 10ad on the processor and the inter-slave
interference as constant as possibles One important effect of
this modification Is that the meaning of the value measured by
the test is changed. Now, the tast measures the rate a which
work is being completed.

These modifications, although necessarys are only a first
step in this prolect., When tney are completedy, there wlli
hopefully be a better understanding of the sources of varjlation
in the test. Knowing this, the oroleqf can begin to narrow in on
now much of the variation can be feasibly eliminated.

AJthough the task of improving metering tools is importadt,
a larger Issue should be mentloned In this paper. Suppose that a
“paerfect” metering test has oeen invented for the development
machine. Do the results obtalned indicate anything at all about

per formance on another Multics? The development machine has a

Page 12

drivers slaves

call Inltlallze_meters;

login(slave);

block(synch);
nakeup{driver,synch);
block(test);

call start_meters;

wakeup(slaveystart);

block(finish);

wakeup{driver,finish);

call stop_meters;

calt logout_force(slave); .
call print_meters, .
ends .

Figure IV. Proposed Oriver - Slave Coordination.

it

Page 13

very smali configuratliont one processor, 256K words of secondary
memoryy and two disk drives. Tnhis makes It a very artificlial
environment in which to mete~. Therefore, before any results
from the development machlne are used to ﬁake assumptions about
relative system performance, the validity of such generalizations

must be investigated.

