PROJECT MAC 5/5/175

Computer Systems Research Olvision Request for Comments No. 16

A Multl-process Implementation of a Paging System

by Andrew R. Huber

This RFC reproduces my Master®'s thesls proposale.

Abstract?

One method of managing memory in a computer system Is by
paglnge. The paging system consists of those parts of the system
which allocate physical pages In the varlous levels of the memory
system. The operation ot the paglng system offers many Instances
tor exploiting parallellsme This thesis will demonstrate how a
paging system can be desligned as several concurrentiy-executing
cooperating processes. The Mulftics paging system will be used as
a speclflc case of a paging system which c¢an be modelled as
multiple processese.

This note Is an Informal working paper of the Project MAC
Computer Systems Research Division. It should not be reproduced
without the author®s permlission and It shoutd not be referenced
ln other publicatlons. ‘



RFC 76 Page 2

Introdyction

The Process Concept

Computer operating systems are increaslingly belng organlzed
around and modelled by the process concept. {1){(3){4) A process
Is an abstractlon of a Job or task or a program In executlon; It
consists of a pairt an execution point in a program and an
address space, whlch 1Is simply the set of all memory addresses
the process may reference. The process concept is usefu! for at
teast two reasonst First, an operating system can be viewed as a
task manager. Managlng each resource such as processorss, memory,
etc. ls a separate task; from thls viewpoint It lIs natural to use
a process to allocate each resource. Each wuser®s work 1Is a
process or perhaps several cooperating processes. Then the
operating systemy and In fact the entire system, can be modelled
as a collection of cooperating processes. Second, wWith the
prollferation of multi-processor computer systems, the process
concept offers a convenient and natural means of harnessing the
multiple processors. A processor may be used to execute any user
or system processy hence multi-processing of both users and the
operatling system [Itself iIs possible,

Pagling Systenms

One of the most lmportant resources the operating system
must manage Is ¢the memory or storagey, which must be altlocated
among the varjious competing processes. Normaitly the memory
system of a computer utillty consists of many different types of
physlical devices or components, organlzed togically into ¢two or
more levels L0y, L1y «ee LN where both the capacity and the access
time Increase with n.

A typical configuratlon of such a memory system might
consist of high speed core memory as primary memory (level 0)
Wwlth several disk drives as secondary or backup storage (level
1). Since In general the smaller the access time the higher the
cost and therefore the smaller the capacity, the goal of
combinling such components wWlth orders of magnltude dlfferences In
slze and speed is to achieve an overalt memory system whose
capacity 1Is equal to that of the targest component yet with an
effectlve or average speed approaching that of the fastest
devicee.



RFC 76 Page 3

Paging 1Is one common strategy for managing a multi-level
memorye Examples of paged systems abound and include Multlcs
{1)s TENEX (2) and IBM's VS systems (6) (7). In a paged system,
each tevel In the memory Iis physicaltly divided into contiguous
areas of a fixed slze called page framese. Similarly each flle or
segment of a user Is partitloned into contlguous pleces of the
same slze called pages. Then when allocating memory fto a
process, any page may be placed in any avallable page frame.

Usually a page may be referenced (l.e. read from or nwritten
into) onily If it resldes in the fastest level (level 0) of the
multi-tevel memor ye When a referenced page has not been
allocated a page frame in fevel 0, it must be glven one and
placed In |it. Hence the (scarce) level (0 page frames must be
rationed among many competlng processes. The program modules and
data bases of the operating sys tem which perform these
atlocations comprise the pagling systems or “page controi®™. Thus
page control is a resource manager, the resources 1t manages
being page frames.

The paging system may be Invoked elther explicltliy by a
request to move a desired page into levet 0, or more often
implicitiy by merely referencing a page that Is not currently
residing In tevel 0 (this latter event is known as a page fault).
Page control then executes the necessary atgorithms to flnd an
avaltable tevel 0 page frame (which may involve transferrling some
other page to another flevel of the multi-tevel memory) and bring
In the retferenced pagee.

Note there are two distinct operatlons invoived after the
page fault occurst flrst, the page removal operation, or *page
replacement atgorithm™, which decldes whlch page should be thrown
out of ltevel 0 to make room for the referenced page; secondy
fetching the desired page from wherever [t resides 1In the
mutti-level memory into tevel 0. Clearly the flrst operation can
be done at any time prior to the second. In facty as long as a
poot! of free page frames existed the page removal operation need
not even take place when a page fault occurse.

Since It Is a repetitive operation that can be done when
convenlent, a process could be dedicated to thls task of
replenishing the poot of free level 0 page framese. Wwhite thls
process was freeling page frames for tater use there iIs no reason
why some other process could not be bringlng a page Into the
level 0 memoTYe. Thus the two operatlions, removing a page from
tevel 0 and readlng a page Into tevel 0, coutd be done In
parallel.

This Is oniy one example of the parallellsm inherent In page
control. In a system such as Multics which has a multi-level
memory system of more than two tevels, the page replacement
operation must be carrled out at each level. For example, when 2a
page 1ls removed from core (tevel 0) I Multics,y an attempt is



RFC 76 Page &4

made to move the page to a so calied "paging device™ (level 1, In
reallty a large bulk store memory) used as a hilgh speed backing
store. In doing so0, some other page wliit normaliy have to be
moved to the disks (level 2, the last flevet). Thus a page
replacement operatjon must be done on the level 1| page frames.
In general, at each tevel In a muiti-tevel memory except the last
(which is assumed to be {arge enough to hoid at{ pages) a page
removal algorithm must be In operation. Extending the page
replacement ldea introduced above, for each ftevel a process can
be assigned the }Job of maintaining a pool of free page frames for
fater usee. These processes may operate essentlalliy
Independently. '

Hence It seems natural In modeliing the operating system as
cooperating processes to conslder the paglng system as several
such processes. The replacement algorithm for each level of the
multi-tevel memory 1s a prime candidate for Implementation as a
process since each Ils really a resource manager whose resource
s the page frames of that level. Each repeats the same
sequentlal task over and over agaln, namely freelng page frames
for one level. Moreovery these operatlons can be done
simuitaneously at each tevel, and asynchronously with respect to
page faul ts.

Purpose of Ihesis

The thesls proposed here will develiop a deslign of a paging
system that will be implemented as several cooperating processes.
Conceptually all of these may be executlng simuttaneousiys In an
actual system the number will of course be limited by the number
of processors. The deslgn will be based on the current Multics
page control, and the test Imptementatlon will be on the Multics
system.

The Multlics paglng system 1Is currently [mplemented as a
single module all of which attempts to run as part of the user's
process at the time a page fault happens. If a part of page
control 1ls unable to continue, for example when walting for an
lnput operation to complete, the user®s process Is suspended.
When the operation causing the suspension finishes, whatever
process was currently running Is Interrupted and the apopropriate
part of page control continues from ¢the point where it was

suspendede.

Note the operatlons of finding a free page frame at both
tevel 0 and tevel 1 are done sequentially, and only lmmediately
after a page fault has occurred. In contrasts, the proposed
design wlil ptace these functions In separate processes distinct
from the operation of resolving a page fault. More speclflcally,
the Multlcs page control! module will be redesigned IiInto three
partsi 1. A level 0§ memory manager process (or core manager),



RFC 76 Page S

which will search level 0 of the memory systemy, freelng page
frames so that they wllt be avaltablie when needed. (This
constitutes the leve!l ¢ replacement algorithm). 2« A slimitar
tevel {1 memory manager process (or paging device manager}), to
tree page frames In level 1 of the memory. (Thlis implements the
level 1 replacement algorithm). 3. A page fault handling module
to perform the necessary lnput operations to bring a mlsslng page
into core. This third module witt, as before, be Invoked
Implicitly by the user process and run as part of the user
process In the same fashion as all of page control does
currentiy.

Aside from 1lts avallablilty, the Multics system Is a good
choice for such a project because it ls falrly typlcal of large
paged systems. Its three level memory system ls suffliclently
general to litustrate the appllicabliity of the method to n-level
memory systems wlthout undue complexlty caused only by having a
large number of levels. More Importantly, Muttics oprovides the
process notlon In its lmplementation.

Motivatlon

In thls sectlons the beneflts which will accrue to a page
control redesligned as mutltiple processes and therefore which
motivate this research are discussed. This work was orlglnally
suggested during conslderation of alternate strategles and
structures for a paging system that would simplify the current
Multlics page control whille correcting several observed
defliclenclies. ’

The primary motivation for this work is to demonstrate the
valldity of such a deslgn. While there appear to be no
Insurmountable dlfficulties In a multi-process page controil such
as descrlbed here, no such Implementation lIs known to the author.
Hoare (5) has proposed a high level model of a paging system as
several cooperating processes and suggests It as a model for
system designers. In any event, hls mode! Is not general -enough
to flt many systems Including Multics because It ls restricted to
a two leve! memory system (versus Multlics® three) and It assumes
a page wlili reslde In only one of the two fevels at any glven
instant. In Multics, a copy of a page may reslde In one, two or
all three of the levels at the same time.

Varlous proposals have been made with regard to implementing
varlations of this proposal on Multics. One such proposal would
have separated the management of the paging device from the rest
of page control and implemented It as a separate process (l.e.
onty the second of the three parts proposed here.) A recent
revision of page control includes the abliity to run the core
page replacement algorithm when the system would otherwise be
idte. This is simitar to the first of the three parts oproposed



RFC 76 ' Page 6

here, but does not go as far since the replacement algorithm does
not become a separate processe.

Thus the Implementation proposed here would be the first
actually to incorporate all of these proposais Into a unified,
comprehensive deslion. Moreover, the paglng system deslgned as
mul tiple processes would Include the foltowling deslrable
properties which represent substantial I(mprovements over the
current Multlics page controlt

1« Simptlticity

The current page control Is extremely complex and difficult
to understand for several reasons. One of the most Important
sources of thls complexity is Its strictly sequential operation.
Performing essentlally independent but related operatlons In a
flxed sequence forces in many cases an awkward, unnatural
ordering to prevent deadiocks. The situation becomes worse when
attempts are made to optimlze the resulting algorithms, because
often the optimlizatlions are necessary only because the operatlions
are done synchronously or In a specifled sequence.

By deslgning page controt as Independent but cooperating
processessy It will be possibie to remove the strict sequential
ordering ot operations, simplifying the code and rendering some
optimizations unnecessary. Each process wiill be understandable
by Iltself, without reference fto the other processes except at
expliclt synchronlzing polnts or via explicit Interfaces.
Improved understandablilty means easler modlflcatlon and ctearer
examination of alternative algorlthms and thelr Implications for
system performance. Simpilftication ls aiso of direct beneftit to
any effort to certlify or prove correct the algorlthms of page
control.

2« Certifiabltity

A chief goal of current research on the Multics system Is to
provide a system wlth a certiflably correct securlty kernel. The
proposed deslign alds in thils certiflcation eftort In"three ways!
1. The design (s simplter and more modular, hence the
certificatlon task 1Is slmplified. 2« The modularity of the
deslgn makes posslible separation of the components behind
protective "flrewalis™. 3. That portion of the resulting system
that must be certifiled is minimized and conflned to easlly
identltled modulese.

"For example, the only parts of the design that need be
certitied to Insure against unauthorlized release of Informatlon
are the actual Input and output routines. Since none of the rest
of page control has any reason to look at the contents ot a page
and hence wlil not do soy It need not be certified. No attempt
will be made to certify any part of the proposed system however.



RFC 76 Page 7

3. Expandabliity

The exlstlng Multics page control, while adequate for the
present configuration of two processors, would not expand well to
farger numbers of processors. This 1s {largely because page
control can execute only In a single process at any time since It
uses a global lock which a process must set before it enters page
controle This is done in order to protect the consistency of
page control®s data bases. Thus it ls Impossible In the present
Implementation for one process to be freelng core page frames
whlle another 1Is freeing paging device page frames. Splitting
the pagling system Into dlstinct processes each operating on |Its
own data bases wil! atteviate much of the need for thls tock (but
not atl as it is used for other purposes also)le The core manager
and the paglng device manager processes will no longer have fto
set this tock before they begin executing.

In fact by careful design It wilt be possibie to have
several lIdentical core manager processes f(or paglng device
manager processes). Hence as the system grows In slze to the
point where one core manager process c¢an no longer keep a
pitentlful supply of free core page frames, additlional processes
can be added as necessarye. Page control wil!l change from a
system that does not scale up well to an easlily expandabtle
system.

A second limitation imposed by this global lock can posslibly
also be removed. The lock prevents two processes from handling
page faults at the same time. Slmultaneous handling of multiple
page faults may be possibie through careful design, although some
restrictions witl undoubtedly be necessarye. (An obvious one ls
that two processes cannot attempt to bring in the same page since
multiple coples might result.)

Yo summarize, thls thesis proposes a deslgn and trial
implementation of a paging systems for the Multics system
structured as three processes, with the goal of demonstrating
that such a design wilt result In a more naturaly simpler page
control that will be easler to certlfy and expand readlly and
effliclenttiy as the system grons.

Schedule and Resources

The design of an Initlal page control folliowing the general
plan described here but allowing only one process to be executing
the page fault handiing code 1ls essentlally complete. A modet
implementation of this deslgn can begln Immediateiy. The model
impliementatlon ls consldered important to valldate the deslign and
insure complete understanding of the 1Issues and difficultles
involved 1In such a designe. In particular, the efticiency of the
resulting code is not considered refevant as long as any major



RFC 76 Page 8

Inefficiencies are attrlbutable to other sources such as the
process scheduler. Permanent Installatlion of thils model
Imptementation Into the Multics system Is not contemplated at
this time.

The problems Involved In allowing muitiple page fault
handling are currently being investigated. The results of this
research will be incorporated Into a refined deslgn. At this
writing It {s not clear what restrictlons will be necessary on
processing simultaneous page faults; thus [t may not be posslble
to. completely implement this reflined desliogn. The thesis wli!
however contaln a discussion of the factors which make
simuitaneous page faults difficult to handles

The only resources necessary for this research are the
Muttics system itself and an undetermined amount of computer
time. Both ot these resources are readlly avallable. It should
be possible to complete the proposed research and write the
thesis by the end of June.



RFC 76 Page 9
Reterences

i. Daley, Robert Ce.s and Dennls, Jack, "Virtual Memory,
Processesy, and Sharing in MULTICS"™, Compunlications
of the ACM,s vole. 11y Nnoe 5, (May 1968), pp. 308-312.

2. Murphyy, De Ley “Storage Organization and Management in
TENEX*", AFIPS Conf. Proc. 41is vole. 14 (FJCC 1972},
Ppe 23-32.

3. Dlikstray, E. W.y "The Structure of the THE Multlprogram-
ming System™, Communications o! the ACM.» votl. 11, no. 5,
(Mays 1968)s Ppe. 341-346.

4. Hansen, P. Bey “The Nucieus of a Multiprogramming
System", Communications aof the ACM, vol. 14, no. &4,
{April 1970)y DpPpe. 238-241.

5. Hoarey Ce. A. Rey ™A Structured Paging System™, TIhe
Computer Journpals vol. 16y no. 3, (August 1373), pPP.
209-215.

6 HWheelery Jrey Te Foy "0S/VS1 Concepts and Phliosophles®™,
IBM Systems Journals vol. 13, noe 3y 1974, pPp. 213-229.

7. Scherry Ae Ley "Functional Structure of I8BM Virtual

Storage Operating Systems Part 1IIt 0S/VS2 Concepts

and Philosophies™, I8M Systems Journats vole. 12,
Nnoe 4y 1973, pPDs 382-400.





