Project MAC June 17, 1975

Computer Systems Research bivision Request for Comments No. 82

some Comments on the Procedure Call Protocol

by Raj Kanodia

The enclosed paper was distributed at the National Software Works
(NSW) Working Group meeting held at Stanford Research Institute
during July 11-13, 1975. The Procedure Call Protocol (PCP) is
being developed at SRI to be used for constructing NSW., The PCP
is an interprocess protocol that permits a collection of
processes within one or more ARPANET hosts to communicate with
each other via procedure calls. 1Its intent is to make it easy to
use remote procedures., It is likely that PCP will be redesigned
in the near future. If you would like to provide some input for
the redesign effort by way of suggestions, comments, or
constructive criticism, please cormmunicate it to me.

This note is an informal working paper of the Project MAC
Computer Systems Research Division. It should not be reproduced
without the author's permission, and it should not be referenced
in other publications.

Some _Comments on the Procedure Call Protocol

by Raj Kanodia, Project MAC, M.I.T.

"There are philosophers to whom a single departure from
the norms of common sense acts only as a stimulus to
further more exciting philosophical adventure in the
realm of speculation, but, I confess that, for my part,
I regard such a departure rather as a danger signal,
warning that it would be wise to consider whether the
steps which have led to this departure are as secure as
they appear to be.”
- Winston H. F. Barns

The purpose of this note is to provide further material for the
discussion on the Procedure Call Protocol (PCP) started by Rick
Schantz in the NWG/RFC #684 [Schantz]. Let us say this at the
outset that because PCP has sufferred for not having received
sufficient exposure in the early design stage (uniike other
network protocols which were designed by network wide
committees), this note, in attempting to correct that deficiency,
might seem overly critical to some readers. However, our purpose
in producing this note is merely to raise questions regarding PCP
that we feel should be given proper consideration now. It is
likely that an initial version of PCP will not (and can not be
expected to) resolve all the issues that one might raise; however
we fear that unless some of the problems were given proper
consideration now, it may become impossible to provide solutions
for them at a later stage. To the extent that some of the
questions raised in this note may be due to some misunderstanding
of PCP on our part, we hope that this note will start a dialogue
among the concerned parties which will correct such
misunderstandings.

Procedure Calling

"The existence of procedures goes quite Far toward
capturing the meaning of abstraction.”
- Liskov and Zilles

Rick Schantz [Schantz] has argued that “"procedure call protocol
should not be the basis for multi-machine interactions"”, rather
"a request and reply protocol along with suitably manipulated
communication paths between processes forms a model better suited
to the situation in which the network places us.® We believe the
issue 1s not one protocol versus another, we need protocols of
both kinds. At present PCP and its related protocols lack
suitable inter-process communication {ipc) and synchronization

PAGE 2 SOME COMMENTS ON PCP JUNE 10, 1975

primitives that could facilitate multi-machine interactions;
however, such primitives can only complement the PCP rather than

replace it. Later on in this note we shall say more about the.

need for ipc and synchronization primitives. In this section we
shall attempt to demonstrate that under certain circumstances,
remote procedure calling is an appropriate and even desirable
method of utilizing resources in remote computer systems.

PCP incorporates notions of processes, interconnections among
processes, procedures and procedure calls. The concepts of a
process and interconnection among processes have existed for
guite some time now and are embodied in earlier network protocols
(TELNET, File Transfer, Host-Host). Procedures and procedure
calling are fundamental to computing and are used in practically
every computer. The most radical departure of PCP from the
concepts that we are already familiar with, comes 1in the
definition of inter-process procedure calls (or remote procedure
calling) by which a process can invoke a procedure in a different
process possibly in a different machine. The real issue,
therefore, 1is whether remote procedure calling is an appropriate
method of building distributed computation systems.

Let us first consider remote procedure calling with the following
restrictions:

1 - A1l input arguments to the remote procedure and all
input arguments from the remote procedure are values.

2 - The remote procedure has no side effects. In other
words, the remote procedure neither alters an existing
environment nor leaves behind a new environment after
its return.

3 - The remote procedure does not depend upon any
environment that is not an integral part of itself.

Notice that these restrictions do not preclude creation of a
temporary environment which may be used during the activation of
the procedure and which is destroyed at the time of return from
the procedure. Most mathematical functions can be computed by
remote procedures which execute under these restrictions. A
procedure with these properties 1is, 1in essence, a data flow
procedure [Dennis] and remote procedure calling is an appropriate
method of invoking such a computation. The remote process is
being treated as raw computing computing power and any number of
procedures of this type can execute simultaneously (even in a
single process) since they can not interact with each other. For
such a computation, we might even choose to ignore the matter of
recovery from network and host system failures since the
computation is restartable.

When we attempt to relax some of the restrictions on the remote
procedure calls, we run into difficulties. For example, if we

()

JUNE 10, 1975 SOME COMMENTS ON PCP PAGE 3

allow the arguments to remote procedures to be names of shared
files then remote procedures might need to 1lock the files.
Whenever there are locks, there is the possibility of dead-locks.
Who is responsible for ensuring that dead locks do not occur?
The callee or the caller? However, problems of this nature are
not peculiar to remote procedure calling; they exist in all
computation, 1local or remote. It really is a matter of good
system design versus poor. If a procedure implements an easily
understood and properly defined abstraction, then remote use of
the procedure will cause very little difficulty.

There are certain computations for which the remote procedure
call model 1is not appropriate. Most interactive computations
fall into this category. Let us consider the example of a text
editor. In most systems a text editor can be invoked either by a
procedure call or as a command. From then on editor accepts a
series of requests over a communication path (which might have
been specified as a parameter to the editor command or procedure)
and performs requested operations after ensuring that certain
requirements have been met. (For example, one may quit out of an
editor only after having saved a copy of the updated file.) It
would be quite unsuitable to express each editor request in terms
of one or more remote procedure calls. In such computations,
there are at least two reasons why the request model 1is to be
preferred over the remote procedure call model. First of these
is that some information regarding the state of the computation
is directly expressed in the execution state of the process in
the request model. For example, in the request model one can not
force the editor to perform two simultaneous "substitute”
operations; it is implicit that the editor performs only one
operation at a time. Whereas, in the remote procedure call
model, information of this nature must be expressed in an
environment as bit patterns and each procedure call must
explicitly examine the environment to ensure that necessary
constraints on the sequence of operations etc. are being met. In
the remote procedure call model, one would need some sort of lock
to ensure that only one "substitute" operation is performed at
any given time on some file. Secondly, in the remote procedure
call model, one must devise some method of specifying the
environment that is passed from one procedure to another. In the
case of an editor, this environment 1is 1ikely to be host
specific, however, a remote host must specify this environment in
each call to perform some operation on the file.

Inter-process Communication and Synchronization

Processes executing in parallel require some kind of
inter-process communication mechanism or synchronization
primitives to coordinate their activities, for example Multics
event channels [Spier], P and V operations on semaphores
[Dijkstra], and block and wakeup primitives [Saltzer].. However,

PAGE 4 SOME COMMENTS ON PCP JUNE 10, 1975

PCP and its related protocols do not provide suitable primitives
that will enable parallel processes to coordinate their
activities. We illustrate the need for synchronization
primitives by an example from the Process Management Package
(PMP) which uses PCP to implement some of its functions. The PMP
procedure CRTPHYCHN (Create Physical Channel) creates a PCP
communication channel between two remote processes. CRTPHYCHN
begins execution by allocating physical ports in the remote
processes and then it initiates execution of the CRTPHYCHNEND in
one remote process with a "passive" argument value (which implies
that the remote process should Tisten for a
request-for-connection (RFC)) and then it initiates execution of
CRTPHYCHNEND in the other remote process with an "active®
argument value (which implies that this remote process should
transmit a RFC) [See PMP Version 2, page 12]. The sequence of
actions is illustrated in figure 1 with process P0 executing
CRTPHYCHN to establish a PCP channel between processes Pl and P2.
Pl is the passive process and P2 is the active process. As shown
in figure 1, processes Pl and P2 require synchronization at
points A and B. Essentially, process P2 must not initiate
transmission of RFCs until process Pl has initiated the action of
listening for the RFCs from P2. The present implementation of
PMP ignores this issue completely.

Presumably one could provide the required synchronization by
splitting the CRTPHYCHNEND 1in process Pl into two procedures,
CRTPHYCHNEND-partl and CRTPHYCHNEND-part2 such that partl returns
to the caller after initiating the action of 1listening for the
RFCs and part2 completes the connection when the RFCs arrive.
Now, process PG will execute partl in P1 and only upon return
from partl in P1 will it initiate execution of CRTPHYCHNEND in P2
{see figure 2).

The method, Just outlined, will accomplish the required
synchronization. However, it is fairly clumsy and it does not
properly represent the sequence of computation in various
processes in a clear fashion, particularly in process Pl.
Essentially, what would otherwise be a sequential computation,
has been artificially split into two parts. Part2 executes in an
environment which has been left over from partl. Furthermore, it
is now the responsibility of process P0 to ensure that part2 1is
executed only after partl has been executed succesfully.

The above example illustrates a case requiring very simple
synchronization. With the development of new programs for NSW,
undoubtedly there will arise more complex situations requiring
multiple synchronization points. Without proper interprocess
communication and synchronization facilities, it may become
practically impossible to handle these situations in an orderly
fashion.

JUNE 10, 1975 SOME COMMENTS ON PCP PACE 5

Multiple processors in a PCP process

"A process is a locus of control within an instruction
sequence.”

- Dennis and VanHorn

"A processor is an entity which performs transformation
of information. A process 1is an entity which can
control and define a virtual processor.”

- R. W. Watson

As present]y defined, a PCP process can have multiple processors
in it. The concept of a process was invented to permit
multiplexing of a resource (the CPU) among several users. Since
management of this multiplexing was the function of the operating
system, a user was freed from the problems of managing this
multiplexing. Therefore, it seems that introducing multiple
processors in a single process will require a PCP process to
duplicate the function that is already being performed by the
operating system, namely, multiplexing of CPU resource allocated
to the process among several processors. If the object of
muitiple processors is to enable simultaneous execution of two or
more procedures in the sense that each procedure is guaranteed to
get some finite percentage of CPU time allocated to the process
then it should be pointed out that most systems will have to
implement a PCP processor in terms of a full fledged process.
"While this impiementation is not going to be any more efficient
than creating a completely separate process in the first place,
it has the disadvantage that all communication to the process
pretending to be a PCP processor must be via the parent process.
However, if the intent of having multiple processors is to permit
apparently simultaneous execution of several coroutines? then a
better method of achieving this goal would be to provide
primitives for coroutine calls and their synchronization as 1is
done in SIMULA [Dah1].

However, all such arguments aside, there are many practical
problems associated with the concept of multiple processors. A
point by point discussion of these problems follows.

! This issue was raised by Rick Shantz and Bob Thomas in their
critique of PCP and NSW (March 4, 1975).

2 If there are several coroutines in a process then at most one
of them can be executing at any given time; other coroutines
would be in a suspended state waiting for some event to happen
which may cause or coincide with suspension of the executing
coroutine and resumption of one of the suspended coroutines.

PAGE 6 SOME COMMENTS ON PCP JUNE 10, 1975

1 - Even though PCP permits a PCP process to deny
allocation of more than one processor, the notion that
multiple processors will be available has creeped into
the design of PCP in a rather subtle way. The only
suitable model for handling INS interrupts associated
with PCP messages is to have a processor whose sole
purpose is to listen to all the incoming channels and
process the - requests immediately upon arrival. This
requires that there be at least one other processor for
executing the user procedures. We shall discuss this
issue at length in another section of this paper.

2 - It is likely that many computation systems built upon
PCP will assume availability of more than one processor
and will fail to work with hosts that do not provide
multiple processors in a single process. In some sense
this has already happened in the Process Management
Package (PMP). Consider the following scenario. A
process A is connected to processes B and C such that B
and C are not connected to each other. Llet C be a
single processor process, executing some procedure on
behalf of another process D. Now, if A invokes the PMP
primitive ITDPRC (introduce-processes) to introduce B
and C, the ITDPRC will attempt to call PMP primitives
in processes B and C via PCP. But C will not be able
to execute any PMP primitives on behalf of A because
its single processor is already busy. As a result the
ITDPRC in process A will fail.

The problem here 1is that even though succesful
execution of ITDPRC requires availability of a
processor in each of the processes being introduced,
this requirement 1is not stated anywhere in the
definition of TITDPRC. It is our contention that
problems of this kind are not going to disappear even
if the definition of ITDPRC (and other such PMP
primitives) were to be changed to completely specify
all the requirements for their succesful execution. In
the first place, such specification will be hopelessly
complicated and rather than facilitate use of PMP, it
will only hinder it. Secondly, if we are ourselves lax
in defining a basic protocol primitive, we can hardly
expect that the environmental requirements of
facilities built upon this protocol will be adequately
described.

3 - In most systems, procedures execute in an environment
associated with the process. Introducing the notion of
multiple processors in one process immediately raises
the question: "Is there a distinct environment with
each processor?" For example, the internal static
variables of a PL/1 procedure (own variables in ALGOL
60) 1in Multics are initialized when the procedure is

JUNE 1o, 1975 SOME COMMENTS ON pPCP PAGE 7

executed for the first time in the process. The
question is: "Will a procedure executing on two
different processors in the same PCP process have two
different sets of internal static variables?"

Regardless of how the questions raised above are
answered, each answer raises further guestions. If we
assume that there 1is only one environment associated
with a multiple processor process, then each procedure
must be prepared for simultaneous invocation in a
single process, and it must synchronize use of all its
internal data bases. If the answer 1s that each
processor has its own environment then the processors
must be dedicated for certain tasks and may not be
interchangeable from one task to another as the PCP
seems to imply. (See PCP Version 2, page 18).

4 - Management of processors: the above discussion
essentially leads to the 1issue of management of
processors. A process is after all a virtual resource
created by multiplexing basic resources (i.e. the cpu,
memory, etc.) which are managed by the operating
system. Multiplexing this virtual resource (the
process) further requires another level of management.
It needs to be clearly spelled out exactly how the
processors are managed; whether locally or by the
remote processes.

It seems to us that in the definition of processors, many
unstated assumptions have been made which are characterstics of a
particular host system, namely TENEX. From the published
documentation regarding PCP, it is not clear to us what the
motivation is for introducing the notion of multiple processors
in the PCP process. If the concept of multiple processors is
retained, then we suggest that this problem be viewed in more
abstract terms rather than in terms of a particular system. This
will help in clearly identifying the relevant issues and prevent
unstated, undocumented assumptions from creeping into the -PCP
which could, otherwise, become potential pit falls.

Even though we might implement muitiple processors in a Multics
PCP process, we prefer that a PCP process be defined to have only
one processor and simuitaneity be achieved by creating multiple
processes. This will help keep PCP small and manageable, and
will avoid duplication of functionality which is already provided
by the operating systems.

PAGE 8 SOME COMMENTS ON PCP JUNE 10, 1975

Interrupts with PCP Messages

"The one capability of commonly described operating
system psuvedo-processors which is not included in our
psuedo-processor is the "interrupt,” or ‘"courtesy
call,” a jump to a special subroutine in response to an
arbitrarily timed (asynchronous) signal, for example,
from an input/output channel.”)

~-J. H. Saltzer

A PCP process can send two types of messages to another PCP
"~ process known to it, the so called IPC messages (CRTPRC, DELPRC,
etc.) and PCP messages (CALPRO, ABRPRO, INTPRO, etc.) The IPC
messages may be sent only to direct inferiors and may be viewed
as exercising the ultimate authority over a process. For
example, a request to terminate a process (DELPRC) will be acted
upon regardless of whether the inferior process is busy or not.
On the other hand PCP messages are merely requests to a process
to take some action on behalf of the sender process. The PCP
message CALPRO requests the receiving process to execute a local
procedure if a processor is available. The way PCP is defined
now, arrival of each PCP message is accompanied with an INS
interrupt, the receiving process is expected to process a PCP
request immediately upon its arrival, regardless of whether all
its processors are busy or not, and if it can not honor the
request, it must send a reply to this effect.

This behavior of PCP can not be suitably modeled unless every PCP
process has at least two processors; one dedicated to the task
of processing PCP messages and another for executing procedures
requested by remote processes. It seems to us that this peculiar
behavior accompanying PCP messages 1s not likely to serve any
useful purpose. If an inferior process is executing a procedure
on behalf of its superior then, presumably, the superior is aware
of this fact and will not make any more requests until the
previous one has been completed. If the inferior process 1is
being simultaneously used by a third party process, then either
the third party process should coordinate its activity with the
superior or it should be 1left to the inferior process to
determine the manner in which the requests from multiple
processes are to be honored. Our point is that in a properly:
programmed system a process will not make a request upon a remote
process and expect it to be acted upon immediately unless it has
made some previous arrangement for resources. Suppose the
inferior denies a request from the third party process, now what
does the third party process do? Does it keep poking the
inferior in the hope that some day its request will be honored?
Or .does it abort computation and return an error condition?
Rather than keep poking, the process shouid make a request that
will be honored when the resources become available. In the
later situation (abort computation and return error) the system

JUNE 19, 1975 SOME COMMENTS ON PCP PAGE 9

is not well programmed and there should be better management of
processors. In any case, interrupts associated with PCP messages
can be eliminated. The requests will be automatically queued in
the channel and PCP will act upon them according to availability
of processors. This will also eliminate the need to have a
processor solely dedicated to processing of PCP messages. - The
two exceptions to this rule are INTPRO and ABRPRO messages which
will still cause interrupts. However, their arrival implies that
execution of some procedure be interrupted which frees a
processor which can be switched to processing of these messages.

The issue of interrupts with PCP messages strongly interacts with
the multiplicity of paths from which a process can receive
requests. If all remote processes coordinate the use of
‘resources in a given process then requests coming from multiple
paths present no problem. However, uncoordinated use of a
process should be permitted only if this process implements a
- service which is uniformly available to many other processes.
This service can be accurately modeled as one process listening
to requests on many connections. This process may either perform
the request itself or delegate it to some other process under its
control. The point is that details of the implementation of the
service are imbedded in the procedures that define the service.
Users of the service need not worry about management of resources
within the service.

Reliability issues

"If a piece of software meets its specification, it 1is
correct - if it does not, it 1s incorrect.
Reliability, in contrast, is a statistical measure
relating a system to the pattern of demands we make
upon it. We consider a system to be highly reliable,
if it highly probable that, when we demand a service
from the system, it will perform to our satisfaction.”
- D.L. Parnas

A distributed computation system utilizes resources that are
autonomously and independently controlled and that often have
reliability and availability problems. When the number of
components involved becomes large, the reliability problem for
the system as a whole becomes severe. It is, therefore, fair to
assume that a distributed computation system should not only be
cognizant of the fact that individual components may break down
but it should also specify recovery measures in case of failure
of one or more components rather than abort the entire
computation. Our point is this: a protocol designed to
facilitate construction of computation spanning machine
boundaries and utilizing a network as the basic means of
communication, must take into account the fact that at times ARPA

PAGE 10 SOME COMMENTS ON PCP JUNE 10, 1975

Network connections do break down and that the host systems do
crash. This protocol should provide for the following:

1 - Means of specifying action to be taken in case of
failure. For example, when a process creates an
inferior process, it should be able to specify exactly
what will happen to the inferior process if the
communication path between them breaks down or the host
upon which the parent process is located, breaks down.
In fact, for the sake of consistency, specification of
such action should be mandatory and be an integral part
of creating a new process. If it were not so, then
each host will apply its own recovery mechanisms (which
are likely to be different from host to host) and there
would be chaos.

2 - Mechanisms to facilitate recovery from a failure. This
point can be best illustrated with the classic example
of a user logged into a system from a terminal. If
some how, the terminal hangs up, the system could
either destroy the user process or simply stop it for a
brief period of time during which the user has the
option of "redialing" to his suspended process and thus
re-establishing the connection. This "dial-up"
mechanism facilitates recovery from a failure. The
ATTACH primitive of the Process Management Package
(PMP) can provide recovery under some circumstances,
but this whole issue needs to be carefully thought out.

Logical Channels in PCP

When a process 1introduces two other processes via the ITDPRC
primitive of the PMP, PMP creates a logical channel between the
two processes. This logical channel uses the physical channels
between the introducing process and the ones being introduced.
The ITDPRC also permits its caller to specify creation of a
physical channel (in addition to the logical channel) between the
processes being introduced. Furthermore, a logical channel is
not used if there exists an associated physical channel.
Therefore, logical channels are unnecessary. Communication via
physical channels is quicker and more efficient than via logical
channels. The kind of complexity that this mechanism introduces
into PCP can be best illustrated by considering a logical channel
between a TENEX (called TENEX-A) and non-TENEX system going
through another TENEX system (called TENEX-B). Now a message
sent from non-TENEX system to TENEX-A will be sent to TENEX-B in
8-bit ASCII. Upon receipt of this message, the 1intermediate
host, TENEX-B will have to translate the message into 36 bit
format to transmit it to the destination, the TENEX-A. If the
logical channels are cascaded, it is possible that message will
have to be converted and reconverted from one format into another

JUNE 10, 1975 SOME COMMENTS ON PCP , PACE. 11

in several intermediate hosts. A transmission via a Tlogical

channel requires at Tteast two network transmissions instead of
the one required for physical channels.

We suggest that the ITDPRC primitive always create a physical
channel and that logical channels be completely eliminated.

Acknowledgements

Many of the ideas contained in this note resulted from several
hours of discussion with Doug Wells. The need for 1interprocess
communication and network reliability considerations has already
been emphasized by Richard Schantz {[Schantz]. Dave Clark and
Doug Wells carefully read a draft of this commentary and provided
helpful comments. The author gratefully acknowledges the help of
Jon Postel and Jim White who have promptly responded to all my
queries regarding PCP and explained its intricacies.

PAGE 12 SOME COMMENTS ON PCP JUNE 10, 1975
References

Dahl, 0.J. and Hoare, C.A.R. Hierarchical Program Structures
3rd monograph in Structured Programming
Academic Press, London and New York, 1972

Dennis, J.B. First version of a data flow procedure language
MAC Technical Memorandum 61, Project MAC, M.I.T.,
Cambridge, Massacusetts, May 1975

Dennis, J.B. and Van Horn, E.C.
Programming Symantics for Multiprogrammed Computations
Communications of ACM, volume 9, number 3, March 1966,
pp 143-155

Dijkstra, E.W. The structure of THE multiprogramming system
Communications of ACM, volume 11, number 5,
pp 341-364, May 1968

Liskov, B. and Zilles, S. Programming with Abstract Data Types
Proceedings of ACM SIGPLAN Conference on Very High
Level Languages, SIGPLAN Notices volume 9, number 4,
April 1974, pp 50-59

Parnas, D.L. The influence of software structure on reliability
‘ Proceedings, 1975 International Conference on Reliable
Software, pp 358-362, April 1975

Saltzer, J.H. Traffic Control in a Multiplexed Computer System
MAC-TR-30 (Thesis), Project MAC, M.I.T.,
Cambridge, Massachusetts, July 1966

Schantz, R. A Commentary on Procedure Calling as a Network Protocol
NWG/RFC 684, NIC 32252, April 1975

Spier, M.J. and Organick, E.I.
The Multics Interprocess Communication Facility
Second Symposium on Operating System Principles,
Princeton University, October 1969

Watson, R.W. Timesharing System Design Concepts
McGraw-Hill, New York, 1970

JUNE 10, 1975 SOME COMMENTS ON pPCP PAGE 13

Process Pl Process PO Process P2
i | |
|[<-mmmmmmmemmmeeee |
4 | |
I ALOPHYPOR | | |
|-e-emecmmccccceee]| |
| |==emmmmeemmecennne >
| I 4
| | | ALOPHYPOR |
| | €-mmemmneriroon |
|€-=-oomommmomannee- fo-smesommeeneecnn- |
¥ | 4
} CRTPHYCHNEND | | | CRTPHYCHNEND |
| "Jisten"] | i "ipnitiate" |
| | B
\J i ¥ _
Istart listening | | | initiate RFC |
X A | |
A4 |
| wait for RFC|] | _wait for reply |
2 | |
L_send reply RFC | | |
4 | ¥
| complete]] | complete |
| connection | |] connection |
-mmmmm e e erormmnaeoesees |

PMP procedure ITDPRC in process PO

NOTE: Upon reaching point B, process P2 should continue only if
process Pl has already reached point A.

Figure 1

PACE 14 SOME COMMENTS ON PCP JUNE 10, 1975

Process Pl Process PO Process P2
o | |
| (mmmmmmemmmecanees | |
¥ " | |

L___ALOPHYPOR | [|
f=-emmmrrm e | |
| R S L LT]|
| | 4
| | | ALOPHYPOR]
| | €-mmmmmee i
|€--o-meemmceaeeees | |
4 | |

| CRTPHYCHNEND | |]

| partl I | |
4 |]

] start listening | | |
|-==cmememmmecaanas 3| |
[€-mmmmmmeccceaean fommemmeme e b4
\ | ¥y

| CRTPHYCHNEND | | | CRTPHYCHNEND {

L part2 | | | initiate |
4 | 4

{ wait for RFC |] |__initiate RFC]
¥y | y

| send RFC] | L___wait for reply |
4 | 4

| complete |] | complete]

|___connection] | 1___ connection |
|meeemcmeeenccnenas >=< ------------------ |

PMP_procedure ITDPRC in process PO

NOTE: Synchronization is achieved by splitting CRTPHYCHNEND in
Pl into two parts. Return from partl provides the
synchronization point to process PO which then initiates activity
in process P2.

Figure 2

