PROJECT MAC June 3, 1975

Computer Systems Research Division Request for Comments No. 80

ENGINEERING A SECURITY KERNEL FOR MULTICS
by Michael D. Schroeder

Attached is a draft of a paper describing the certification project
that I am submitting to the 5th Symposium on Operating Systems Principles,
to be held in November. This stuff is exceedingly hard to write down,

and I would very much appreciate your comments and suggestions.

This note is an informal working paper of the Project MAC Computer Systems
Research Division. It should not be reproduced without the author's per-
mission, and it should not be referenced in other publicationms.






Engineering a Security Kernel
for Multics

Michael D. Schroeder

Project MAC
and »
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, Mas%\02139

DRAFT

@



2
;'

Abstract

This paper describes a research project to engineer a
security kernel for Multics, a general-purpose, remote-accessed,
multiuser computer system. The goals are to identify the minimum
mechanism that must be correct to guarantee computer enforcement
of desired constraints on information access, to simplify the
structure of that minimal mechanism to make certification by
auditing possible, and to demonstrate by test implementation that
the security kernel so developed is capable of supporting the
complete functionality of Multics., The paper presents the
overall viewpoint and plans for the project, and discusses the
initial strategies being employed to isolate and structure a
functionally adequate security kernel, -
Key Words: protection, security, privacy, security Kkernel,
certification, Multics.
CR Catagories: 4.3
The research reported in this paper was supported by ARPA, the
Air Force, and Honeywell. (Appropriate contract numbers, etc.,
to be supplied.)

DRAFT



Introduction

This paper describes a research project of the Computer
Systems Research Division of Project MAC at M.I.T. to engineer a
security kernel for Multics. The objective of the project is to
produce an example of a general-purpose, remote-accessed,
multiuser computer system that can be certified, by auditing, to
implement correctly the claimed constraints on the access of
executing programs to the contained information. The paper
presents the context, viewpoint, and plans for the project, and
describes a sample of the initial strategies being employed to
define and structure a security kernel for Multics.

The need for certified protection mechanisms arises when a
single system provides computation and information storage
service to a community of users. As the functional advantages of
such shared systems have been recognized, so has the need to
include facilities for controlling the access of the various
users to the contained information. Many systems now include
protection mechanisms for computer enforcement of intricate,
externally specified policies for control of access by executing
programs to the contained information (1], The presence of such

mechanisms, however, is not enough. Users, whether they be

individuals or organizations, must have confidence in the
integrity of the protection mechanisms before they can entrust
sensitive data to a system. The system must be certified to
implement without failure the desired control policies,

There are three ways in which the security of information

DRAFT



stored in a computer system can be violated:

1. Unauthorized release: an unauthorized person is able to

discover the content of information stored in the computer.

2. Unauthorized modification: an unauthorized person is able to

cause changes to stored information.

3, Unauthorized denial of use: an unauthorized person can prevent

legitimate reference to or modification of stored information.

In a shared system the unauthorized person with respect to a
specific act may be an otherwise legitimate user of the system,
In practice, producing a system that actually does prevent
all such unauthorized activities has proved to be extremely
difficult., Sophisticated users of most currently available
systems are probably aware of at least one way to deny all users
access to the stored information by deliberately crashing the
system. Penetration exercises involving a large number of
different systems have shown that, in all general-purpose systems
confronted, a wily user can construct a program that can obtain
unauthorized access to information stored within the system. (1)
The primary reason for these failures is the presence of
design and implementation flaws that provide paths by which the
access constraints supposedly enforced by the system can be

circumvented, Underlying this cause are two interacting

(1) A recent paper by Linde [2] catalogs many of the penetration
techniques that have been used.

DRAFT



difficulties., The first is that preventing all unauthorized acts
is a negative kind of requirement. 1It is intrinsically quite
hard to show that this requirement has been met, for one must
demonstrate that no means for violating data security exist. The
second is the well-known tendency for the operating systems of
shared, general-purpose computers to be extraordinarily large and
complex. This tendency interacts badly with the need to show
non-existence of paths for violating data security, by providing
a very complex environment in which to attempt the demonstration,

Certifying the protection facilities of a computer system
has two aspects, One is determining that the patterns of access
constraints claimed to be enforced by the system are appropriate
to the intended application. The other is verifying that the
system actually enforces the claimed constraints, The access
constraints claimed to be enforced are expressed as a model
defined in terms of the abstract objects and operations
implemented by the system, Determining the adequacy of the match
between such a model and the perceived requirements of the
intended application requires human judgement, In this aspect
defining different degrees of certification is difficult. On the
other hand, the match between the model and the enforcement
mechanisms of the system must be exact, for the model is
expressed in terms of the objects and operations implemented by
the system, and any difference represents a failure of the system
to implement the claimed access constraints, In this aspect

different degrees of certification can be defined, and reflect

DRAFT



different degrees of certainty that the match is exact.

Certification results in the certifier signing-off on a
statement of adequacy. By signing, the certifier assumes
responsibility for future security failures. A system is
certifiable if the certifier can be convinced to sign,

One reason that current general=-purpose systems are not
considered éertifiable is that available techniques, both formal
and informal, for expressing their claimed securiﬁy properties
result in models so intricate that a certifier cannot determine
the usefulness of the claimed access constraints. The other
reason is that the systems themselves are so large and complex
that a certifier has no way to develop confidence in the match
between the actual protection mechanisms and any understandable
model. The size and complexity of these systems thwarts
verification of the match through manual auditing by making it
impossible for one person to comprehend the entire mass of
security-relevant software in detail, and overwhelms the
available systematic program verification techniques. Making
general-purpose computer systems certifiable requires developing
better techniques for modeling the claimed security properties of
systems and finding ways to reduce the size and complexity of the
mechanisms that must be correct. This project addresses the

latter requirement.

DRAFT



¢

S

3

Method of Attack

The problem of constructing a certifiably secure system has
attracted considerable interest recently and is being attacked
with a variety of different strategies [3]. The key to the
ultimate solution appears to be methodical design and
construction techniques that systematically exclude flaws that
can be exploited to produce security violations. Many imagine
being able to construct a formal specification for a system,
prove desired security (and other) properties about the
specification, and then, by essentially mechanical steps,
construct the implied operational system. The match between the
model and the mechanism is a natural result of the systematic
generation of the mechanism from the model. The hope is to
achieve a level of confidence in the match of the mechanism to
the model similiar to the confidence that a mathematician has in
the result of a well-wrought proof. The only step of
certification left to human judgement is determining the
?EPPF9PF?a5P§?iIOf the properties expressed in the security model
to a particular real-world application. To this end, many
research groups are conducting investigations into methods of
proving assertions about programs and program-like .
specifications, methods for formally describing security
properties, and techniques of top-down program construction by
successive refinement of descriptions of algorithms and data
structures. At the other end of the spectrum, several groups are

engaged in finding, cataloguing, and repairing security flaws in

DRAFT



existing systems with the aim of convincing skeptics that the
problem is real, of understanding the sort of flaws that can be
exploited, and of trying to reduce the ease with which the
security of available systems can be violated. Somewhere between
these two extremes are several groups [4,5], including our own,
trying to produce examples of systems that can be certified.

Our approach is to attack directly the size and complexity
exhibited by existing general-purpose systems. The plan is to
evolve an existing, commercial, general-purpose computer system,
Multics [6], into a prototype operating system with all the
essential features of the present system, but with a small and
simple protected central core. This core will be a security
kernel embodying all mechanisms necessary to enforce the presumed
security properties of the system. The goal is a kernel
sufficiently small, well-structured, and easy to understand that
certification through manual auditing by an expert is feasible.
Such a kernel also may be susceptible to certification through
more systematic program verification techniques. Isolation and
simplification of this security kernel will be guided by an
informal (but detailed) model of the presumed security properties
of Multics coupled with a formal model (2) of a subset of these
properties that is being developed by a group at the Mitre

Corporation in a closely related effort.

(2) The formal model specifies a set of access constraints that
restrict information flow in a hierarchy of compartments to
patterns consistent with the national security classification
scheme,

DRAFT



The choice to evolve an existing system rather than design a
new one from scratch follows from a desire to demonstrate the
ability of simplified mechanisms to support a complete,
operational system providing the full set of functional
capabilities that seem desirable in a general-purpose system.
With the current state of understanding of computer systems, it
is hard to have confidence that the full implications of a system
structure are understood without complete implementation. If an
operational system is not the goal, it is very easy to leave out
many of the complexity-producing convenience features that the
users demand of a production system., A structure which
gracefully supports a toy system may be badly strained by the
performance levels and extra features required in its real
descendant. Also, the kind of design and implementation errors
that produce security flaws in real systems tend. to be less of a
problem in toy systems. Thus, to start fresh would require
undertaking the complete job of implementing a new
general-purpose system in order to test the completeness of a
kernel design. By developing a security kernel for an existing,
operational system, the enormous effort of a complete, new system
implementation is avoided.

A combination of factors makes Multics in particular seem
well suited to serve as a base from which to engineer a
certifiably secure system, To start with, Multics provides a
full set of functional capabilities, including high bandwidth

direct sharing of information among computations [(7]. 1In

DRAFT



10

addition, Multics has been developed from the ground up to
protect the information it contains from unauthorized access. It
already includes protection mechanisms as advanced as any
available [8], and provides direct hardware support for some of
these mechanisms [9]. Thus, the system both exhibits a set of
protection features that would be interesting to certify and
provides protection features that will make the job of
certification easier. Also, the system is better organized than
most for evolution and modification, because it is relatively
modular, is largely written in PL/I [10], and was originally
constructed with evolution as a primary objective. Finally,
because Multics is a commercially available product and new ideas
developed in the course of this research should be relatively
easy to retrofit to the standard system, the result, if
successful, can be easilijkxported in a directly useful way.
Although the originél design of Multics was very methodical,
and the system is, if anything, already less complex in
organization than most contemporary computer operating systems
with similar functional goals, potentially, it could be supported
with mechanisms that are much simpler yet. The intense pressure
of initial implementation did not permit time for contemplation
and development of simpler supporting structures, Included in
the programs which perform essential supervisor functions are
functions which could be done as well without the special powers
and privileges of the supervisor. Most supervisor programs have

been designed with primary attention paid to providing a broad

DRAFT



11

range of function and some have been designed with primary
attention paid to efficiency; 1less attention has been paid to
simplicity of organization and almost none to organizations that
might be susceptible to systematic specification and
verification. The basic premise of this research is that one
wave of simplification applied to the central core of the system
will produce a badly needed example of a structure that is

significantly easier to understand.

The Securitx Kernel

The basic structural concept for organizing a certifiably
secure system is that of a security kernel. A security kernel is
a minimal, protected central core of software whose correct
operation is necessary and sufficient to guarantee enforcement
within a system of the security model. Rather than being
dispersed throughout the syseem software, all protection
mechanisms are collected in the kernel, so that only this kernel
need be considered in order to certify the security properties of
the system,

The minimum size and complexity of the security kernel
required to support a particular system is limited by the

security model that the system must match. The complexity of the

patterns of access constraints to be enforced is an obvious
factor. The complexity of the abstract objects and operations in
terms of which the model is expressed is also important, for a

correct implementation of all such objects and operations becomes

DRAFT



12

a prerequisite to security, and thus such implementation becomes
part of the security kernel, If the desired security model can
be expressed only in terms of the topmost layers of objects and
operations in a system, then the security kernel would encompass
almost all the software in the system., A primary goal when
trying to produce a certifiably secure system is the isolation of
the smallest, simplest (3) security kernel that is capable of
supporting the full functionality of the system,

A characterization of the kind of mechanisms that will be
included in a security kernel can be gotten by viewing a security
model as a set of constraints on the interaction of the various
computations that occur in a computer system., The protection
mechanisms of the system prevent one computation from exerting an
unauthorized influence on the input, progress, or output of
another. Permanently stored data is one form of the input and
output of computations. This view suggests that the security
kernel should embody all system-provided mechanisms that are
common to more than one computation (domain), for a common
mechanism is required if one computation is to influence another.
A mechanism is common to two computations if it contains some set
of data items whose value one computation can influence and the
other can notice. The influence and notice may be very
direct--one writes into a data item and the other reads it--or

quite indirect=-the invocation of a procedure by one somehow

(3) Unfortunately, no objective measure of overall simplicity is
known,

DRAFT



13

.

alters the procedure's internal state so that the outcome of a
later invocation by the other is affected., Common mechanisms are
required to implement any explicit or implicit communication
among computations. Thus, mechanisms implementing information
sharing, interprocess communication, and physical resource
multiplexing must be common. If no communication is involved,
however, then a common mechanism is not required to implement a
function. It is precisely the existence of common mechanisms
that allow one user the possibility of exerting unauthorized
influence over the computations or data of another. Malicious
users must exploit flaws in common mechanisms to work their will,
To prevent such malicious activity it is the common mechanisms
that must be certified to contain no exploitable flaws, and once
certified must be protected against tampering, Thus, a security
kernel should be the least amount of common mechanism necessary
to implement the patterns of information sharing, interprocess
communication, and physical resource multiplexing that are
required in the system.

Given a security model, designing a security kernel requires
deciding what mechanisms should be in the kernel and then
organizing the structure of the kernel to make matching it with
the model as easy as possible. It is these two engineering
problems that we are addressing with respect to Multics.

At first glance, decidinﬁ which mechanism to include in the
security kernel seems straightforward. A mechanism should be in

the kernel if implementing that mechanism as an unprotected part

DRAFT



)

14

of a user's computation would allow the user to construct a
program that violated the security model. The problem with this
gsimple test, however, is defining the mechanisms to be tested.
It is very easy to combine in what appears to be a single
mechanism functions that need to be protected and those that do
not. The test places all of such a mechanism in the kernel. The
challenge is to define mechanisms that do noﬁ combine functions
needing protection with those that do not. There appears to be
no systematic approach to generating such mechanisms, The first
major task of engineering a security kernel for Multics is
carefully rethinking each mechanism in the current Multics
supervisor to untangle the functions that must be implemented in
the security kernel from those that can be implemented as an
unprotected part of each user's computation, (4)

The problem of structuring a kernel to facilitate
establishing a correspondence with a security model is not
understood very well, The difficulties start at the level of
choosing design principles with which to generate the kernel's
internal structure. It seems apparent that enforced protection
barriers can be used to good advantage within the kernel to
modularize the task of matching the kernel to the model. But

there are many ways to generate this modularity. To illustrate

(4) Note that a usual reason for including a mechanism in a
supervisor, to obtain protection from accidentﬂél breakage of the
mechanism by errors in user code, is not in itself sufficient
reason to include a mechanism in a security kernel. Non-kernel
mechanisms may be made breakproof by protecting them in other
domains that are private to each user's computation.

DRAFT



15

two possibly conflicting approaches to structuring a kernel,
imagine that the security model is expressed as a set of security
properties, each of which must be met., One technique of
modularization is to divide the kernel into domains arranged so
that each property is implied by a subset of the domains, Then,
to verify that the kernel implements the security model, an
independent verification of each property is required, but each
involves only a subset of the domains in the kernel. Another
technique is to ignore any structure suggested by the security
properties and divide the kernel into domains according to a
principle like Parnas' notion of information hiding (11], so that
each domain has a simple interface behavior specification. To
verify each of the security properties may involve all the kernel
domains, but once each domain is verified to match its interface
specification then only these specifications need be considered
to verify each security property. Which of these two approaches
is preferable, or indeed whether they really are different
approaches, remains to be seen. Thé second major task of
engineering a security kernel for Multics is finding a
satisfactory way to structure the kernel by experimenting with
different approachés and subjectively evaluating their impact on
kernel complexity. Some of the ideas being explored are
discussed later.

While a security kernel contains all the mechanisms that
must be considered to certify a system, a correct kernel does not

guarantee the integrity of all computations or stored data in a

DRAFT



16

system. Non-kernel software still can cause undesired release of
information, modification of information, or denial of use. But
if the kernel is correct, then these undesired results will not
be unauthorized. To understand the meaning of this distinction,
consider the non-kernel software as grouped in four catagories,
First, there are the system-provided programs that execute
as part of user computations. These include the library
subroutines, compilers, and applications backages available in
most systems plus all the programs usually part of a supervisor
that are not included in a security kernel, These
system~-provided programs are not common mechanisms, even though
in many systems all computations may share the same non-writeable
code that embodies their algorithms, since a private copy of the
alterable part of these programs, the variable data, is provided
for each computation. Because they are private mechanisms, no
interuser interaction can occur through them. They may contain
errors, but these errors can by triggered only by the actions of
the computation that they might damage as a result. By presuming
that the system programmers who constructed them are not
malicious and did not willfully plant "gpojan horses," it seems
justified to assume that the mistakes c;hsed by these
system=-provided programs will decrease in time as all normally
used functions are exercised, and that the security threat posed
by a potential random error causing undesired release,
modification, or denial of a user's data is acceptable for most

applications., Unlike the common mechanisms of the security

DRAFT



17

kernel, these are not susceptible to willful exploitation by
other users. In any case, a user unsatisfied with their
trustworthiness may choose not to use them, substituting his own
programs,

The second catagory is programs constructed by a user and
executed in that user's computations. Any undesired result
caused by errors in these is the user's own problem. The only
possible help would be providing tools to aid the user in
verifying the correctness of his own programs.

The third category, possible in many systems, is programs
borrowed from other users. These are a real danger to the
security of the borrower's data. Because they will execute with
all the access authority of the borrower's own programs, they can
contain "trojan horse" code maliciously constructed to cause a
results undesired by the borrower. (5) A user should only borrow
programs from another when the borrower has reason to trust the
lender. The inclusion of security kernel facilities to support
user-constructed protected subsystems provides a tool to reduce
the potential damage such a borrowed trojan horse can do, but a
user initiated certification of the borrowed program is the only
complete protection against this threat.

The fourth category is common mechanisms set up among a

(5) Note that this is a special case of a common mechanism. The
data item whose value the lender can cause to change and thereby
influence the computation of the borrower is the code of the lent
program itself, Even if the program is non-writable when lent,
it was written by the lender when constructed,

DRAFT



18

subgroup of system users by their mutual consent to implement
some function involving interuser communication or coordination.
For example, a team producing a new compiler might set up a
program development subsystem with a common mechanism to control
installation of new modules into the evolving compiler., Such a
mechanism makes the group susceptible to undesired interaction in
the same way that an uncertified supervisor does for the whole
user community. If a user agrees to become party to such a
common mechanism, then he must satisfy himself of its
trustworthiness,

In considering these four categories, it is apparent that
the essential mechanism to certify is the common mechanism of the
security kernel, for every user of the system is forced to rely
upon it. A certified kernel provides the tools with which a user
may protect his computations and data against unwanted
interference from the computations of other users. In a system
providing for direct sharing of programs and data, however, users
can agree to cooperate in ways that the security kernel cannot
control, The security kernel prevents unauthorized activities as
defined by the security model for a system. Not all undesired

results, however, are the result of unauthorized activities. (6)

(6) A fifth catagory of non-kernel software also needs to be
considered., One important technique for simplifying the
structure of the security kernel is writing it with a high-level
programming language. Using a high-level language to generate
the kernel seems to require that the compiler be certified, as
well as the kernel, a troubling thought since the compiler may
well be larger than the kernel. 1In the case of the compiler for
the kernel, however, certification may be less of a problem than
for the kernel. The kernel needs to work correctly for all

DRAFT



19

The Multics Kernel

This section describes some concrete examples of ﬁhe
specific strategies being employed to carry out the general
research plan outlined in the previous sections., The intention
is to communicate more precisely the spirit of the work rather
than to provide a thorough discussion of the structure or
insights resulting from the various activities. The specific
results of the individual activities are being communicated when
appropriate in other reports. The activities underway or planned
can be broken into four interrelated categories: review,
removal, simplification, and partitioning. Each will be
discussed in turn.

The review category covers efforts to understand better the
specific problems of the current Multics supervisor. In addition
to trying to understand the reasons for the size and complexity
~of the current supervisor, an effort is being made to identify
and correct existing security flaws. A list of all known Multics
security flaws is maintained. Each flaw reported is analyzed to
determine how it happened, how it can be fixed, and how similar
flaws can be avoided in the security kernel being developed. So
far, all of the flaws uncovered by the review activities are

isolated and easily repaired. No major design flaws have been

possible inputs; the compiler need compile correctly only the
specific programs of the kernel--not all possible programs.

Thus, the compiler's effect on the kernel can be certified by
comparing the source code "model"™ for each kernel module with the
compiler-produced object code "implementation", a task much
simpler than certifying the compiler correct for all possible
source programs,

DRAFT



20

found.

The éecond category of activity is removing from the
supervisor and placing in the user domains of a process those
mechanisms not implementing functions of information sharing,
interprocess communication, or physical resource management,
i.e., those functions not required to be implemented as common
mechanisms. In many cases removal involves undoing a pattern
caused by a performance characteristic of the Multics
implementation for the Honeywell 645 computers, For that older
machine the multiple protection domains of a process, the so
called protection rings, were simulated in software and
cross~ring calls were quite expensive. Thus, a call that went
from a user ring in a process to the supervisor ring cost much
more than a call which did not change protection environments,
The result was an effective pressure to include many functions in
the supervisor that did not need to be implemented as part of a
common mechanism., The reason for this pressure can be seen by
considering two procedure modules, A and B, in the supervisor.
Imagine that a single invocation of A (by a user procedure) can
result in a flurry of calls from A to B., If calls that change
the ring of execution of a process are more expensive than calls
that do not, then there is a clear performance cost in placing
the supervisor boundary between A and B, even if only B need be

part of the protected, common supervisor.

The new hardware base for Multics, the Honeywell 6180,

implements the protection rings in hardware. One result is that

DRAFT



21

calls from one ring to another now cost no more than calls inside
a ring. Thus, the performance penalty associated with supervisor
calls has been removed, and many modules included in the
supervisor for performance reasons rather than protection reasons
now can be removed, (7)

The actual removal activities are much more complex than
suggested by the example of the previous paragraph. In most
cases the common and private parts of a facility are not so
neatly packaged in separate procedures, but are intricately
intertwined in the same supervisor procedures and data bases.,
Insight and ingenuity are required to separate the private and
common parts of a mechanism, leaving a reasonable interface. The
key problem is finding the proper decomposition of the supervisor
into protected and not protected primitive functions.

Most initial removal activities have been centered on the
file system. In a project now completed the functions of dynamic
intersegment linking and directing the search of the file system
to satisfy a symbolic reference have been removed from the
supervisor [12,13]. This project is notable for two reasons.
First, it removed an especially vulnerable and complex mechanism
from the supervisor. The vulnerability is a result of the linker

having to accept user-constructed code segments as input data:;

(7) There may still exist other performance penalties associated
with removing functions from the supervisor that will inhibit
production of the smallest possible kernel. One goal of the
research is to understand better the performance cost of
security.

DRAFT



22

the chances of such a complex "argument", if maliciously
malstructured, causing the linker to malfunction while executing
in the supervisor were demonstrated to be very high by numerous
accidents. The complexity is apparent in that the linker's
removal eliminated 10% of the gate entry points into the
supervisor., The second interesting result of the linker's
removal was ' the demonstration that linking procedures together
across protection boundaries, i.e., rings, could be done without
resort to a mechanism common to both protection regions.

A second completed project relating to the file system is
the removal from the supervisor of the facilities for managing
the association bétween reference names and the segments in the
address space of a process ([14]., Removal of this naming
mechanism from the supervisor required that a data base central
to the management of the address space, the known segment table,
be split into a private and a common part, and that the
supervisor learn to lie convincingly on occasion about the
existence of certain file system directories. The result of the
removal is a reduction by a factor of ten in the size of the
protected code needed to manage the address space of a process,
Another result is a new, simpler interface to the file system
portion of the supervisor. Instead of identifying a directory by
character string tree name locating it in the file system
hierarchy, a segment number is used. The algorithms for
following a tree name through the file system hierarchy to locate

the named element are thus removed from the supervisor to be

DRAFT



23

implemented by procedures executing in the user ring. (The
actual file system hierarchy remains protected inside the
supervisor.) The linker and reference name removal projects
together reduce the number of user-available supervisor entries
by approximately one third,

A removal project under investigation is changing most of
system initialization from executing inside the supervisor each
time the system is started to executing once in a user
environment of a previous system, The idea is to produce on a
system tape a bit pattern which, when loaded into memory,
manifests a fully initialized system, rather than letting the
system bootstrap itself in a complex way each time it is loaded
from a tape containing the separate pieces. One pattern of
operation may be much simpler to certify than the other.

A final example of a removal project is the exploration of a
recently-realized equivalence between the mechanics of entering a
protected subsystem and the mechanics of creating a new process
in response to a user's log in. The goal is to make a single
mechanism do both tasks, with the result that the large
collection of privileged, protected code used to authenticate and
log in users would become non-privileged code,

The third category of activity is simplifying those
mechanisms that must remain in the kernel. Such activities can
reduce both the size and the complexity of the kernel.
Simplification activities cover a broad range, In some cases a

piece of the kernel can simply be eliminated because its function

DRAFT



. 24
!

can be duplicated by another kernel mechanism. For example, the
possibility of replacing all mechanisms for performing external
I/0 (to terminals, tape drives, card readers, card punches, and
printers) with the ARPA Network attachment is being explored.
This would remove from the kernel a large bulk of special
mechanisms for managing the various I/0 devices, leaving behind a
single mechanism for managing the network attachment, Using
network technology to provide the only path for external I/O to
Multics appears feasible, Internal I/0 functions (for managing

the virtual memory, performing backup, and loading the system)
\\ OS\ o { Vi {Lpp -%,,\’\L A{ f . ic d

would still be managed in the kernel. e

Another example of simplification involves a less obvious
duplication of mechanisms. A new buffering strategy for input
from the network has been devised which, by utilizing the virtual
memory, provides a core resident buffer which appears to be of
infinite length., The infinite buffer scheme is much simpler than
the o0ld circular buffer which had to be used over and over again,
with attendant problems of old messages not being removed before
a complete circuit of the buffer was made. The o0ld buffer scheme
was really providing a special purpose storage management
facility, and the simplification was to use the standard storage
management facility of the system--the virtual memory--for this
function.

Several specific simplification projects involve the
implementation and use of processes, One project, now nearing

the end of the design phase, is a reimplementation of processes ~

DRAFT



25

using two layers of mechanism. (8) This new design simplifies
the interaction of the process implementation with the virtual
memory management machanisms, and simplifies the base-level
interprocess communication mechanisms of the system. The first
level multiplexes the processors into a larger fixed number of
virtual processors. Because the number of virtual processes is
fixed, this first layer need not depend on the facilities for
managing the virtual memory. Several of the virtual processors
are permanently assigned. to implement processes for the dedicated
use of other kernel mechanisms, including the virtual memory
management mechanism, while the remaining virtual processors are
multiplexed by the second layer of the process implementation
into any desired number of full Multics processes that execute in
the virtual memory. The proposed new base-level interprocess
communication facility has the property that its use can be
controlled with the standard memory protection mechanisms of the
kernel.

The implementation of certain kernel mechanisms as
asynchronous parallel processes, as implied above, represents a
simplification of the present system design which forces many
supervisor mechanisms into sequential algorithms, The virtual
memory mechanisms for moving pages among the three levels of the
memory hierarchy is a good example, Whenever a missing page

fault occurs in a process, the fault handler attempts to initiate

(8) This idea is being explored by others as well [4,15].

DRAFT



26

the transfer of the desired page from bulk store or disk to
primary memory. This can only be done if a free primary memory
block is available, If not then the fault handler first must
move a page from primary memory to the bulk store to make room,
This, in turn, is possible only if a free block of bulk store is
available. If not, a page must be moved from the bulk store, via
primary memory, to a disk by the fault handler. With the current
system design, this complex series of steps occurs sequentially
with page control executing in the process which took the page
fault and then in various other user processes that happen to
receive the subsequent I/0 interrupts. The new Ebheme involving
multiple dedicated processes is much simpler. One process runs
in a loop making sure that some small number of free primary
memory blocks always exist., Whenever the number of free primary
memory blocks drops below that number, this process is awakened
to transfer pages to bulk store. Another keeps space free on the
bulk store by moving pages to disk when required. The primary
memory freeing process is activated by wakeups from processes
that have taken a page fault and discovered a lack of free
primary memory blocks. The bulk store freeing process is driven
in a similar manner by the primary memory freeing process., The
path taken by a user process on a page fault is greatly
simplified. This process can just wait until a primary memory
block is free and then initiate the transfer of the desired page
into primary memory. The overall structure looks as though it

will be much simpler than that currently employed.

DRAFT



27

Another application of parallelism in the kernel being
considered is handling interrupts. Each interrupt handler will
be assigned its own process in which to execute, rather than
being forced to inhabit whatever user process was running when
the interrupt occurred. As a'result, the system interrupt
interceptor will simply turn each interrupt into a wakeup of the
corresponding process. By virtue of being full-fledged
processes, the interrupt handlers can use the'normal system |
interprocess communication mechanisms to coordinate their

activities with one another and the user process, greatly

. simplifying their structure.

\“ /dﬁ
AVEAY
W
B * l‘”i' - -
. y
\.;{ ‘u » j !
IR AR
|
g:\,f({ : }
: !
—~
/\

The various simplification activities will eventually extend
to all parts of the kernel, and to the overall structure of the
kernel,

The final category of activity is partitioning the kernel
into differently protected pieces to modularize the job of
certification. While the specific projects in this category are
less well developed than those for other categories, two
techniques for partitioning seem worth exploring, The first is
dividing the part of the kernel that is part of each process into
multiple layers in different rings of protection. For example,
the bottom layer might implement a file system in which all
segments were named by system generated unique identifiers, The
next layer would implement a naming hierarchy on top of the

primitive first layer file system. Another suggestion is that

mechanisms to provide absolute compartmentalization of users and

DRAFT



28

stored information be implemented at the bottom layer (according
to the Mitre model mentioned earlier), and mechanisms to allow |
controlled sharing within the compartments be implemented at the
next layer. This last suggestion is particularly intrigﬁing,
because if correctly done the notion of minimizing common
mechanisms would be well supported. The second layer mechanisms
would be common only within each compartment,

The second partitioning technique under investigation is
using the protection rings in the kernel processes that implement
resource management algorithms to separate the policy component
from the mechanism component. (9) For example, the process
described earlier that removed pages from primary memory could be
arranged with multiple rings. Programs in the most privileged
ring would implement the mechanics of page removal, providing
gate entry points for requesting the movement of a particular
page from primary memory to a particular free block on the bulk
store, and for obtaining usage information about pages in primary
memory. The policy algorithm that decides which page to remove
when another free primary memory block needs to be generated
would execute in a less privileged ring, calling the gate entry
points to collect the necessary usage statistics and to do the
actual moving, once a decision was made. The policy algorithm,
however, could never read or write the contents of pages, learn

the segment to which each page belonged, or cause one page to

(9) Separation of policy from mechanism is a structural principal
that has been explored by many others [16,17,18].

DRAFT



29

overwrite anothér, for such operations would not be available in
its ring of execution. The result is that the policy algorithm
could never cause unauthorized use or modification of the
information stored in the pages. It could only cause denial of
use, Under the circumstance that denial of use was deemed less
serious than the other security violations, the policy algorithm
need not be as carefully certified as the rest of the kernel. It
appears that the idea of separating policy from mechanisms
applies to all resource management algorithms,

The above sample of activities is characteristic of the

initial thrust of this research effort.

Conclusion

This paper has presented the plan for a research project
aimed at reducing the unnecessary complexity exhibited by
available general-purpose systems, and has described a sample of
the specific strategies being employed. Reduced complexity is a
key component of developing systems whose security properties can
be certified,.no matter what means are used to match the system
implementation to a model of its security properties., In
addition, understanding simplier structures with which to

implement the features desired in general-purpose systems will
contribute to the development of the methodical system

construction techniques that lead to the ultimate solution of the

computer security problem.

DRAFT



30

Acknowledgements

To be supplied.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

J. H. Saltzer and M. D, Schroeder, "The Protection of
Information in Computer Systems," IEEE Proc., to appear,
Sept. 1975.

R. R, Linde, "Operating System Penetration," AFIPS Conf,
pProc. 44, pp. 361-368, NCC 1975.

J. H. Saltzer, "Ongoing Research and Development on
Information Protection," ACM Operating Sys. Review 8, 3, pp.
8=-24, July 1974.

L. Robinson, et. al., "On Attaining Reliable Software for a
Secure Operating System," Int. Conf. on Reliable Software,
pp. 267-284, Apr. 1975,

G. J. Popek and C., S. Kline, "A Verifiable Protection
System' " Into Conf. Q_Il Reliable SOftware [ pp. 294-304 ’ Apr.
1975. -

F., J. Corbatd, J. H, Saltzer, and C, T. Clingen, "Multics -
the First Seven Years," AFIPS Conf. Proc. 40, pp. 571-583,
SJCC 1972,

A, Bensoussan, C. T. Clingen, and R. C. Daley, "The Multics
Virtual Memory: Concepts and Design," CACM 15, 5, pp.
308-318, May 1972.

J. H. Saltzer, "Protection and the Control of Sharing in
Multics," CACM 17, 7, pp. 388-402, July 1974.

M. D. Schroeder and J. H. Saltzer, "A Hardware Architecture
for Implementing Protection Rings," CACM 15, 3, pp. 157-170,
Mar, 1972,

F. J. Corbaté, "PL/I as a Tool for System Programming,"
Datamation 15, 6, pp. 68-=76, May 1969.

D. L. Parnas, "On the Criteria to be Used in Decomposing
Systems Into Modules," CACM 15, 12, pp. 1053-1058, Dec.
1972,

P. A. Janson, "Removing the Dynamic Linker from the Security
Kernel of a Computer Utility," M.I.T. Project MAC Technical
Report MAC-TR~132, June 1974, v/

DRAFT



[13]

(14)

[15]

[16]

(17}

(18]

31

P. A, Janson, "Dynamic Linking and Environment
Initialization in a Multi-Domain Computation,” submitted to
ACM 5th Symp. on Operating Sys. Principles, Nov. 1975,

R. G, Bratt, "Minimal Protected Naming Facilities for a
Computer Utility," M.I.T. Project MAC Technical Report, to
appear, 1975,

A. R. Saxena and T. H, Bredt, "A Structured Specification of
a Hierarchical Operating System," Int. Conf, on Reliable
Software, pp. 310-318, Apr, 1975,

M, J. Spier, T. N. Hastings, and D. N. Cutler, "An
Experimental Implementation of the Kernel/Domain

Architecture," ACM Operatin Sys. Review 7, 4, pp. 8-21, ACM
4th Symp., on Operating Sys. Principles, Oct. 1973,

G. R. Andrews, "COPS - A Protection Mechanism for Computer

‘Systems," Computer Sci. Teaching Lab., Univ, of Wash,,

Technical Report 74-07-12, July 1974,

W, Wulf, et. al., "HYDRA: The Kernel of a Multiprocessor
Operating System," CACM 17, 6, pp. 337-345, June 1974,

DRAFT





