PROJECT MAC 03730/75

Computer Systems Research Division Request for Comments No. 73

IMPLEMENTING EXTENOED TYPE OBJECTS IN AN ACL-BASED PROTECTION
SYSTEM

by Dougias H. Hunt

To the author®s knowledge, exlistent general-purpose computer
systems which support the implementation of extended type objects
are capabliity-based systems. Thls RFC Introduces a design for
supporting extended type objects In an access control 1ist
systems. These results, which are a part of my doctoral thesis
research, should contrlbute both to basic research In protection
and to the certification of operating systems.

This note Is an [nformal working paper of the Prolect MAC
Computer Systems Research Olvision. It should not be reproduced
without the author®s permission and It should not be reterenced
In other publications.

Hunt Page 2 03/730/75

Introduction

Thls report describes some research results which are a part
of my doctoral thesis. The report is an experiment in *top down"
document writings as suchy, it tends to mention most of the
subjlect matter which I consider to be part of my thesis. At the
same timey, it Is my intentlon that many of the toplcs Included In
this report be described only briefly.

This research has recejved insplration from two directlons.
Firsty, it is motivated by related basic research In the area of
protection. The resuits presented here provide furthef insight
into the similarities and differences of capability and access
control list protection mechanismse. This report presents a
method for imolemenfing extended type oblects in a computer
system which has an access control {ilst protection mechanism.
Previously described systems which support extended type oblects
make use of capabil]lty~-based protection. The advantages to be

gained by providing an extendible access control Jist system are

In turn the advantages of an access contro! Iist system relative
to a capabitity systeme. These relative merits have bean
described 1In the literature [ref. Saltzer and Schroeder IEEE

paperl. Secondly,. this research is motivated by a number of
related prolects In the area of operating system certification.
Certification researchers take the point of view that [f a systenm
Is expected to conform to a speclification, then |t Is not
necessary to prove or even observe all the modules which comprise

the system, Rather, there ought to exlst a relatively smatl

Hunt Page 3 03730775

coliection of modules, often called the kernely which must be
shown to operate correctly. Given that the kernel operates
correctly, the certifiers can deduce that the entire systenm
agheres to the stated policy because the kernely, with the aid of
the system hardware env ironment, constrains a!l.other modules in
such a way that they cannot violate the policy. The
certlflcatlon‘approach seems to be a vliable one for establlshing
confidence that the proteetlon policy of an operating system
cannot be circumventeds The results described here are a direct
contribution to certification research, since they indicate how 23
common mechanism (whlich would be part of the kernel) can be used

to protect a targe class of objects in an operating systeme

The_ pase level system

To provide a context within which the research results may
be described, this section |is devoted to a description of a
portion of the supervisor of a hypothetlical s&s?em, which shall
be called the "base level.,”™ The purpose of the base level 1ls to
provide a virtual environment which will support the mechanisms
to be described in later sections. In this section, oniy stight
attention is paid to the pase level imptementation details.

The abstract machine provided by the base fevel maintains a
set of objects, each of which Is denoted by a unlque identitier
(UID). Each object can be characterized by a set of operatlons
which is applicable to ite The set of all objects can be divided
Into equlvalence classesy such that all objects In an equivalence

class are subject to the same set of operations. Fach

Hunt Page & 03730/75

equivalence class 1s known as a fype. The base Jevel maintains
three types, which are sgament, protected subsystem, and processe.
An object of type segment may be sublected to operations such as
“read"” and "write."™ An oblect of typa protected subsystem may be
subjected to the "call" operation, and an object of type process
may be subject to operations such as "block"™ and "wakeup.™

The base level ob)ect of type “protected subsystem'™ (PS) s
used to [Implement a tamperproot collection of procedures and
data. The procedures and data, Iin turn, {(presumably) provide
some abstractjion or service to users of the system. A PSS can
only be Invoked at one of its detined entry polnts. Al though a
PS can be viewed as a set of base level segment objects; the set
Itself s defined to be a distinct base level oblect, of type
protected subsystem. A distinguished member of the sety, usually
called a gate, is a special transfer vector segment which directs
calls to the defined entry points within the PS., The UID of the
3ate into a PS also serves as the UID of the entlre PS.

An agent which potpntlaily has the ability to perform an
operatlon on an oblJect lIs known as a prjincipatls The base level
Impiements a principal In terms of two of its own oblJect typest
process ana PSS, To offer an intultive justification of why a
princlpal Is represented In terms of ¢the base level types
“process"™ and "brotecfed subsystem,"” <consider the following
examplet John Doe desires that the telephone company repair hls
phone. John Ooe Is the only legitimate user of the phonej if

Fred Smith requests that the telephone company modity Doe‘s

Hunt : Page 5 - 03/730/75

phone, the request should be refuseds On the other hand, the
telephone company Is the only legltimate maintalner of the phone.
Doe should not be able to authorjize Fly-by-Night Phone Hackers to
make the modifications ¢to the phone., In the system being
described, the process corfesponds to the user of an oblecty and
the PS corresponds to the protected subsystem which Is the
supplier of an object. Thusy within the §ysfem, a process
executing in a particular PS represents a source of authorjity.

A principal is able to perform an operation on an object
only if It has been granted the privilege to do so. There Is a
privilege ftag associated with each operation defined on an
oblect, Thusy It makes sense to refer to *read"™ or "“write™
privileges for a segment, but not to "wakeup™ privileges. The
coliection of all privileges on objects which have been granted
to a principal is called a domalne ¥For example, the following

domain may correspond to “principal 241"

segment 22 read, write

PS 53 call

process 61 block, wakeup

segment 157 read

process 34 wakeup
'There is a one-to-one correspondence between domains and
principalse. Thus it makes sense to refer to the domain

corresponding to “process Xs PS Y™ If “process Xy PS Y* calls
“*process Xy PS Z"™ then the domain will change at the time that PS

z Is called. In generati, there is not a one-to-one

Hunt ; Page © 03/730/75

correspondence between protgc?ed subsystems and domalns, slince
the domain corresponding to “process Xy PS Y™ is opotentially
dlfferent than the domain corresponding to “process W, PS Y."

The retationship between “protected subsystem,™ ™process,"

P PROTECLTED
RoCESS | LRSS TSTEM
, ‘ second Componsnt
(Gopan)t
oF a
el : : & -4 —> DOMAL
prove P.D <) > cwﬂjs'rmhme. AN

PRINCIPAL
thure XI

“orincipal,* and *domain®™ s lltustrated in Fligure 1. A
orinclipal is the agent |In the system which may exercise
privileges to access objects. There is a one=to-one
correspondence be tween princlpals and ordered pairs with

“process™ as the first component and "protected subsystem™ as the
second componenf. Thereforey a process executing in a protected
subsystem Is the exerciser ot access privileges in the systenm.
There Is also a one-to-one correspondence between principals and
domainse. A domaln is the set of privleges granted *to a
principal.

Associated with eacnh objlect is an access control Iist (ACL).
The ACL contalns a set of entrles, each of which [In turn contains
a principat and a set of privilegesy or modes. Since a principal
ls a process=PS pairy it can be described by the UID of a process

and the UID of a PS. The modes couid be described by character

Hunt Page 7 : 03/730/75%

strings such as “read" and “write, but would actuailly bpe
fepresented more compactly as a bit-encoding. The ACL for an
ob)ject is a single repository displaying all the principals which
have privileges for the oblect, as well as the particular
privileges granted to each principal. It is worth opointing out
the relationship between domalns and access control 1ists. To
relate these two notions, consider the access matrix as defined
by Lampson (ref. Lampsonls An entry In the matrlx displays the
set of privileges for a glven object which are avallable to a
glven princlipale. 0f course, an entry may contain the empty sete.
The entry In row i and cotumn | can be defined as showns
entry(is}) = the privileges of principal 1 for oblect }.

Thuss each row in the access matrix represents the domain for
some princlpal, and each column represents the access control
tist for some objecte The base jevel system provides an ACL for
each object} however it does not provide, In a single repository,
the domaln for every principale To determine the domain for a
given principal would reaquire searchling every access control
1ist.

The description of ACLs which has been provided so far is
incompletey, since it has not covered dynamic changes of access to
an objlect. It must be possible, for example, YO grant additlonal
privileges for an oblect to a principaly or to revoke privileges.
An éﬁcess control list Is a declaration of a pollicys indicatling
the privileges which some *guardian™ of an oblect sees fit to

grant to “consumers®™ of the object. The discusslon up to this

Hunt Page 8 03730/75

point has not established the ldentity of the guardian. It would
be possible to ada new modes to every ACL, such as "add_modes" or
"revoke_modes." These new modes would refer to the acl itself,
rather than to the assoclated oblect. Then the set of principals
which has either *add_modes™ or "revoke_modes™ access might be
callea the guafdlan of the objJect. There is an lissue, thqugh, as
to whether these two new modes apply to themselves. Regardless
of which choice is takeny, there seem +to be undesirable
implicationse Ah escape mechanism proposed by Rotenberg (ref,
Rotenberg) Is the "office." The office embodies a policy
specificatlon. For instance, there may be a pollicy that the ACL
for an oblJect should be changed only {if the majority of some
managing board -agreese. This and other policies would be
cumbersome to implement In an access control list] however tney
can be (molemented by a procedure. Thusy an offlice may be
Implemented as a protected subsystem. Each ACL can then contain
the UID of a PSy which corresponds to the office for the oblect.
In practice, a Targe number of oblects will be subordinate to the
same offlices With the addition of an oftice, there is a dlvision
of labort *routine® access control) decislionsy such as checking
to see iIf a princlpal has 'read™ mode on 3 segment, Involve only
the ACL; "higher-Jjevel™ access control pollcy actions are
carrjed out by offlices. Since the base-level objects which
Implement an office have ACLs themselves, there is the potentjal
of a recursive dlisastere. To avoid such a disaster, the ACLsS

whlch appdy to offices can be changed only via a software

Hunt Page 9 ~ 03730775

reconflguration operation, Initiated from the system operations
console. Thus, as is the case with any system, the effectiveness
of the 1loglcal protection mechanism wultimately depends upon
physical security.

fach reference by a prilncipal to an object necessitates (1)
a check to tind out If the oprincipal has the proper access
privitege, and (2) a reference to the representatlion (rep) of the
object, Whereas the éccess control information for each oblect
is expressed in the samne ACL format, the representatlions for
objects of distinct types may be quite differents The rep of
segment and PS oblects, for example, consists of a page mapy
while the .rep of a process object consists of a set of tables
(segments) whlch the base level can interpret. Corresponding to

each existent oblect - is an entry in a system-wide table called

wap '
PR N process i.) PS3 modes
J1D process Q) PS2 wedes

|ty oa———" . — — gtow!

1 dype
Qh*(Y | ACL O

ve P the vep s
+ype - d\:?u\dew\'

process 4) PSE wmedes

F‘\Sue AL NN
fhelmap. €ach map entry has four fleldss as shown in Figure Il
The first field Is the UID of the objlect, generated at the time
the object ls createds The second fleld is the type. More wlilti
be <speclfied about this fleld tater; for now it is sufficient to

provide three different values, corresponding to objlects of type

Hunt Page 10 03/30/75

segment, PS, and’ processs The third field is a descriptor for
the ACL. Since an ACL will be lImpliemented wusing segments, the
third tield wil) contain a segment UID. The fourth field is a
descriptor for the repe In the case of the base-level oblects,
the descriptor indicates either a page map or an entry in a
system-wlde process table.

Conceptualliys each operation on an object requlires a
reference to the map. Ffor the sake of efflciency, however, each
principal actually references Its own {ocal maps which 1is a
particular subset of ¢the {(global) mape. Entries in a local map
contain the same information as the corresponding globai map
entries, except that the ACL descriptor is replaced by a set of
modes. (1) A local map is created whenever a PS oblect [s called
for the first time In a process) a local map [s destroyed when
the process itself is destroyed. HWhenever a principal references
an oblect for whlch there does not correspond a Jocal map entry,
the global map is consulted. If the UID supptied by the
principal Is found In the global map, and it the ACL
corresponding to that UID indicates that the principal has some

privilege to reference the oblect, then a new entry [s added to

the principal®s focal mape. (2) It shoulid be emphasized that the

{1) The decislion to put the modes directly [n a tocal map entry,
rather than to indirect through the local map entry to a central
set of modes, is based on a trade-off Involving efficliency of
referencing an objlect and efficiency of revocation.

{2) The processor supporting this system contalns a “princlipal
register™ which has two fields. The first fleld holds the UID of
the current process, and the second field holds the UID of the

Hunt Page 11 03/30/75

local map is an optimization; it does not add anything
conceptually to the base level model since the services provided
by the base level can be described In terms of the system-wlde
global map.

The global map and local maps are implemented using segment
objects. There iIs a subsystem, called the map subsystemy which
knows how to create and delete map entries, build 1ocal map
entries, and how to manipulate ACLs. The map subsystem |Is
protected, and executes in its own domain. caltled the "“map
domaine™ It Is possible to assoclate the map subsystem with a
particular domain oniy because the map subsystem wlli be glven
the same privileges In all processess. The only domaln whlch has
the privileges to manipulate ACLS and maps s the map domain.
SIince the base level objects depend on the map subsystem, it is
appropriate to classify the map subsystem as part of the base
tevel. However, throughout thls paper, the map subsystem s
often referred to directliye. The map subsystem has no special
knowledge of the representatlon of any oblect; [t merely provides
3 field in all map entries which contains a descriptor for the
representation. The fact that the map subsystem knows about ACLs
>but not about representations is based upon the observation that
ai though the semantlics == and the representations =-- of dlstlinct
types may have nothing in common, there is a common mechanism for

providing access controle

current PS. ACL searches compare principals In the ACL with the
contents of the principal reglisters,

Hunt Page 12 063/30/775

Ihe_Implications_of Protecting Extended Type QOblects

The base Jevel system, as descrlbed thus far, supports
exactly three typest segment, PS, and process. for each of
these types a priﬁcloal may perform (subject to access controls)
a “create oblect™ operation. For example, a principal may create
a new object of type segment. If a principal may also create new
types -- via a ";reafe type*™ operation -- then the base level is
sald to support dynamic type creatlon (ref. Jonesle. Any type
created by a "create type"™ operation will be called an extended
type. As will become clear, most of the mechanism necessary to
support dynamic type <creation aiready exists in the map
subsystem.

The Hydra system ([ref. Wulf ete.al.] provides a uniform
mechanism for dynamic type creatlon, which stems from the view
that types are objects. There is a root oblect, called the "type
type* oblect. To create a new type, a principal pertorms a
“create object"™ operation on the type type object. To create a
new oblJect (whlch Is not a type) a principal performs a *create
object” operation‘on a type oblect. Thus the same "“create
objlect" operation can be used fto create both new types, and also
new instances of an already-defined tyoe. For the purposes of
thls paper, however, the two terms [ntroduced In the preceeding
paragraph will be usedt *create type'™ operations create a new
type; whereas 'create object"™ operations create a new object
which is not a type.

As mentioned earljier, a type is characterized by - a set of

Hunt Page 13 03730775

operatjions. The type *message gueue,” for examole,’ may be
characterized by operations such as "enqueue,*" 'dequeue,”™ and
“list_entries." Slnce the operatlions on an extended type object
(ETO) can be arblitrary, they are implemented by procedures. Thus
an extended type object actually consists of a set of procedures
which operate on all oblects of a glven type, together with some
data area whlch serves as the representatjion of the particular
oblecte. Two distinct ETOs would make wuse of the common
proceduresy, but would requlire dlfferent representations. The
representation of an ETO is constrained to be some other oblect
or objJectsy, but not necessarlly base level oblectse. Therefore,
the represen?a?lbn of an ETO may be some other ETO (or ETOs)$ but
the tree of representations Is rooted In base-level objects.

In order that the operations on an ETO be well-defined, the
assoclated procedures should be callable only éf certaln points.
These procedures and related data segments wilt form a protected
subsystem. CLonsequently, for eacn extended type In the system,
there corresponds a PS object. To access any object of a given
extended type, the same PS is called. The Jldentifjer of the
particular objJect Is passed as a parameter to the extended type
manager (ETM) subsystem. (1) The ETM then Interrogafes the map
subsystemy to see I f the principal of the caller is on the ACL of

the ETO0 which has been passed as a parameter. If the principal

(1) Another possibte way to support ET0Os Is to associate a PS
With every objecty, rather than with every type. Such an approach
1s simitar to the "“domaln capablilities®™ approach for supporting
ET0s described by Redell {ref. Redelll, ‘

Hun t Page 14 03/730/75

appears on the ACL, and has the proper privileges, the ETM
carries out the requested operation.

Although there is one PS obJect corresponding to each
extended type, we do not propose 3t this time that there be one
extended type éorrespondiﬁg to each PS oblect. If such a
stlpulation were made, It would certalnly tend to enforce the
view that an operating system is a manager of a collection of
abstract resourcess i.e. all requests of an operating system are
realty operations on ETOs. Although there may be merlt in
pursuing such a views such an analysls Is outside the scope of
this paper. In this paper, we assume that the set of types maps
*1-to-1 and Into" the set of PS objects.

Every FTM relies on the map subsystem to check access to and
to provide the representation for ET0ss For any ETO0, the type
field in its map entry designates the PS which 1s +the
corresponding ETMe The rep field designates one or more other
oblects, which may be extended or base level. We have sketched
how the base level may be able to support an ETO while not having
any knowledge of its semantics. It is now épproprlate to ask
what [t means to protect ETOs (some of whlch may be part of the
representation of other ETOsS) using access control listse. for
the purposes of the following analysisy we define a pep-obliect to
be an obJect (elther base level or extended) which iIs part of the
rep of some other oblJect. By introducing extended types, we are
forced to consider the meaning of ACLs on rep-oblects. These

considerations will show that there s a trade~-off between

Hunt Page 15 03/30/75

certain protection goals and programming generality.

As an ald In describing the appilcation of ACLs to ETOs, we
introduce some new terminology. These terms correspond to
relatlonshfps pbetween principals and oblects. flirst, a principal
may be the guardian of an object. As mentioned previouslys the
guardian of an oblect ls responsible for specifylng the potlicy
for control of access to the object. Second, a princlpal may be
a gonsumer of an objects. A consumer uses the oblect; that is it
per forms operations, subject to privileges appearling on the ACL,
on the oblect. The consumer treats the ob)ecf as a black box and
relles on elther an ETM or the base level to carry out operations
defined on the object. Thirds, a principal may be the suppljer of
an objlect. The suppller of an object Is the subsystem which
“xnows about the inside of the black box." For base level
objectsy, the suppller is some protected subsystem In the base
levels For other objects, the supplier Is an ETM. Fourth, a
orincipal may be the sponsor of an object. A sponsor Is the
authority In the system that pays for a given object. Like a
guardian, a sponsor wWould be implemented as an office. The
notion of a sponsor has been lmpiemenfed in at least one system
{ref. Project SUEl. The roles of sponsor and.guardlan have been
described as distinct here, even though there may be some
Interaction. For examples a sponsor may require some form of
"delete"™ access on an objJect in order to dlscard unused objects.
Using the terminofogy introduced here, we can describe an ETM as

the supplier of some set of ETOs, and the consumer of some other

Hunt Page 16 03/730/75

set of (possibly extended) oblects.

To explore protection goals which may pertain to a3 system
that supports dynamic type creatlony, we choose the following
modus operandl?

1) Propose a "reasonable™ protection policy,

2) Determine If there ls a way, In the hypothetical system, to
implement the proposed policys

3) Indicate whether or not there is a capabllity-based systen
which can support the proposed policys

4) Look ftor deficiencies In the proposed policy, and improve on
its

5) go to step 2 (1)

Following this procedure will generate a sequence of protection

policies. A particluar policy In the sequence may be *"stronger™

than the preceeding one, in the sense that (1) the "degrees of

freedom® a oprinclpal may have (l.e. the states of the system

which are considered admissible under the policy) are fewerj and

consequentliy (2) the set of assertions which must be satisfied

for a principal to access an oblect is larger.

The tirst pollcy to be exploredy, which we shall call the
"black box"™ policy, requires that tne procedures and data bases
of an ETM should be "orjivate™ =-- that (s, they should not be
accessible from other protected subsystems. This policy includes
rep-oblects‘ betongling to the ETM as part the '"data bases™ of the

ETM, This policyy if applied to the phone company example, would

{1) My apologies to the structured programmers!

Hunt Page 17 03730775

requlre that

1) Onity the telephone company has access to the '"rep"™ of a
telephone, and

2) No "outsiders™ can affect the method the . telephone company
uses for repailring telephones.

The black box policy can be re-stated in the context of the
proposed systemt: The only principal which should be able to
access rep-oblects for objJects of type X is the ETM for objects
of type X, executing in any processa There is the additlonal
requirement that the ETM be tamperproof, but this requirement |is
met since the ETM is implemented as a PS. There s a
straightforward way to express this policy In the ACLs of the
rep-objects. Fach ACL should have one entry of the followlng
forms

¥*.ETM models mode2, MOde3y + & o
The tirst field iIn the oprinclpal, "*", means "match all
processese.” (1) The second fleld in the principal lIs actually
the UID of the PS whicn is the extended type manager. The modes
{which woula actually be encoded as bit strings) indlicate the
access privileges needed by the ETMe The ACLS on components of
the ETM such as procedures and own storage would also contaln the
principal shown above.

There 1Is also a capabllity-based system which supports ETOs

and satisfles this first protection policys the system ©proposed

(1) Thils *“®*-convention” is currently used in the Multics system,
[ref. Saltzer]

Hunt Page 18 03/730/75

by Redell [ref. Redeil]. In Redell®*s system, the ETM domain {or
layer) is able == by virtue of posessing an "extender®” -- to seal
capabilities for the rep of an extended object. These sealed
capabliities can then be passed outside of the ETM layer without
fear of compromising the integrity of the extended oblect. Other
domains cannot unseal these sealed capabilities, since they do
not posess the proper extender. As 3 result, only the ETM layer
may access its rep-objects, after unsealing the corresponding
capablliitiess The function of sealing, in thls example, Is to
prevent non-ETM domalns from accessing rep-objects. The ETM,
which 1s assumed trustworthy, has full control over sealing and
unseal ing capabilities for Ilts rep=-objects.

According to the methodology stated above, we now consider
possible improvements to the black box policy. In terms of the
phone company example, only the ophone company may access the
representation of the telephone black boxe. In particular, the
representation of a telephone may be accessed by the supplier of
telephonesy whether or not any consumer of the particular
telephone has authorized the access. One may wish to insure that
the supplier accesses an object only at the consumer®s request,
Such a policy will be called "excluslion™, since the consumers of
an object have exclusive rights to authorlze accesses to the
oblect. The excluslon policy 1Is useful In that it provides a‘
qreater degree of accountability than the black box policy. In
particular, if the state of an ob}ject has changed, then (if the

exclusion policy is enforced) oniy those principals which appear

Hunt Page 19 03730775

on the ACL of the object could have effecfed the change., The
exclusion poticy does not prohibit leakage of ([nformation about
any oblecty, since an ETM may leak information about an object
even while performing an authorized accesss

One approach for [mplementing the exclusion pollicy would be
to verlty <certaln properties of an ETM. The goal would be to
show that whether or not the ETM “does the right thing"™ to an
ETD,y at least the ET0 would be accessed only upon the request of
a consumer. That [sy the ETM would never attempt to access any
of its rep-objects, except for those which are part of the ETO
{(or ETOs) speciftied in its Input argument Jlist. However, to
prove such a property (or any oproperty of a program) Is, as
mentioned previouslys, outslide the scope of this researche.
Rathery, the approach taken here |[s to constrain programs, so that
regardless of their behaviory a particular protection policy can
be maintained.

Another approach for constraining the ETM to obey the
exclusion pollicy would be to add the principals of the consumers
of an ETO to the ACLs of all rep-oblects In the rep ftree, as
i1lustrated In Figure III. The semantics of ACLs, as described
up to this point, wWwould have to be extendedt: on each reference
to ’an object, two principals would be matched agalnst the ACLe.
First, the ACL would be searched to locate an occurrence of the
principal corresponding to the current domain (i.es the princlipal
of the supplier). Second, the ACL would be searched to locate an

occurrence of the prlhclpal on whose behalf the operation Is

Hunt Page 20 03730/75%

Jones, homeF5 UIDRS | »{ UID3R | [Tones, home S
typed || | seament
/\/\/\/\k—‘z_@{:j :.3":3. ..?'.L'* L 41\,@4__,“6,.

Towes, home_PS :";_

'Somts/ ‘I\MM..-PS
*) -\-\'TQA..NSV

* , Hypel-myr

,-—-—-..---1#
~

segment
acl o

—— o - e e R

F;Suve pnut

Selng performed {i.ee the principal of the consumer). In order
for this second search to occur, the principal of the consumer of
the root of the rep tree must be made availlable to the ETMs which
manage rep-objects in the tree. A reference to a rep-object
would be allowed to taxe place oniy if both princlpals are found
in the ACL. This approach exhibits a number of disadvantages,
however. Firsty, it Is not clear what the consumer®’s modes of
access to an arbitrary rep-object in the rep tree should be. In
Jeneral, knowledge of the modes of access to a rep-object which
are necessary to support a given mode of access to the parent ETO
reslides onty In the corresponding ETM. Second, thls approach
does not interact well with ¢the dynamic aspects of access
controle. A change in the ACL of an ETO would necessarily
propagate down the entire rep tree. Consequently, this approach
will not be exolbred further.

The chosen implementatijon of the exclusion policy depends on

Hunt Page 21 03730775

a ftorm of sealinge. Every rep-object is defined to be either
seated or unsealed.s If a rep-oblect ls sealed, then 1t is not
possibtle for a princloal to access lt, even it the ACL Indlcates
that the access is allowea. An ETM may attempt to wunseal a
rep-object by invoking the UNSEAL primitive?
UNSEAL (parent_ET0, rep-oblect).
The UNSEAL operation will succeed only 1f
1) The parent ETO is passed td the ETM as a parametfer:
2) the princlpal of the consumer of the ETO appears on the ACL
wlth non-nutl access, and
3) the rep-oblect whlch the ETﬁ wishes to unseal is actuatlly
part of the rep of the ETO specified In the UNSEAL operation.
The scope of the unsealing Is for the current activation of the
£ETMe Thus, when the ETM returns to lts caller, all rep=-oblects
which [t may have unsealed revert to the {default) sealed state.
The notion of sealing Is not sufficlent to support the
exctusion policye. It must be supplemented by the following
restrictions?
1) No impliclt reps are allowed.
The mere fact that there exlists a rep fleld In the map entry
for each object does not constraln an ETM from using other
data bases to store state information for an ETO. We make
the following distinctlont the "otficlal* rep of an ETO
(which Is always designated by the rep fleld In the map
entry) Is called the expliclt repe Any other data base in

which the ETM maintains state informatjion for an ETO is

Hunt Page 22 03/730/75

calleg the jmpliclit repe. If the ETM s constrained to adhere
to the excluslon pollcyy, then it will not be altlowed to make
use of implicit repos. The danger In uslng an jimpliclt rep --
leee an oblect whlch is not a rep-object and consequentiy not
able to be sealed -- js twofoldsa Flrst, other principals may
have access fto it and may therefore effectlvely access an ETO
even If the ETM [s not invoked. Second, the ETM [tseif would
be able, during any activations to access the Implicit rep.
As a resulty the ETM may effectlvely access an ETO without
authorjzation from a consumer. Sufficient constraints can be
placed on an ETM to [nsure that 1t cannot be uslng Implicit
reps. For example, the ETM may not use a writeable data base
which s readable by other principalsy, nor may It write Into
a data base which [s readable by other activations of itself
in a dlifferent processes These restrictlons can be enforced
by appropriate ACL entrjies on data segments used by the ETM,
The *“no impliclt reps™ restriction also rules out storilng
information In another ETO, as well as calling another
protected subsystem which might make use of an impliclt rep.
2} No non-private reps are altlowed.
This restrictjion [s retated to the previous one. Even in the
case of rep-oblectsy It must be true that no other principals
have access., Therefore [t must not be possible elther (1) to
change ACLs on rep-obtectsy, or (2) to speclfy that an
already-exlsting object become a rep-oblecte. Consequently,

only newly-created oblects may be designated as part of the

Hunt Page 23 63730775

rep of an ETO. Tnis suggests that the creatlon of objects
gestined to be rep-objlectsy, and the ass lgnment to the rep of
some ETO should be an atomic operatlon. It is not necesséry.
nowever, that the entire rep of an ETO be created at the tlme
that the ETO0 Is «created; the £ETM can continually add or
detete members of the rep, subject to the constraint that the
added members are newly-createde.
3) ' No non-unique reps are allowed.
Even if the set of oblects accessible to the ETM is dls)oint
from the set of obJects accessible to other principals, the
excluslon policy could be violateds If the ETM uses the same
object as part of the rep of fwo distinct ETDs, then it may
effectively access an ETO without autnorjization from a
consumer. Therefore, a rep-oblect must belong to only one
ET0. The restriction already mentionedy that only
newly-created objects may become rep-objects, also suffices
to guarantee that a rep-object has one parent ETO.
The three restrictions aescribed here correspond fo the three
parts of Figure IVe If an ETM is able to operate subject to the
above restrictions, then it can be glven the reglstered
attribute. Registered ETMs are certified, by system
administrators, not to use impticit repsSe The system
administrators need not read the programs comprising an ETM to
reglster [t$ rather by observing the objects for which the ETM Is
3 consumer =-- and by ooserving the corresponding ACLs -- they can

deduce elther the potential existence or else the non-exlistence

Page 24

i) IMPLICTIT REPS

W‘
~~~~~ T comadimmen T s SRS RS
bt et ot e S
..o reP -
"’W\/‘ | A
“UFF.UC.\Q\“ an ETO
vep

11) NoN-PRIVATE REFPS

1) NON-UNIQUE REPS

s e — w——

e w— . ——

o - qpme  ameems e

-~ e
- -~

rer-o&jet‘\'

Sor mong -“m

owe ETO

03730775

T qure AAYA

~
t/\v“\lﬁ\/ » ‘
"L—.-—__-ﬂj * , ETM
F ool [Tones,
P"—"‘.— Shtp g
unetRiGal ACL centaing
bu" QC*‘M‘ an W\“\"Y“S‘hd
rep Principal
"""" [
”Zc':'\_:o: Jones, *
-
one oF ACL cowtuing
e ow  untvusted
rep -okjec\'s ?\—‘\ v\c.’z?a\
e -
6 vep
N?-OLSQC“"
an ETO
-



Hunt Page 25 ‘ - 03/30/75

of implliclt reps. Adherence to the "“no non-private® and no
non=-unique™ restrictions need not be guaranteed by the system
administrators} once an ETM has been given the "reglstered”
attribute, the base level! <can enforce these Jatter two
restrictlons.

At though the details of the sealing mechanism are "not
described in this paper, a few comments about sealing are In
orders The mechanism for sea!ing can be bullt on top of a
mechanism for inter=-domain argument passing slmllarv to
Schroeder®s dynamlc access stack (DAS) [ref. Schroederl. The DAS
ls a per-process structure which contains, at any instant In
timey, a number of frames equal to the number of outstanding
unreturned cross~domain calls. Each DAS frame contains pointers
to arguments whlch are passed as part of a cross-domain call.
Associated with each argument polinter [s a source fieidy which
Indicates the first domain in the seauence of cross-domaln calls
which used that pointer (or a pointer denoting a contalning
subsegment) as a cross—domain argument. Schroeder®s motivation
for Including a source fleld with each argument descriptor In the
DAS frame was to simpiify revocatlon of access to obJects passed
as cross-domaln arguments. Concetptually, his scheme for passing
arguments between agomains does not reqgulre a source field. To
implement the exciusion pollcy, however, the Information
contalned In the source ftield is necessary to provide the
fdentity of the consumer of an objlect. If we wuse the source

fleld as defined by Schroeder to represent the consumer of an



-

Hun t Page 26 03730775

object, then we must be sure that the source information
propagates correctly down the DAS. In Schroeder®s designy each
time a new DAS frame is belng constructed, a check Is made for
each argument pointer in the frame being constructed to see [f |t
denotes a subsegment of a segment pointed to by an argument
polnter in the previous DAS frame. Meeting this condition s
necessary to allow propagation of the source field from an
argument pointer in the previous frame to an argument pointer in
the current frame. Since each argument pointer [n the DAS has an
assocliated bounds fleld, It Is easy to determine whether or not
any two pointers describe nested subsegments. The analogy in the
case ot our hypothetlcal system s to determine, glven an
arbitrary UID, whether or not it ls part of the rep of some ETO.
The way that thls problem is resolved in our system lIs that the
UNSEAL operation specifies not oniy a rep-object, but also a
parent ETO.

The technique of using the source fleld as the identity of
the consumer Is a partlicular solution to a general probiem which
we call the auinggizgngn problems The authorlzatlon problem for
a PS Is to determine on whose behalf a requested operation Is
about to be dones The source tield technique has some drawbackse.
In particular, it does not supply the I[nvoked PS with the
lcgentity of the process of the invoker. In addition, it appears
to be Intimatety tied to the procedure - cal{ - ang - return
control structure. A more general discussion of the

authorjization problem {s outside the scope of this papere.



Hunt Page 27 03730/75

The exclusion poilicy, [f applled to a3 capabllity system,
would require that an ETM be unable to reference the rep of an
ETO0 unless the ETM has received a capabillty for that ETO as a
parameter. The ETMs describea by Redelil [ref, Redell] could, 2as
a result of error or malice, violate the exclusion policy. The
Hydra system, [ref., Wulf et, al.]l on the other hand, can
apparently support the exclusion policy. In Hydra, each call to
a procedure object generates a new local name space (LNS). The
LNS ‘associated with an Incarnation of a procedure'oblecf contains
two classes of capaoilitiesy which are (1) capabllities in the
tempiate of the procedure object and are therefore part of the
LNS of each incarnation, and (2) <capabilities derived from
parameter capabllities. By sultably restricting the capabilities
contained in the template of a procedure objecty it appears
possible to constraln object-managing procedures In Hydra so that
they obey the exclusion policye. Hydra procedure oblects must be
constrajlned In the folJowing ways?

1) Hydra procedures must not be allowed to store capabilities
into a data base with a litetime longer than one procedure
invocation., If a procedure could save a capability to fthe
rep of some ETO, [t could access the rep at some later time,
without requiring a capability for the ET0. 1In our system,
the sealing mechanism provides this constraint.

2) Hydra procedure templates must not contain capabilities for
writeable segments with a ljifetime longer than one procedure

invocations Otherwises, a procedure could, in effect, access



Hunt Page 28 03730775

the rep of one of its ETOs guring any of its invocatlonse.
This restrictlion corresponds to the “no Implicit rep™ rule;

3) Finally, the Hyadra procedure oblect which is responsible for
the creatlon of an ETO must be a base level {l.e. trusted)
Drocedure.A Procedures which are 1less trustworthy may be
responsibie for inltializing and performing other operations
on an ETO which has already been created. Howevér. the
operations of (1) generating a new UID, (2) encasing that UID
in a capabliltysy and (3) adding an entry in the system map
correspondlng to the new UID must be an atomic base level
operatione. The pase level must carry out these operations
for all objects,y Including objects In the rep-subtree of an
ET0. This réstrictlon should guarantee that alt reps are
private and unique.

As mentioned previously, adherence to the exciuslon policy
does not prevent an ETM from leaking Information about its
arguments. Some researchers in the fleld of oprotection are
concerned wlth the problem of constraining subsystems so that
they cannot Jeak information about the data which they
manipulate. This problem has been called the confinement problem
by Lampson ([ref. Lampsonl. As described in a thesis by Andrews
{ref, Andrewsl, a general solution to the <confinement oprobiem
does not appear to be possibles Most research related to the
confinement probtem |[s directed towards solving some weaker
version of the oproblems Andrews has characterized one wesaker

verslon as the problem of message gonfinement.



Hunt Page 29 03730775

Andrews deflnes message passing as followst an actor {(l.e.
an actlve object In the system) can send 3 message to another
actor [f either (1) the tirst actor has write privileges to an
oblJect and the second actor has read priviieges to the same
oblecty or (2) the ftirst actor calls the second actor and passes
parameters., A service is sald to be message conflneg [f It Is
necessary that a customer of the service must supply oprivileges
enabling an actor in the service to send a message to another
actor not in the service. We now consider whether or not an ETM
In our system can be message conflned.

In the context of our hypothetlcal system, iet an ETM
executlng In a process (together with all registered E£TMs which
are dynamic descendents) correspond to Andrews® actor. Then the
message confinement pollicy requlires that an ETM be prevented from
storing information into anything otner than rep-subtrees of the
consumer®s ETO0s. In particutary, the requlirements of (1) no
implicit repsy, (2) no non-private repsy and (3) no non-unique
reps are necessary for an ETM to be message confined.
Furthermore, the sealing mechanism |[s necessary for message
continement; otherwlse an ETM could effectively send messages to
another incarnation of 'itself executing In another process.
These observations suggest, at {east in the context of our
systemy, that the same mechanisms are required to support the
excliuslon and message confjinement policies. The pollicies appear
eqdlvalen?, in the sense that the minimum mechanism necessary to

support elther pollcy Is the same.



Hun t | Page 30 03/30/75

Oon closer inspection, though, there are differences between
the policles. In one respect, the exclusion policy Is stronger.
Consider in the followlng scenarlo. Let princlipal A be on the
ACL of ETOs X and Y, which are both of type To Princlpal A calis
the ETM for objects of type T, passing X, but not Y, as a
parameter. Assume that the ETM modlfiés the rep of Y during this
invocations Such an occurrence is allowable under the message
confinement pollcy, but not under the exclusion potlcy. The
exclusion policy states that the ETM may access the reps of oniy
those ETOs which (1) contain the brincioal of the consumer In
their ACLs and (2) have been passed as parameters. The message
confinement policy does not requlre that the second of the above
conditions be satisfied.

Based on our observations about the exclusion policy and the
message confinemenf policy, we claim that our hypothetical system
can provide message-confined ETMs. This clalm Is based on the
arguments that (1) our system can support the exclusion policy,
and that (2) a system which supports the exclusion pollicy also
supports thé message confinement policy. Therefore one mechanism
should be able to Implement two policles which, at first glance,
may not appear simiiar. Since the Hydra system is apparentiy
able to support the excluslon policys it should also be able to

provide message-confined ETMs.

Summacy
The significance of the results described here is twofold.

First, we have shown how a system with an ACL-based protection



Hunt Page 3i 03730775

mechanism Is able to support dynamic type creation. Prevlious
designs to support dynamic type creation have been bulilt on
"~ capabllity-based systems. Thus, we have gained further insight
into the relative power of ACL and capabillty systems. Secondly,
these results benefit ongoing research In the certitication of
operating systems. As mentioned In the introduction, a
certlfication eftort presupposes the existence of some relat{vely
small kerneil of haraware and software algorithms which must Dbe
wel l-understood. Given that the kernel Is belleved to be
operating correctly, the certifjers can then deduce that the
entlre operating system must obey a pollicy Implemented by the
kernel.s A primary motivation behind certification efforts is
that relatively large portlons of operating system software need
not be scrutinized carefully. Based on our results, it appears
that ETMs In an ACL-based system can be certified to adhere to
the exclusion and message-confinement policies, regardless of the
behavior of thelr component programs.

An objective of this research is to make It possible for
certaln operating system faclilities which are usually part of the
base level, such as message queues and directories, to be
provided by ETMs. Hopefully, additional facillities which may be
Introduced Into an\<extend1b!e system can be implemented as
extended type objects. The base level can then provide a common
mecﬁanism for controlling access to each obJect created within
the system. As shown here, that common mechanlsm can be bulilt

uslng access controd 1istse





