PROJECT MAC | 10 June 1975

Computer Systems Research Division Request for Comments MNo.73.

DYNAMIC LINKING AND ENVIRONMENT INITIALIZATION
IN A MULTI-DOMAIN PROCESS.
by Philippe A. Janson.

22 May 1975.

Submitted to the ACH
Fifth Symposium on 0Operating Systems Principles.

his note is an informal working dncument of the Project MAC
Computer Systems Research Division, 1t shoull not be renroducel
without the author's permission, ani it should not be referenced
in other publications.

Abstract.

In an effort to make the security kernel of the Multics
system easier to certify, it was recommended that the dynamic
linker be removed from the protection environment of the security
kernel. This task prompted a thorough analvsis of the function
of the dynamic linker. The study revealed that the dynamic
linker implemented a function far more comnlex than
inter-procedure linking: it was also exploited to help dgenerate
and initialize the workspace for domains and procedures. This
implementation of dynamic linking and environment initialization
was shown to be incorrect: it violated the least privilege
principle as it failed to consider the multi-domain aspect of the
Multics processes.

Dynamic linking and environment initialization in a
multi-domain process is analysed and decomposed into its
elements: dynamic inter-procedure linking, dynamic domain working
storage generation and dvnamic procedure workspace
initialization. In order to respect the least privilege
principle, all these components should not be imnlemented by one
single program because this program would have to have the
combined access privileges of several domains and could therefore
be exploited as an unauthorized information channel bhetween these
domains. Instead each component should be implemented by a
separate program running in a specific domain. The parer
concludes by describing the problems and proposing a method of
bootstrapping the elements of the distributed dynamic linking and
environment initialization mechanism in a system like Multics.

Keywords and phrases: operating system security,
security kernel certification, protection domains, protected
subsystems, inter-procedure linking, inter-domain linking,
multi~domain process, least privilege principle.

CR Categories: 4.3.

This report is based on a thesis [5] submitted in May 1974
to the Department of Electrical Engineering of M.I.T.

in partial fulfillment of the reacuirements for the dearees
of Master of Science and Electrical Engineer.,

Research reported here was performed

in the Computer Systems Research Division of Project Mac,

an M,I.T. Interdepartmental Laboratory,

and was sponsored by:

the Advanced Research Projects Agency

under ARPA Order No.2095

monitored by ONR Contract No.N00014-70-A-0362-0006;

the Advanced Research Projects Agency and

the Air Force Information Systems Technologv Applications Office

under ARPA Order No.2641 monitored bv ISTAO;

lionevwell Information Svstems, Inc.;

the Harkness Fellowships of the Commonwealth Fund of New York.

Author's address: MIT Project MAC, 545 Technologv Square,
Cambridge, Massachusetts 02139,

1. Introduction.

Research reported in this paper was carried on in
1973-1974 in the Computer Systems Research Division of M.I.T.
Project MAC. The Division has been concentrating its efforts on

a project aimed at producing a certifiably secure operating

system for a computing utility. The approach taken was to
improve the certifiability of an existing svstem -the Multics
system- rather than to design an entirely new system from
scratch. Two tasks were identified as necessary to produce a
certifiable system: the definition of a security kernel for that
system and the simplification of that security kernel to the
point where an individual can easily audit it to establish
confidence in its correctness. One of several ways to make a
security kernel both better defined and simpler is to make it'
smaller by removing from it functions which "do not belonqg
there". Removing a function from the security kernel of an
operating system simply means guaranteeing that the function is
never used by the securitv kernel itself and vpreventing the

function from ever being executed in the vprotection environment
of the security kernel on behalf of some other protected
subsystem. Dynamic inter-procedure linking [2,3,10,11,12] is a
typical example of a function which "does not belong in the
security kernel" of an operating system, First, the modules of
the security kernel can be linked together by some static linkaqe

editor prior to being used; thus the security kernel does not

need the help of a dynamic linker to operate. Second, on any
single invocation, a dynamic linker operates on data pertinent to
only one domain; therefore, it is not part of the "“common"
mechanism implemented by the security kernel: it does not need
the privileges normally granted to security kernel primitives to
operate on data pertinent to several domains, during one
invocation. Finally, a dynamic linker is a verv comnlex program
whose operation is driven by information derived from user code;
therefore, it is highly susceptible to malfunction and could
cause malfunction of the whole securitv kernel if it were in the

same protection environment.

Removing the dynamic linker from the security kernel of

Multics called for a deep analysis of its function to understand
all the implications of the new design. In addition to
satisfying the above goal, the analysis revealed some most
interesting facts about the dynamic linker. It was found that
the dynamic 1linker implemented not just a dynamic linking
function, but a more complex function including domain and
procedure environment initialization. More immortantly, this
dynamic 1linking and environment initialization function was

*

incorrectly implemented. In a multi-domain process, dvnamic

linking and environment initialization were shown to require

access privileges ranging over several protection domains.
Granting all these privileges to a single program -as was done

for the Multics dynamic 1linker- violates the 1least privilege

principle: it forces that program to execute in a privileged
environment -e.g. the security kernel- where it can potentially
be exploited as an unauthorized information channel between the
above domains. A correct design of dynamic linking and
environment initialization recuired a much better understanding
of the issues at stake in a system supporting multi-domain
processes., The results of the analysis of dynamic linkina and
environment initialization and a discussion of the implications

of the multi-domain problem are the topic of this report.

For each outbound reference appearing in the source
code of a procedure, language translators generate an item,
called a link, associated with the object cpde of that procedure.
The 1link contains the symbolic name denoted by the outbound
reference in the source code. Linking a procedure P to a proaram
module P' means enabling P to reference P' by translating the
1ink between P and P' from its symbolic form (svmbolic name of
p') to a processor interpretable form (address of P'). Dynamic
linking is different from linking in that links are translated
one at a time, on demand, rather than all together at load time.

This design delays the;bindinq of a procedure to the modules it

references until that binding 1is actuallv needed. Delayed
binding is a feature encountered in the design of many operating
systems, and we will mention it again several times in this
report. It buys flexibility and avoids having to establish

bindings universally and unconditionally, when some of them may

be needed only under certain circumstances. Dynamic linking
includes allocating/retrieving the address of P' and using it to

link P to P'. Dynamic environment initialization denotes the

operations necessary to generate and set up the environment of P!
when control is transfered from P to P'. This includes

allocating/retrieving the workspace for P' and binding it to P'.

Systems have been described in the past which support
only one domain per process [6]; in such systems, inter-domain
communication is implemented by inter-process messacaes. In the

present report, we consider systems supporting multi-domain

processes; in these systems, inter-domain communication is

implemented by inter-procedure calls.

Since in a normal sequence of events, a transfer of
control from one procedure to another is preceeded, at some point
in time, by a demand to link the caller to the callee, it seems
very appealing to let the dynamic linker take care of all dvnamic
linking and environment initialization operations at once instead
of Jjust dynamic linking operations. This was the approach taken
in the original Multics dynamic linker. It is a wrong anproach

to take in a multi-domain process system because, in the case of

a cross-domain call, it reaquires the dynamic linker to have more

privileges to handle all of dynamic 1linking and environment
initialization than it would need to handle just dynamic linking.

This is because dynamic linking concerns only the caller domain

while environment initialization concerns the called domain.
Thus the compound dynamic linker-environment initializer needs
access to objects in both domains and therefore becomes a
potential unauthorized information channel between the two
domains. This report will show why dynamic linkina and
environment initialization operations should be distributed and
how they can be distributed among several programs executina in
different domains so that the securitv of neither domain is

compromised during a cross-domain call.

The next section of the report will analvse dvnamic

linking and environment initialization in a multi-domain process.
Relevant features will be described for a model system to be used
as an illustrative example in the report. The action of a
procedure P calling a procedure P' across a domain boundary will
pe decomposed into elementary operations. It will be shown that
different sets of elementary operations require different sets of
access privileges. Compounding all operations under the
responsibility of one program forces that program to have the

union of the sets of access privileges and violates the least

privilege principle.

The last section of the report will sketch the

principles of one possible correct design for dynamic linking and
environment initialization in a multi-domain process. The

elementary operations composing dynamic linking and environment

initialization will be grouped into five sets., Three sets are

implemented by three separate programs reauiring different
access privileges: dvnamic working storage generator, dvnamic
workspace initializer and dynamic linker. Of these, onlv the
dynamic working storage generator cannot be removed from the
security kernel. Two more sets of operations are implemented
respectively by the hardware call machinery and by the entry
sequences inserted by lanquage translators at the entry points of
any procedure. The design proposed in the last section of the
report has the additional advantage of making inter-domain
linking look identical to intra-domain linking from the point of
view of the dynamic 1linker. This was not the case in the
original design where the dynamic 1linker had to distinouish
between 1linking procedures within a domain and across domain
boundaries. The design proposed in this report has been
demonstrated viable: it has been implemented in Multics. The
details and quantitative results of the installation are not
discussed in this report: an evaluation of the simplicity and
the performance of the new design is given elsewhere [5]. In
summary, the size of the Multics security kernel and the
complexity of its interface were decreased by ten percent while

the performance of the system was not noticeably affected.

Throughout the whole report, the reader is assumed to
be familiar with some information protection concepts (e.q.

ring, domain, security kernel, least privilege princinle [4,8])

as well as with some general design features of Multics (e.q.

segmented virtual address space, dynamic linking [1,7]).

2. Problem Statement.
2.1, Framework for Discussion.
Before we can describe the meaning and the implications

of dynamic linking and environment initialization in a

multi-domain process, we need a short description of relevant

features of an illustrative system to he used as an example in

the later discussion. This system is very much like Multics but
it is simpler and more general. It is simpler in that any
program module has only one entry point; thus the symbolic name
space for procedure entry points has only one parameter instead
of two as in Multics. It is more general in that each process
can go into (a finite but large number of) distinct protection
domains which are not subject to any ordering of privileges as

are the Multics protection rings; in this respect, the model is

similar to the system described by Schroeder [9].

Apart from these differences, the system is verv
similar to Multics as far as dynamic linking and environment

initialization are concerned. There is one structured virtual

address space per process. The address space of a process is

materialized by a descriptor segment. For each seaqment in the

address space of a process, there is one entry in the descriptor
segment, called a segment descriptor word (SDW):; it contains the
physical address of the segment. For each domain where a process
can go, there is one entry in each SDW, describing the access
privileges of that domain (1) to the segment denoted by the SDw,
The current process and domain of a processor are defined by its
descriptor base registe; (DBR) which denotes a descriptor
segment, and a domain number to be used as an index into SDW
access privilege fields, A security kernel primitive can be
invoked to assign a segment number to a segment. When presented
with a file system name uniquely identifying a segment, the
primitive returns the segment number assigned to the srecified
segment, If the segment does not yet exist, a segment number is
assigned to it, but, accordina to the delaved binding policy
mentioned earlier, the segment and its SDW are created only ‘when

actually referenced.

During execution, a procedure reauires two kinds of
working storage: 1local storage (2) which is allocated in the

push-down stack segment for the current domain of execution, and

(1) We assume our Multics-like system supports enough domains per
process to host all possible protected subsystems. If there were
not such a one to one correspondance between domains and
Brotectgd subsgitems, 3 d?main management primitive would have to
e use o allocate/deallocate domains to protected subsystems.

This problem is briefly discussed by Schroeder [9]. It is
irrelevant to our discussion of dynamic linking and environment
initialization.

(2) PL/I equivalent of local and own storage are automatic and
internal static storage.

10

own storage (2) which is allocated in the "own" segment for the

current domain of execution.

It is often desirable to have executable code be
non-writeable: as a measure of self-protection, this prevents a
user from accidentally damaging his procedures; as a measure
toward; recursion and sharing, it allows direct conflict-free
access of all existing invocations of a procedure to the code of
that procedure. On the other hand, the links between a procedure
and the segments it references must be writeable bv the linker
which translates them and should not be shared across domains and
processes because each process has a different address snace and
each domain may have a different name space (for mapping symbolic
names into file system names). From the previous two remarks, we
deduce that in a system in which access control is enforced on a
per segment basis, the code and the links for a procedure cannot
be stored in the same segment. In our Multics-~like system,
associated with each procedure is a non-writeable prototvpe
linkage section appended to the wprocedure code; in that
prototype linkage section, each link contains the symbolic name
of a module referenced by the prqcedure; during execution by a
given process in a given domain, the prototype linkage section
must be copied into a linkage section private to that domain in
that process; the symbolic names may then be unambiquously
interpreted in the domain name space and translated into

processor interpretable addresses based on the process address

(3

11

space. Thus, the scope of the private linkage section of a
procedure instance and the scope of the own storage of that

procedure instance are identical, wviz. one domain in one
process. Hence the two kinds of storage can be allocated on the

"own" segment -which we therefore rename linkage segment.

Figure 1 helps visualize the system, It summarizes all
we need to know about the system to understand dvnamic linking

and environment initialization. The entire report will be based

on it.
Figure 1. DBR = descriptor base register
Description of defines current domain and process
the environment
of the processor ICR = instruction counter register
during execution. defines current instruction and program
SP = stack pointer
defines current stack frame
LP = linkage pointer
defines current linkage section
BR procedure
ICR "I SDW P Ie seqgment
SP |« e P
LP
_SDW § [% stack
Tt segment
~-\ S
“SDW L[] ™ s€dck Tframe
linkage
segment
L
[~ “linkage
section

12

2.2, Analysis of Dynamic Linking and Environment

Initialization.

Figure 1 summarized the functional description of the
system. Figure 2 is just an abstraction of figure 1 in terms of
the bindings required by the system to operate. Processor PCR,
dedicated to process PCS, in domain D, executes procedure P using
the workspace denoted by SP and LP. All of this is exnressed by
the bindings of figure 2 as well as by the registers of fiqure 1l.
Figure 2.

Processor PCR dedicated to process PCS in domain D

executes procedure P using stack S and linkage L.
PCR

DBR

To analyze dynamic linking and environment
initialization in a multi-domain process, we consider a concrete
situation. Assume procedure P calls procedure P', P' is a gate
into domain D' and this is the first time process PCS goes into

domain D', so that nothing is set up for executing in D' vyet.

13

After the call, we will have moved from the system status

described in figure 2 to a system status described in fiqure 3.

Figure 3.
Bindings to be established to
support a cross-domain call.

i ‘\D@R

~

{
l
!
f
!
|
ICR
{
1
|

While all bindings represented in fiqure 2 did exist at
the time of the call, the corresponding bindings do not exist in
figure 3 at the time of the call because the stack and 1linkage
segments do not exist yet for D' and P' has never been
referenced. One more binding not shown in fiqure 3 is still
missing to support the transfer of control: we need a connection
to go from figqure 2 to fiqure 3 as expressed in fiqure 4 bv the

link required by P to call P°'.

14

Figure 4.
Bindings involved in

a cross-domain call.
~N
~
E ~

\

{
{
|
[
I
|
I
|
—
-~
|
-‘llllli;
re

|
|
] \
SDW L SDW P SDW P! spw Ss' \\ spw L'
\

I |
| I N
) [D

We propose to examine the missing bindings of figure 4

case by case. The first binding which is required is the link
from P to P'., We assume the existence of a dvnamic linker whose

action is triggered by 1linkage faults. A linkage fault is a

processor exception occuring when a procedure tries to call
another procedure via a 1link which has never been translated
previously and still contains a symbolic name. When P calls p',
it causes a linkage fault. Performing the translation of the
symbolic name of P' into a processor interpretable address is the
strict definition of dynamic linking. It is done in three steps:
first, using the interpretation rules of the name space of D, the
dynamic linker maps the symbolic name of P! into a file system
name uniquely identifving P'; second, as exnlained in the
description of address space management in our Multics-1like

system, a security kernel primitive may be invoked by the dynamic

linker to obtain the segment number of P' given its file system
name (to bind P' to a segment number); finally, the dynamic
linker uses that segment number and a relative offset of zero as
the virtual address of the single entry point (3) of P'. That
virtual address is then stored in the 1link in place of the
symbolic name of P', and control is restored to the instruction
of P which caused the linkage fault. At this voint, the LINK and

SDW P' of figure 4 are established.

P can now call P' without causing any linkage fault in
the current domain of the current process. As suqgested by
Schroeder [9], the SDW for a gate must define the domain number
of the protected subsystem behind the gate. Thus the hardware
call machinery will notice P' is a gate into D'. The DBR and ICR
bindings of figure 4 will be established accordingly to express

that PCR is now dedicated to PCS executing P' in D',

Four bindings remain to be established: two SDWs must
be created for 8' and L', and SP and LP must be loaded to bind P!

to its workspace.

The case of S' and SP is relatively easy to solve

without wusing extra machinerv. Sunpose we adopt the followina
two conventions: first, eventhough the stack segments for all the

(3) In the real Multics, non-zero offsets are permitted, and
additional mechanisms are used to determine their value.

16

domains where a process can qgo do not exist when the vprocess is
created, we reserve a given segment number for the stack segment
of each given domain; second, in any stack segment, we reserve
the first word to save the address of the next available stack
frame on the stack segment. The cross-domain call machinery may
be wired to then load SP with the conventional segment number S'
corresponding to the stack segment of D'. And a suitable entry
sequence into P' can further obtain the offset of the next stack
frame from (S',0). According to the earlier description of the
management of the descriptor segment in our Multics-like system,
referencing S' when SDW S' is reserved will cause - S' to be
created and SDW S' to be filled to describe access to S'. The
security kernel may distinguish stack segments from other
segments and initialize their first word arpropriately unon
creation. While this mechanism mav seem ad hoc, we will see its
actual significance later. Thus establishing SDW S' and SP can
be done conveniently with the existing machinerv and two

conventions.

Unfortunately, the same is not true for L' and LP. If

it wefe just a matter of creating L' and finding empty space on
L', a method similar to the one used for S' and SP would be
adequate. However, more operations are required. The scone and
lifetime of a stack frame is one invocation of one procedure in
one domain; thus a new stack frame must be pushed on each

procedure call. But the scove and lifetime of a linkace section

17

is all invocations of one procedure in one domain: thus a linkage
section must be allocated on L' only the first time P! is invoked
and its address must be remembered for all subsequent invocations
of P' in D', In addition, the newly allocated linkage section
must be initialized to the protétype linkage section from P' so
that each symbolic link from the shared prototype linkage section
appears in the unshared local linkage section and can later be
translated 1locally into a meaningful address. The cross-domain
call machinery and the entry sequence of P' are not sufficient
tools for our needs as they cannot distinguish between the first
and subsequent invocations of P', A proaram knowing about P' and
L' is required to initialize the linkage section of P' and save

its address for later use.
2.3. Unsafe design.

This is the very part of the problem which was
mishandled in the original implementation in Multics. The
creation of L' as well as the initialization of the linkage
section of P' were left for the linker to handle ahead of time,
when it is invoked to establish the link between P and P', It
was conjectured that establishing a link between P and P' would

always be followed by calling P'. Thus the dynamic linker also

checked for the existence of L' and the linkage section of P' in
D', and eventually created them. This task required the dvnamic

linker to have access to D'.

18

In trying to remove the dynamic linker from the
security kernel of Multics, it became obvious that the dvnamic
linker would no longer have access to D', and in fact that it
should never have had access to D' in the first place because
this violated the least privilege principle and eventually
created exploitable flaws in the protection mechanism. The
original Multics dynamic linker had unnecessary privileges and
unintentionally misused them so that at least two methods existed
to deceive the protection of D'. First, without ever intending
to call into D', P could reference links to each gate into D' and
trigger the linker to initialize the linkage of all these gates
into D'. The fact that an action of P in D could cause somethina
to happen in D' without control is unacceptable and particularily
dangerous if there 1is any chance that P might cause L' to be
overflowed by too many linkage sections. Second, without ever
triqgerinq the linker, P could find out the segment number of P'
by invoking the suitable security kernel primitive, and call P'
directly using that segment number instead of a symbolic name.

As a result, P' would start executing without its worksnace being

initialized since the dynamic linker was by-passed by P.- This is
even more unacceptable than the previous trouble as a process
crash and perhaps some damage could be caused in D' because of
the action of P in D: any initial own variable P' depends on or
outbound reference it makes would almost certainly be handled

incorrectly.

19

3. Implementation Proposal.
3.1. Basics of the Design.

The previous section presented a description of dynamic
linking and environment initialization in a multi-domain process
in a Multics-like system., Some mistakes in an earlﬁ design of
dynamic linking and environment initialization were pointed out.
This section will abstract thé operations described earlier from
their Multics context and propose a correct desian for
implementing dynamic linking and environment initialization in a

multi-domain process.

First, consider the link between P and P' in figqure 4,

The link defines a binding between the caller and the callee., It

must be established by the dynamic linker. This is the only task

assigned to the dynamic linker. It does require access only to
domain D and to a security kernel primitive. When the linkage
fault occurs, the linkage section of P and most information
needed to translate the link are readily available in D. A
security kernel primitive can be invoked from D to bind P! to a
segment number. Consequently, the dvnamic linker can and should

execute strictly in D, and mav be totally unaware of the fact it
is translating a link to different domain. Dynamic linkina is

one of the three functions which need to be supported bv an

appropriate program running in a specific protection envirenment,

20

the faulting domain or caller domain in this case. The creation
of the 1link includes assigning a seament number to P' and thus
yields the creation of SDW p', as explained in the description of

the address space management of our model system.

Second, consider the DBR and ICPR bindings. These two

bindings are defining respectively the protection and execution

environments of PCR. In any system, setting these bindings is

the task of the environment switching machinery. ICR is loaded

by the "jump" instruction machinery; DBR defines the protection
environment and must be set by the cross-domain call machinery as

it is a protected register.

Third, consider the case of the SDWs. After a new
protection environment D' is entered (as expressed bv a change in

DBR), the environment needs a binding to some working storage out

of which each procedure will subsequently be able to carve its
own workspace. (This is what SDW S' and SDW L' express in a
Multics-like system.) Allocating working storage in the address

space accessible from D' requires the help of the security kernel

because one or more objects must be created and added to the
address space, and because D' cannot create working storage for
itself since no program can run in D' without its workspace. In
a system in which dynamic environment initialization is a desian
feature, working storage should be created dynamically, i.e.

when it is first referenced. To enable anv process entering D'

21

to reference the working storage allocated to that domain, we
proceed as suggested earlier, by adopting the convention that the
working storage of a domain be assigned kreserved virtual
addresses (segment numbers) which are left by the cross-domain
call machinery in dedicated registers (SP and LP) when the domain
is entered. (Notice that this design departs from the original
Multics design: L' is now created on demand by the security
kernel and not ahead of time by the dynamic linker.) Working
storage creation is the second function recuiring an apnropriate
program running in a specific protection domain, the securitv
kernel. Mlotice that the above design required the cooperation of

the call machinery as well.

Fourthly, when working storage is created for D', the

executing procedure P' has to be associated with the workspace

allocated to it in the working storage of D'. (This is expressed
by the SP and LP bindings in our Multics-like system.) The

retrieval task is the responsibility of the entry sequence of the

procedure. Again, as suggested earlier, conventions are needed
to make the retrieval possible. (For instance, in a Multics-like
system, word 0 of each stack segment should be reserved to save
the relative offset of the next available stack frame on the

stack segment. Similarily, in each linkaae segment, there might
be a 1linkage offset table, located at the base of the seqment,

which for each segment in the address space gives the relative

offset of the corresponding private linkage section - if anv.

22

Thus the entry sequence of procedure P' can load SP from (S',0)
and LP from (L',P'), where S', L' and P! are the seqment numbers
left in SP, LP and ICR after the cross-domain call.) The reader
may have noticed that one problem was swept under the ruq: in a
Multics-like system, the prototype linkage section of P' must be
copied into the private linkage section allocated to P' in L!
prior to letting P! load LP; this is an example of the general
problem of initializinag the workspace of a procedure prior to

the first invocation of that procedure.

Initialization of the workspace of a procedure was

supported by the dynamic linker in Multics. Because it concerns

stictly domain D', we declare that it must be performed from

within D', on demand, by a dynamic workspace initializer. (In a
Multics-like system, we propose that the linkage offset table be
initialized with zeroes when L' is created. Thus loading LP with

a null linkage offset can be recognized as an own storage fault

whereupon the dynamic workspace initializer must be invoked.
After the missing linkage section is copied and its relative
offset is saved, the faulting procedure P' can successfully load
LP.) 1In general, a processor exception is needed to identify the
need of a procedure entry seaquence to retrieve its worksnace
when it does not yet exist, Dynamic worksrace initialization is
the last function requiring a program executing in a specific
protection domain, the faulting domain or called domain in a

cross-domain call.

23

3.2. Summary of the Design.

What the above recommendations have achieved is a total
separation of the components of dynamic linking and environment
initialization, and particularily of the three main components
requiring software support: dynamic linking, dynamic working
storage generation and dynamic workspace initialization. Dynamic
linking deals exclusively with linkage faults; it is supported by
the dynamic linker which operates in the domain where a link must
be translated. Dynamic working storage qgeneration handles the
bindings associating a protection environment to its working
storage; this has to be supported by the security kernel as it
requires creation of new objects. Dynamic workspace
initialization deals with bindings defining the workspace of a
procedure; it requires the help of a dvnamic workspace
initializer operating in the domain where initialization is

required.

3.3. Side Effects of the Design.

The last problem which had to be dealt with in the new
design is the initialization of the distributed dynamic linking

and environment initialization mechanism. As long as the dynamic

linker and the dynamic workspace initializer were one single
program executing in the security kernel domain, they were

initialized as parts of the kernel itself, i.e. some system

24

generation mechanism or bootstrapping procedure was used for the
entire security kernel and dvnamic binding was no special case.
low that the dynamic linker and the dynamic workspace initializer
have been removed from the security kernel and mav be invoked at
any fime in any domain, both programs must be made operational in
any domain as soon as that domain becomes used. For the programs
to be operational in a domain, they have to have a private
linkage section in that domain and all links in the linkage
gsection must be translated prior to operation of the nrroqrams,
because neither program can count on the other to bootstrap it,

short of going into a recursive initialization problem.

First, notice that the dynamic linker and the dynamic
workspace initializer are likely to contain symbolic references
(calls) to security kernel primitives (e.a. to bind a segment
to a segment number) but " they will never contain symbolic
references to user programs. Second, since security kernel
modules and dynamic linking and environment initialization
modules are vital to any process, thev must be mapped into the
virtual address space of any process; thus, they can be assigned
a fixed set of addresses in the address space of any process.
Because of the above two remarks, we can assert that, once
translated, the links in the private 1linkaqge sections of the
dynamic linker and the dynamic workspace initializer could be
identical in all domains of all processes. Thus all it takes to

make the dynamic 1linker and the dynamic workspace initializer

25

operational is to submit them to a static 1linkage editor after
system initialization but prior to system operation and to have
the linkage editor produce a template translated linkace section
for each program. Then the security kernel can either make the
template translated linkage sections public, read-onlv, or “cony
them into each linkage segment it creates. If the latter
approach is chosen, the operation can perfectly well be performed
at the time a linkage segment is created (SDW L') as the creation
of a linkage segment coincides exactly in time with the earliest
moment when the dynamic 1linker and the dynamic workspace
initializer may be needed in a new domain. This again requires
the security kernel to distinquish the creation of linkage
segments from the creation of any other seament, as was the case
for stack segments. Linkage and stack segment creation are not
just ad hoc mechanisms but should be regarded as the two
operations implementing domain generation. Such an operation

must necessarily be carried on by the security kernel.
4. Conclusion.

This report has presented the conclusions of a study of
dynamic linking and environment initialization in a multi-domain

process, Dynamic 1linking and environment initialization was

first decomposed into elementary operations., Elementary
operations were then grouped into five sets of operations each

implementing a different aspect of dynamic linking and

26

environment initialization. 1In particular, three aspects require
the help of software progréms. It was shown that each of these
three aspects should be implemented by a separate program
executing in a specific protection domain to preserve the
integrity of the two domains involved on a cross-domain call.
Dynamic linking is implemented by the dynamic linker operating in
the faulting domain (caller domain of a cross-domain call),
dynamic working storage generation is implemented in the securitv
kernel, and dynamic workspace initialization is implemented by
the dynamic workspace initializer operating in the faulting
domain (called domain in a cross-domain call). This distribution
of functions insures a safe design of dynamic 1linking and
environment initialization: programs implementing the functions
cannot be exploited as unauthorized information channels between
two domains as they never execute in more than one domain during

any single invocation.

27

Acknowledgements,

Many people have contributed ideas to the research
described in this report and many people have commented on the
successive versions of the report itself. Professor M.D.
Schroeder deserves special gratitude for his gquidance, his
encouragements, his dedication and his interest in the research
project, and for his pertinent comments on the rermort. Professor
J. H. Saltzer has made very detailed remarks and highly relevant
suggestions on the later versions of the report. The helpful
contributions of Dr. D.D., Clark were appreciated in the early
phases of the project. Thanks are due B.,S. Greenberqg, R.K.
Kanodia and E.L. Thomas for the ideas they provided during the
design of the dynamic binder and for the many hours they spent to
help implement it.

28

References.

1.

3.

8.

10.

11.

12,

Introduction to Multics.
MAC TR-~123 - MIT Project MAC =~ 1974.

Donovan J.J.
Systems Programming.
P166 - McGraw Hill - 1972,

Fabry R.S.
Capability~Based Addressing.
P403 - CACM 17 7 - 1974.

Graham R.M.
Protection in an Information Processing Utility.
P365 - CACM 11 5 - 1968.

Janson P,.A.

Removing the Dynamic Linker from the Security Kernel
of a Computing Utility.

MAC TR-132 - MIT Project MAC - 1974,

Lampson B.W.
Protection.
p437 - Proc. 5th Princeton Conf. on Info. Sc. and Syst.

Organick E.I.
The Multics System: an Examination of its Structure.

MIT Press, Cambridge, Mass. = 1972,

saltzer J.H., Schroeder M.D.
The Protection of Information in Computer Systems.
to be published in Proc. IEEE.

Schroeder M.D.

Cooperation of Mutually Suspicious Subsystems
in a Computing Utility.

MAC TR-104 - MIT Project MAC - 1972.

Shaw A.C.
The Logical Design of Operating Systems.
P158 - Prentice Hall - 1974.

Tsichritzis D.C., Bernstein P.A.
Operating Systems.
P91 - Academic Press - 1974.

Watson R.W.
Timesharing System Design Concepts.
P68 - McGraw Hill - 1970.

3
q«\

