PROJECT MAC , 1 April 1975
Computer Systems Research Division Request for Comments No.72

A NEW PROTECTION SYSTEM.
by Philippe A. Janson.

Introduction.

The main goal of this paper 1is to describe a new
protection system. However we would like to take advantarge of
this introduction to briefly define the original features of this

design and compare it to other existing protection systems.

One of the design goals is to try to reconcile the two
apparently incompatible views of an access control list mechanism
and a capability mechanism so that the resulting system will not
inherently have the limitations of either while at the same time

providing most of the advantages of both.

A second design goal 1is to allow for the power of the
protection system to be extended to objects of types not
directly handled by the hardware and totally meaningless to the
base level protection system. This feature is not new. However
installing it on top of a system which harndles both access
control lists and capabilities together is not trivial. Because

we want the set of capabilities for an object to reflect a

This note is an informal working paper of the MIT Project MAC
Computer Systems Research NDivision. |t should not be reproduced
without the author's permission, and it should not be referenced
in other publications.



distribution of privileges as strict as that imposed by the
access control list for that object, it seems that the access
control lists and capabilities should be managed by the base
level. Iowever the very nature of an extended type ohject s
that it 1is meaningless to the base level. Therefore one nust
answer the question: could the access control lists and
capabilities for extended type obhjects be handled by the base

level?

The third goal is called for by the second one. It is
an approach to the problem of confinement. Andrews has defined
the total confinement and message confinement concepts. We will
propose a simple and straightforward solution to the problem of
message confinement for protected subsystems in general and
extended type managers in particular. The solution is based on
very practical considerations which claim that it is easler to
certify that a protected subsystem is "discreet" than to force

its confinement at run time.

As will be seen further, the three goals proposed sofar
allow a separation of privileges over extended type obhjects: the
owner of the extended type object has full control over the
object but does not have direct access to it; the extended type
manager has direct access to the object but can exercise this
right only when asked to by the owner of the object. What s

achieved 1is not only an extendable protection system as defined



by Redell for Instance but an extendable protection system about
which certain properties can be certified to hold by simple
inspection of the base level system. This is not to say that the
base Jlevel of the system is the security kernel of the system.
One may want to say more about the system than what the base
level allows to say. However, at least all protection properties
can be certified by inspection of only the base level and they

can be further used to certify other pieces of the kernel.

The fourth design goal Iis to make the system as simple
as possible in the broad sense. Many protection systems are hard
to implement, hard to certify, hard to use and/or hard to
understand. The proposed system attempts to achieve a reasonable
power while remaining simple. No complex machinery 1is proposed,
many tradeoffs between performance and sophistication are
considered. Of course the success with which this fourth goal is
achieved is very subjective and hard to evaluate. This 1is even

more so since we will not attempt to evaluate it in this paper.

WWe now turn our attention to the first goal of the

system: the access control list based capability mechanism.

The advantages of an access control list system are

. usually described as its reviewing power, its facility to revoke




access rights and its power to control the propagation of access
rights. The disadvantages of a pure access control list system
are its cost and lack of flexibility: even with the help of
associative memories and descriptor segments, verifying access
to an object is slow and computation consuming because the access
list must eventually be searched. The system lacks flexibility
because an entry must be added to some sort of access list each
time an access right is passed. Capablility system paftlsans claim
that the revocation and propagation control features are of minor
interest because once access to an object is given out, the
beneficiary B can save and pass around a copy of the object. We
disagree with this claim because access to a copy 1Iis not as
valuable as access to the object itself. Dynamic changes to the
object cannot be observed unless there is a collusion between B
and the obserQer; from the legal polint of view, the mere fact of
copying the object may one day become a violation of some
copyright 1law for computer stored information; even if partial
revocation (from one user) falls, complete revocation is possible
and very often useful. To conclude we conjecture that an access

control list mechanism is a good thing to have in a system.

The advantages of a capability mechanism are its
flexibility and ease of wuse. Capabilities can be coplied and
passed without the need to add any name on any access list.
Their use requires no searching of any list. Of course the

disadvantages of the capability system are the advantages of the



access control list system. Because no access list exists in the
former, control of any kind is much harder if not impossible.
Redell has proposed an interesting scheme for introducing
revocation in a capability system. But the schéme has several
drawbacks. The scheme is based on a hierarchical dependancy of
capabilities. Firstly, this makes the use of a revocable
capability at the tenth level more expensive than the use of a
capability for the same object at the first level. Secondly we do
not like the intrinsic notion of a hierarchy of capabilities.
Although this may fit the needs of many protection policies it

cannot fit the needs of all of them.

Having presented our views on the virtues and drawbacks
of the two systems, we can now explaln what kind of features we
would like to see in our system. Our goal is to have an access
control list system and a capability system operating
simultaneously, in parallel to exploit the advantages of both
systems. The idea is to use the access control list mechanism as
little as possible because of its cost but just enough to benefit
of its power, and the capability mechanism as much as possible as
long as it does not interfere with the control features of the

access control list mechanism.

Considering the inherent conflict of purposes between
an access control list system and a capability system, It is

interesting to draw the line that separates them in this



protection systenn., Without going into any detail, one can roughly
identify the areas where either aspect has taken precedence.
Domain invocations is the area where the capability system is
predominant. |If domain X invokes domain Y and wants Y to operate
on object A, X can give Y a capability for A eventhough Y may not
be on the access control list for A. Inter process communication
is the area where the access control list aspect is predominant.
No access rights can flow from one process to another via the
capability mechanism. In a last area of concern, namely shared
c-lists, a compromise has been established whereby capabilities
can be stored into shared segments to the extent no access
control list entry is violated by the vresulting sharing. This
last constraint is enforced by way of comparing the "scope' (see
later) of a capability with that of a c-list before the
capability can be stored in the c=list. The choice of the areas
where either aspect has taken precedence is motivated by the
desire to maximize the use of the flexible capability mechanism
while retaining most of the.power of the access control list
mechanism. Thus emphasis was put on the capability system for
inter doriain communication because inter domain communication
requires frequent passage of temporary access rights. Emphasis
was put on the access control 1list system for infer process
communication because Iinter process communication requires less

frequent communication of more static access rights.

The access control list mechanism of this system is



most similar to the system proposed by Schroeder. However the
flexibility of the system is enhanced by an extendable capabililty
mechanism allowing the user to pass access rights in a very
convenient fashion. The capability mechanism of this protection
system is most similar to the system proposed by Redell. However
in addition to $elective revocation, the system has access right
reviewing and propagation control features thanks to the parallel

access control list mechanism.

Extendibility and Confinement.

Having stated how access control lists and capabilities
should work in the system, we quit the topic, leaving the

implementation for a later paragraph. We now examine the second

and third goals of our design.

Extendibility is no new concept. In some sense Multics

is extendable. Directories are extended type objects as users

have no direct access to them. Access to their vrepresenting
segment is confined to the kernel. However this notion of
extendibility is present only in the access control list
mechanism and not in the (degenerate) capability mechanism. No
SDW will ever contain sma access mode bits and a type field. A
system like the one described by Redell is quite appealing.
Capabilities for directories (In addition to capabilities for

their representation) can exist in the world and may be used to



pass access rights to the dlrectories. The advantages of the
scheme is that the directory manager, when invoked to perform
some task on a directory, immediately knows which directory to
work on and what access the caller has to the directory. This
involves no list search or other obscure hierarchy considerations

as on Multics.

In trying to produce an extendable protection system,
one is confronted with the choice between two possible

approaches,

The "kernelists" approach will prefer to keep the
management of access control lists and capabilities for extended
type objects under the responsibility of the extended type
manager because user created extended types are irrelevant to the
kernel and because the kernel should not be concerned about the
access control lists and capabilities formats of such extended
type objects.

The '"layerists" will <claim that since the access
control list and capability concepts exist for base level objects
and since it only takes an extra type field to apply the same
concepts to all extended type objects, it would be a waste of
effort to force each extended type manager to reinvent concepts
that are common to all of them. Instead those basic concepts

should be supported by the base level.



Being wunable to vreconcile the kernelists and the
layerists, we tried another approach. Is there any advantage to
adopting one point of view rather than the other for the sake of
the protection of the system? In response to this question we
found at least one strong argument towards adopting the

layerists' design.

There are two ways an extended type manager can cause
damage to its customers. Firstly, it may contain a glitch or
misinteépret the modes of a capability for an extended type
object thereby causing damage to the representation of one
object. Secondly it could violate inter user protection, for
instance by matching one object with the representation of
another one or by broadcasting information about objects it
handles. The first kind of breach of protection involves only

one object at a time while the second kind of threat involves two

objects at 1least. Avolding the first kind of trouble requires

certifying the extended type manager to establish confidence It
does the things it claims it does. Certification would certainly
serve the purpose of defeating the second kind of threat. However
we do not need that much. All we want to know is that the
extended type manager is unable to access more than one object
representation at a time (isolation property) and that it cannot
leak information about ohjects it handles (confinement property).

The former property is actually implied by the latter hecause one



10

way to leak information about one object would be to encode it

into the representation of another object.

Jones designed a capability system with properties
somewhat similar to what we just described. However her design
would not work'for an access control list system and it Is based
on a system wide rule that all working storage is temporary. This

severely restricts the power of the system.

Unsealing.

For the time being, the only important conclusion is
that access control lists and capabilities for extended tvpe
objects must be handled by the base level. If this were not the
case, inter-user isolation and confinement would be hopeless as
the extended type managers could fiddle directly with access
control lists and capabilities for extended type objects and thus

defeat any effort to isolate the objects from one another,

The real power left to the extended type managers lies
in their ability to unseal a capability for an extended type
object and to turn it into a capability for 1its representation.
An extended type object is made up of a collection of component
objects. For each extended type object , there exists a c-list

containing the capabilities for lts component objects. Thus the



11

c=list Is called the representation of the extended type object
(rep-c-list). Unsealing a capabllity for an extended type object
yields a capability for its vrep-c-list. The privilece of
unsealing capabilities for a given extended type is materialized
by a special capability called an extender for that type.
Extenders are unique, not copiabie and not passable. The owner
of an extender is the manager for the extended type denoted by
the extender. The protection system distinguishes between
extended type managers and other protected subsystems. Extended
type managers have the privilege to unseal capabilities but do
not have the right to set access control list entries for any
kind of object. Consequently, all objects can be classified into
one of two categories: component objects which are owned and
managed by extended type managers and have degenerate access
control lists, and other objects with fully grown access control
lists. Access control lists for component objects are desenerate
in that from creation on, they automatically contain only one

entry bearing the name of the extended type manager owning the

component ohject and indicating a null access mode. This will
prevent the extended type manager from ever getting a capahility
for a component object directly from the base level. The only way
it can get a capability for a component object is by unsealing a
capability for an extended type object and retrieving the desired

capability from the now accessible rep-c-list of that object.

The unsealing feature in conjunction with control mode



12

bits (see later) which may make a capability not storable allow ~
us to assert that an extended type manager is able to access only

one object at a time.

Confinement,

As stated in the 1introduction, we are not concerned
about the total confinement problem. We believe the only solution
to this problem is a line by 1line auditing of the protected
subsystein under concern. We hope to just solve the message

confinement problem,

Solving the message confinement problem requires
preventing the protected subsystem from statically storing and
from passing information derived from 1ts arguments. These
conditions were stated by Andrews. However Andrews did propose no

implementation, only an abstract solution to the problem.

Rotenberg proposed a system where the caller could
state his desire to confine or not to confine a called protected
subsystem. We do not believe that this is a correct approach. The
caller does not know how the called protected subsystem works.
This one may inherently not be amenable to confinement because it
needs static storage. In this case auditing 1Is necessary to

guarantee trustworthiness, but no fast checking or enforced



13

confinement will work.

Therefore we have taken the approach that the caller
should have no power to confine a protected subsystem. Instead it
is the owner of the protected subsystem who should get a
certificate of trustworthiness for his subsystem and the caller
should rely on this certiffcate. Just 1like we distinguished
between total confinement and message confinement, we now
distinguish between '"total discretion" and "message discretion"
or simply discretion. Discretion means that the subsystem is
guaranteed not to pass or store any Information about its
arguments via overt channels. A protected subsystem is guaranteed
to be discreet if it is registered with the Discreet Protected
Subsystems Administration (DPSA). This authority issues
certificates of discretion on the basis of the following

principles:

l. It 1is assumed that all discreet protected subsystems are
frozen under control of the DPSA and listed in a table by uid.

2. It is assumed that all automatic storage vanishes after a
‘protected subsystem invocation (no retention or residues).

3. It is imposed that all capabilities to be used by a confined
protected subsystem be stored in non-writeable c-lists.

L. The certificate of confinement will be issued iff:

- gate capabilities in the c-lists correspond to gates Into

protected subsystems already registered with the DPSA;



14

segment capabilities in the c-lists show no writeable segments;

_ the c~1lsts contain no extended type object capabilities (this
is because the DPSA does not know which extended type modes
correspond to the writeability of the extended type object

representation).

We befieve a great majority of wuseful protected
subsystems could be certified discreet by the simple method of
the DPSA without going through the hassle of a manual auditing.
lHany extended type managers for instance (e.g. directory
managers) do not need any internal static storage and need to
call only other discreet protected subsystems (of which the
protected subsystems of the kernel are examples since they are
certified). For these protected subsystems at least, a
certificate of discretion can be issued and the users can call
them with a certain confidence (not that they are correct but

that they will not leak information).

The fundamental principle of operation of the whole
system to be presented is an associative relation between each
access control list entry and the capabilities derived from this
entry. This relatfon is based on identical uids in the entry and
in the corresponding capabilities. The implementation of access

control lists, capabilities, revocation and propagation control



15

is based on the associative relation. Hence it is very important

and should be kept in mind throughout the rest of this paper.

The base level knows essentially about three kinds of
objects: segments, extenders and all extended type objects in one

whole (from the protection point of view only).

Segments are gate, procedure, data and capability
containers. They correspond to areas of physical storage. Access

modes are G (for gates), R, W, E and C (for c-lists).

Extenders have no physical storage realization. The
owner of an extender is unique and unchangeable and has the power
to unseal a capability for an extended type object to turn it
into a capability for the rep-c-list of the object. No mode is

defined for extenders.

Extended type objects of any tvpe are handled uniformly
by the base 1level. All the base level knows about them is it
creates them, destroys them, updates access control lists for
them and fabricates capabilities for them. Needless to say it
does so in total ignorance of the semantics of the extended
types. Thus the bit patterns encoding the modes must be given by
the caller when setting an access control list. This does not put

too much of a constraint on the caller provided each owner of an



16

N

extended type manager publishes the semantics of each mode bit

that is relevant to his extended type.

Before we can describe by an example how the base level
operates on an extended type object, we will briefly give the

(logical) format of access control lists and capabilities.

Consistent with the three classes of objects
distinguished by the bhase level, we have three kinds of access
control list entries which all fit into one common access control

list entry template:

cop uld

user uid

group uid
PSS uid

modes

The capability uid is the uid on which the associative relation
between an access control 1list entry and Its corresponding
capabilities 1is based. The capability uid will be reproduced as
the uid of all capabilities corresponding to this access control
list entry. The user, group and protected subsystem uids are the
"names" on the access control list entry. A uid of all zeroes is
the Multics equivalent of a "#". The mode field contains the

authorized access mode for this entry.



17

Access control list entries for sesments map directly
into. the above template. Access control list entries for
extenders have an empty mode field and the capability uid is the
same as the extended type uid. Access control list entries for

extended type objects map directly into the template.

Now we take a brief 1look at capabilities before we
describe how they are derived from access control list entries
and how they are used. There are also four kinds of capabilities

fitting into the same template:

cap uid
-f—ype, uid
bb
modes

Given the format of access control 1list entries, the
interpretation of capability fields should be clear. Notice that
if the n-1 first bits of the type field are off the hardware will
recognize a directly enforcable (base level) capability for a
segiment (0) or for a extender (l1). The bb field is used only to
specify the offset of a gate in a gate segment or to pass a base
and a bound for subsegments as arguments. Capabilities issued by
the base level always have a base of all zeroes and a bound of

all ones.



18

With the above sketches of access control list entries
and capabilities, we can.validly discuss an example of their
operation. We will describe the creation of an extended type
object (a directory). This will give us a chance to describe
operation on an extended type objects as well as on its base

level representation.

The creation of a directory D is a two step operation.
Firstly a null object of type directory is created by the base
level. Secondly the null directory is expanded into the desired
directory by the directory manager. The first step creates an
enipty rep-c-list C for the directory and sets up the protection
attributes of D. The second step creates and initializes the
segment D is composed of and which will 1later contain the

information conceptually embedded in D.

Step 1: Unlike a vrandom c¢-1list created by a wuser, C is a
rep-c-list created solely for the purpose of holding capabilities
for the component objects of D, The only protected suhsystem
which will ever wuse C is the directory manager. And even the
directory manager may only reach C by unsealing a capability for
D. Thus nobody in the world may ever be allowed to recieve a
capability for C directly from the base level. Hence the access
control list for C must be null., Actually, for reasons to be
explained soon, let us assume that the access control list of C

is physically non null but that it is made logically null



19

(inoperative) by adding to it a "directory" tag indicating that
this is a rep-c-list for a directory.

Now <consider D as an extended type object. As such it
must have an access control list. The initial access control list
will simply show that the creator of D has the requested access
to D (e.g. Janson.CSR.home sma). Notice that while C was a base
level object but did not require an explicit access control list,
D is meaningless to the base level but needs an access control
list. Also notice that the base level must establish a
connection between € and D. Consequently, it seems very
appealing and it will indeed prove very efficient to establish
the missing connection by using the taggéd ancess control list of

C to implement the access control list of ND. This feature will

also be used later to implement revocation of access to D,

The first step will only be complete when the base

level returns 3 capability for N to its creator. The state of D

is now pictured as follows:

Step 2: Now, Janson.CSR.home must call the directory manager to
initialize D. Having received a non storable (see later)
capability for D, the directory manager unseals it and gets a non
storable capability for C. Unsealing preserves the capability
uid X since this is the only way to later go from the unsealed

capability to C. The type field is set to zero (segment). The



20

Abs.h_ac‘r VAR
Dircdbry E&npfy
D C-list
N— _ C
Janson . CSR . home —— k-
dir cop uid X o — — &L
cap uid X . Janson g7 ‘
Type 7 i assediation CoR ) Imrhuf
iy home Null
sma ¢ sTf | Adl
* ==oTizoqol

mode field is set to RWC. The interpretation of the mode‘ field
sma is left to the discretion of the directory manager for the
moment. This will  be the topic of a Jlater paper. Now the
directory manager, which knows how to implement directories,
requests the base level to create a segment S to implement D, As
the request comes from an extended type manager, the base level
sets a degenerate access control list on S (*.*.dir_man null). It
then stores a capability for S into C. This capability can be
used by the directory manager to access S. However the directory
manager cannot save it (isolation property) because appropriate
control mode bits are set in it. The state of D is now as

follows:

Upon return from the call to the directory manager, capability Y

remains In C but capabilities X vanish.



21

Janson . CSR . dir_man
|
X denotes Segment Wl denotes
© max
Sejment RW [aShre
O |max
RwWC|AStore
A
associpdtion
unsesfled

m asyociafion
M CSR
Dired’ory "
7 hor® dlir - man
sma [AStr sms null
o
Revocation and Propagation Control,

This s the most important part of the paper as far as
the implementation is concerned. We will be talking first about
the working of capabilities and then about their use. Everything
to be said is of crucial importance to the correct implementation

of capabilities, access control lists, extendibility, revocation

and propagation control, and confinement.

First we consider the case of capabilities for extended
type objects. A capability for an extended type object cannot be
interpreted directly by the hardware. It can only be passed to an
extended type manager which has the power to unseal it (i.e. set
the type field to "segment" and the mode bits to RWC) to obtain a
capability for the extended type object rep-c-list. As access

control list entries for extended type objects are implemented by



22

tagged access control list entries for the rep-c-lists of the
extended type objects, revocation of access to extended type
objects works by way of revocation of access to the object
representations and thus boils down to what is stated in the

following paragraphs.

Secondly, we consider the case of capabilities for
seginents and gates. These are directly interpretable by the
hardware as stated earlier. Two system wide maps are of interest

for them,

The Cmap contains one entry per capability uid in the

world, The entries read like:

cap uid
ob, uid

The Omap contains one entry for each object uid in the

world,., The entries read like:

obi wiol
obi addr
acl addr




23

The maps are implemented as segments and reside mainly
on secondary storage. The Cmap is similar in function to Redell's

system map.

Corresponding to the two maps are two resident
mini-maps, the cmap and the omap which are condensed versions of

the most recently used main map entries.

We do not want to go here into the details of how each
map or mini-map must be known, wired, paged and maintained for

proper operation and consistency.

Below the mini-maps are two distinct fast associative
memories, the cam and the oam, to contain the most recently used

of the mini-maps entries.

When a capability Is presented to the hardware, its uid

is used to get the segment uid out of the cam/cmap/Cmap. This uid
is in turn used to get the segment address out of the

oam/omap/Omap. The address is finally used to get at the segment

itself.

What we have achieved by adding one level of
indirection to the Multics way of doing business is what Redell

achieved by his system map: a total separation between addressing



2L

-

and protection to ease revocation.

We want revocation to be as powerful as on a pure
access control _list system. For the time being, we assume the
desirable functionality of an access control list system to be
that exhibited by Hultics. We propose to develop a better access
control list system in a later paper. Thus revocation of access

to "foo" for (*.CSR.home rw) can take the following forms:

delete acle set-acl(foo,null, *,CSR,home)
delete mode set-acl(foo,r ,*.CSR.home)
delete a set set-acl(foo,null,Janson.CSR.home)

-

Lase 1: entry deletion. This is the simplest case. All it takes
is to delete the access control list entry and any entry in the
Cmap/cmap/cam which bears the same capability uid as the access
control list entry. Thus any capability which may still have this
uid will no more work as the connection between the capability

and the object it denotes has been ruptured in the Cmap.

Case 2: mode restriction, In this case we want capabilities
owned by *,CSR.,home to stop working for W but they should still
work for R. If we simply proceeded as in case 1 and replaced the
deleted entry by a brand new one, the functionality would be
correct, but users would find themselves with capabilities
disabled even for the R operation. In addition there would be no

way to "fix" the disabled capabilities as the connection between



25

them and the object they used to denote would be lost.

To solve this problem, the idea is to disable the
capablilities without breaking the connection to the object they
denote so that a standard recovery routine may be invoked to fix
the disabled capabilities without the user even beins aware of
it. This can be done by splitting the uid of an access control
list entry (and of its associated capabilities) into two parts:
the true-uid which is indeed unique and the instance-uid which is
unique only for any single access cohtrol list entry. The
inst-uid is initially zero. \Wlhen an access mode is revoked, the
access control list entry is first modified, the inst-uid is then
incrementéd by one, the entries in the Cmap/cmap/cam
corresponding to the true-uid||inst-uid are set to

true-uid]]inst-uid+1.

Consequently, the old capabilities bearing a uid of

true-uid}|inst-uid will no more work as such a global uid does no

more exist in the Cmap. However, by using the true-uid which has
not changed, a recovery routine can retrieve the now modified
access control 1list entry and recompute the correct access mode
field. It then can increment the inst-uid in the capability
thereby enabling it again but only for R. A true access violation

noticed by the user would now occur only if he tries to do a W.

Case 3: set substraction. This case is just a generalisation of



26

case 2. On each set=-acl operation, the set-acl primitive must
sort the new access control list entry into the existing access
control list. In doing so it should go down the 1ist past the new
entry, to see if any set substraction has occured as a result of
the modification of the list. If so, the base level must proceed
as in case 2 for each entry affected by a set substraction. The
inst-uid counter feature will work for each such entry as it

worked for the single entry of case 2.

We finally turn our attention to the control of the
propagation of capabilities which will obviously lead us to the
discretion problem. Access control 1lists say exactly who can
access what in what way. Our system claims that the distribution
of an access right via capabilities must at any time (except
during a domain invocation) be constrained by what the
controlling access list says. To enforce this we introduce in the
mode field of any capability four fixed-semantics control bits:

S, U, G and E.

U reflects the fact that the capability corresponds to
an access control list entry where a user name was specified. G
means that the access control list entry specified a group or
project. E reflects the fact that the access control list entry

specified a protection environment.

U, G and E control the scope of a capability 1in the



27

user.project.environment space. If all are on, the capability was
derived from an access control list entry of the form

"user.group.envt'.

The S control bit specifies whether a capability may be

stored in a c-list.

e have identified exactly three ways a capability
could go from one domain to another, potentially violating what
the original access control list entry says. The capability could
be passed via ipc, could be stored in a shared c-list or could be

passed as an argument.

We rule out the operation of passing a capability via
ipc as being illegal in an access control list based system.

This is where the access control list aspect takes precedence.

Capabilities can be stored into shared c-lists if S s

on, but there are certain restrictions. A capability with a given
scope (as defined by U, G and E) can be stored only into a c-list
with equal or smaller scope (set theoretically). That is if
capability X is of scope UGE, it cannot be stored into a c¢-list
denoted by a capability of scope E because the c~list is
accessible in other Instances of the protected subsystem in other
processes and capability X should never g0 there given the

rneaning of U, G and E.



28

Notice that three bits are used to actually mean access
control list entry names like user.group.envt. At any point in
time, the meaning of U and E s wunambiguous. U means the
currently active user and E means the current domain of execution
(because capabilities for other users in other domains could not
be in use now!). However the meaning of G is not clear as a user
may want to be considered part of several groups at a time. A
solution to this ambiguity is already worked out but will be

presented in a later paper.

Finally, capabilities may be passed as arguments.
However one problem remains. lhen a capability is passed, it
should not be stored in any kind of c¢-list of the callee as it
does not statically belong to the callee according to the access
control list. For that purpose when such a capability is passed,
S is turned off thereby making U, G and E meaningless and useless

and confining the capability to one invocation of the current

protected subsystem in the current process. It can be loaded
only in registers or in argument lists which by definition go
away after the invocation is completed. This is where the

capability aspect takes precedence over the access control 1list

aspect.

One more comment is in order about the use of control

mode bits with respect to unsealing. The wunseal operation not



29

only sets the type field to '"segment'" and the normal mode bits to
RWC, but also, regardless to its current value, turns off S to
prevent the extended type nmanager from saving the unsealed
capability which would enable it to later access nore than one
object at a time. Notice that if this extended type manager is
registered as discreet with the DPSA, then however passable this
capability is, it cannot be passed to indiscreet protectéd

subsystems by definition.
1y n

This paper has attempted to outline the desirn of a new
protection systen. Features of the system are: a parallel
implementation of access control lists and cépabi]ities with the
resulting tight access control and flexibility, the extendibility
applying to both the access control lists and the capabilities,

the message discretion of protected subsystems.



References,

Andrews G.R.
COPS - A Protection Mechanism for Computer Systems.
University of VWashington - TR=74-07-12 - 1974,

Fabry R.S.
The Case for Capability-Based Computers.
CACM 17, 7 - PLO3-412 - 1974,

Jones A.K.
Protection in Programmed Systems.
Ctiy, Dent. of Comp. Sc. - 1873,

Lampson B.U.
A Note on the Confinement Problem.
CACIY 16, 1u - PG13-615 - 1973,

Lawipson B.W,
Redundancy and Robustness in ldemory Protection.
Proc. VFIP Cong. - 1974,

Redell D.D.

Naming and Protection in Extendible Operating Systems.
UC Berkeley - 1974,

Rotenberg L.J.
Making Computers Keep Secrets.
MIT Projet IHAC - TR-115 - 1974,

Schroeder 11.D,

Cooperation of Mutually Suspicious Subsystems
in a Computer Utility.

MIT Project MAC - TR=104 - 1972.



