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1.0 Software Locks

In a modern multi-programming computer system it is often necessary to allow
independent, concurrently executing processes to share the same data base. If
processes are allowed to modify a shared data base, then the data base may be
temporarily in an inconsistent state while being modified by some process. In
general, it is necessary that the processes accessing such a data base be
synchronized so that a process will not access a data base which is in an
inconsistent state. Usually this synchronization is provided by means of
semaphores or software locks. Before a process is allowed to modify a data base
it must set a software lock associated with the data base. This lock is such
that, once set, it can not be reset by any other process until "released* or
unlocked by the locking process. Having set the lock, a process performs the
necessary operations on the data base, and then releases the data base by
unlocking the associated lock. If a process's request to set a lock is denied
because some other process has the lock set (and is working on the data base),
then the requesting process must wait until the other process releases the data
base by unlocking. '

1.1 Disadvantages of Software Locks

Though widely wused, the locking method just described, has several
disadvantages. As we mentioned above, if a data base is already locked then
other processes that want to access the data base must wait until the locking
process has released the data base. If for some reason the locking process is
slowed down while the 1lock is set then other processes must wait longer.
Normally, a real time delay in a multi-programming system does not present a
serious problem. However, if a shared data base represents a critical system
resource then a real time delay in its use by processes may reduce its
effectiveness and degrade the system performance considerably. Two examples
will clarify this point: first, consider the data base associated with a
multiplexed input-output channel. A tape multiplexer channel through which 1/o
operations can be performed on several tape drives represents such a channel.
The use of this channel among several processes can be synchronized by means of
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a software lock. If for some reason, a process is delayed while it has this
lock set, then use of the i/o channel is denied to other processes thus reducing
the effectiveness of the channel. Another example follows. In Multics, the
page control system operates with a global lock. This 1implies that two
simultaneous page faults can not be processed simultaneously even though there
might be two processors available on the system. It is estimated that in the
Multics system at M.I.T., which is normally run with two processors,
approximately five percent of the processing capacity is lost in simply waiting
on the page control data base lock.

A process can slow down due to several reasons. For example, a process may have
exhausted its CPU time quantum, in which case it must wait until it is allocated
another CPU time quantum. To prevent this from happenning, most operations on
shared data bases are performed in a privileged environment in which a process
can not be pre-empted even if it has used up its CPU time quantum. This can
introduce a fair amount of complexity in the system scheduler which must now
cope with another mechanism. Often it is the case that a process is protected
from pre-emption while executing in the system supervisor (ring-zero in
Multics), and therefore all shared data base modification operations are simply
pushed into the supervisor thus increasing its size and complexity; all of
which has an adverse effect on its certifiability. Another point that needs to
be emphasized here is that even though a process may be fully prepared to
perform some operation on a shared data base, it may have to wait to do so (and
thus be unfairly penalized) simply because some other process has locked the
data base and is unable to complete its operation in a short time.

While a small real time delay may, at best, simply reduce the effectiveness of
the resource utilization, a degenerate case may deny the use of ‘resources
forever or at least until the next system crash or shutdown. Consider what will
happen if a process were to die with a lock set on a critical resource. There
are several reasons why a process may terminate. It may have exhausted its CPU
resources, or it might have taken an irrecoverable fault. A process might also
be terminated due to externally induced reasons. In general these problems are
solved by providing a privileged environment and ensuring that all data base
modifications are performed within this environment. The environment guarantees
that the process will not be terminated due to lack of resources or externally
induced signals while executing in the critical data base modification routines.
Frequently the routines to modify critical data bases have complicated abort
handlers to bring the data base into a consistent state should the data base

modification operation be terminated in the middle due to a hardware or software
failure.

The problem is further compounded by the interaction of interrupt mechanism with
the 1locking mechanism. If a process can be interrupted while modifying a data
base, then the interrupt handlers must not be allowed to access the locked data
base. If the interrupt handler simply followed the strategy of waiting for the
data base to be released, we would have a dead-lock situation. Fairly
complicated mechanisms are needed to prevent the occurrence of such dead-Tocks.
One must either mask interrupts for the duration of the execution of the data
base modification operation or one must program the interrupt handler very
carefully to deposit reguests for actions in a queue to be examined at the time
of release of the data base.
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1.2 Short-term Locking

In a paper published in 1972, Easton describes a different approach to the
design of algorithms which operate on the shared data [Ea72]. His technique, in
brief, is:

"to provide each shared object with a version number, to remember the
version number prior to making a decision about modifying the object,
and then, when the actual modification takes place, to compare the
version number with the remembered one, to change the version number,
and to perform the modification, all in a single instant of time. The
technique is somewhat inelegant, in that a process may be forced to
repeat the work it has already done."

In this technique, the actual data modification operation, or the critical
section is very brief and therefore can be performed in an uninterruptible
privileged state. Since the critical section 1is rather short in duration,
processes waiting for their turn to perform an operation on shared data need not
give up the processor (which requires involvement of the supervisor in the form
of block and wait primitives), instead they loop on a test-and-set instruction
to guarantee mutual exclusion. Essentially, long term locks have been replaced
by short term locks, and the supervisor involvement is minimized. One must
still make use of a privileged state to perform the data base modification and a
lock to guarantee mutual exclusion. The main disadvantage of the version number
technique is that occasionally a process will not succeed in performing a data
base operation because some other process has modified the data base and the
version numbers do not match. The process will have to repeat the entire
operation. However, this repetition should not be confused with the familiar
race conditions in the switching circuits in which no useful work gets done at
all. In the case of this technique, if a process fails to perform an operation,
it is only because some other process has succeeded.

1.3 A _hardware provided single-instruction lock

If we carry the short term locking philosophy to extreme and let the hardware
provide a special instruction which would check the version number, perform the
intended data modification, and change the version number, all in a single
instant of time and at the same time guarantee mutual exclusion, then - at least
for those operations on shared data that can be efficiently programmed using the
special instruction - there will be no need for (1) a supervisor provided
privileged state, and (2) the software locks to guarantee mutual exclusion.
Such an instruction offers many advantages over usual software locking
techniques. First, since no interruption or pre-emption is permitted during the
execution of this instruction there 1is no need for a supervisor provided
privileged state. Presumably the instruction takes only a short time to execute
and therefore the second benefit is that no process can cause other processes to
be delayed indefinitely. The third advantage of using this instruction is that
there is no need of software locks to ensure mutual exclusion. If two processes
try to wupdate a data base at the same time, only one of them will succeed and
the other process will be automatically deferred for the duration of the
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instruction. And since this instruction is uninterruptible, there is no need to
mask the interrupts. The present hardware base of the Multics system, Honeywell
68/80 provides such an instruction though with a rather severe limitation - the
version number and the data to be changed must be confined to a single memory
word. At the first glance it would seem that such an instruction would be
useless for all practical purposes since most operations on shared data require
changing more than a word. However, as we shall see shortly, there are some
important shared data operations that sit at the heart of any operating system
and that can be programmed in terms of this special instruction. We shall look
at two specific algorithms on message queueing and assignment of resources.
Both algorithms provide primitives that can be executed in parallel by a number
of processes on shared data. Anyone familiar with the working of operating
systems will immediately recognize their importance. These algorithms are
presented as procedures which, once certified, may be used by the operating
system as well as users on a uniform basis in a variety of situations. At the
cost of occasional wasteful repetition, we have removed all of the previously
discussed disadvantages associated with the software locking. It is not claimed
that these disadvantages would not exist in any system that used these two
algorithms, rather, from among several reasons that introduce complexity in a
system, two have been removed. Next, we briefly examine the special
instruction. The rest of the paper 1is devoted to the description of the
algorithms followed by their applications.

1.4 The 68/80 stacq instruction

The 68/80 stacq (Store A Conditional on Q) machine instruction is a
read-alter-rewrite (RAR) class instruction that changes the content of a single
word memory operand if the following condition is met: If the content of the
operand word is equal to the Q register then the A register is stored into the
operand and the =zero indicator 1is set on. Otherwise the operand is left
unchanged and the zero indicator is set off. The RAR instructions have the
property that while a processor is executing an instruction of this type, all
other RAR instructions directed to the same system controller (and executing on
other processors) are delayed. Since RAR instructions do not lock out non-RAR
instructions, it is essential that all write operations on memory words that
might be operands of RAR instructions, be performed with RAR instructions. When
describing the algorithms that we mentioned before, we will use a PL/1 procedure
abstraction of the stacq instruction in order to keep the unessential machine
specific detail out of our way. The first argument to this procedure is the
name of the memory word whose content need to be examined and replaced, the
second argument is the expected content of this word, and the third argument is
the value to be placed in the word if stacq succeeds. The procedure returns a
single bit value of *1"b on success and "0"b on failure.
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2.0 A multiple-producer single-consumer queueing algorithm

Consider a system consisting of several processes, called the producers, that
are generating messages to be sent to a single process, called the consumer.
This form of communication among processes can be programmed using a shared
queue. We define two operations on this queue, called ENQUEUE and DEQUEUE.
Whenever a producer has generated a new message and needs to send it to the
consumer process, the producer appends the message at the end of the queue by
performing the ENQUEUE operation. The consumer process performs the DEQUEUE
operation to remove the oldest message (if any) from the queue. The messages
are removed from the queue 1in the order of their arrival and processed
accordingly. In general, to ensure consistency, the processes must be
synchronized such that: (1) a producer does not perform the ENQUEUE operation
while another process is performing either one of the operations on the same
queue, and (2) the consumer does not execute a DEQUEUE while a producer is
performing the ENQUEUE on the same queue. We present here an algorithm to
manipulate such a queue which uses the stacq instruction and requires no
explicit synchronization other than that implied by the stacq instruction.

The algorithm follows. Let the multiple-producer, single-consumer queue (called
MPSC queue, hereafter) consist of a p-queue (for producer queue) and a c-queue
(for consumer queue). Let p-queue consist of a header (called pq) and a number
of messages m(1), m(2), m(3), ..., m(n) such that message m(i+1) is more recent
than m(i). (See figure 1). When the p-queue is empty, the header pq is empty;
otherwise pg points to the most recent message in the p-queue (i.e. pg points to
m(n)). Associated with each message m(i), let there be a back pointer m(i).bp
and a forward pointer m(1).fp such that when the messages are in p-queue,
m(i+1).bp points to m(i) and m(1).bp is empty. The forward pointers are not
used in the p-queue and we shall describe their role later when discussing the
c-queue. Now, there are two operations on the p-queue that can be programmed in
terms of stacq without any software locks or synchronization; these operations
are:

1 - PQSADD_MESSAGE: Add a message to the p-queue
2 - PQIREMOVE_CHAIN: Remove the entire chain of messages from the p-qQueue.

A producer process can add a message to the p-queue at any time by using the
first operation. The consumer process can remove an entire chain of messages
from the p-queue by the second operation and then save this chain in the c-queue
such that all messages in the c-queue are in proper order. Since only one
process, namely the consumer, 1is using the consumer queue there 1is no
synchronization probliem in the processing of the c-queue. Notice that the chain
of messages that the consumer process removes from the p-queue can be built into



PAGE 6 PROCESS SYNCIIRONIZATION WITHOUT SOFTWARE LOCKS  JULY 18, 1975

a symmetrical linked list where only the forward pointers need to be filled in.

| p-queue |
| header |
1 1

SN TN o N
Im(1)] [m{2}1] [m{3)] im(4)1] cveeea im{(n-1}] Im{n)}|

Messages arrive in the sequence m(1l), m(2), m(3), ..., m(n).

- A p-queue -

Figure 1

PL/1 procedures for operations on the p-queue are provided in figure 2. A step
by step explanation follows. The operation PQSADD_MESSAGE is performed in the
following steps:

1 - Copy the pointer from the p-queue header into a local area.! The
pointer either points to the most recent message in the p-queue or is
null.

2 - Assign this pointer to the back pointer of the new message.

3 - If the p-queue header hasn't changed in the meantime then change it to
point to the new message. This step is performed by a single stacq
instruction. If the stacq succeeds, the operation 1is complete,
otherwise we ¢o back to the step 1 and start the operation all over
again. If this operation is succesful the p-queue header will point to
the new message.

' A local area is private to a process and not used by other processes. In
Muitics, the stack segment is the local area for a process.
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PQSADD_MESSAGE: procedure (pq, message);

declare pq pointer unaligned parameter;
declare 1 message aligned parameter,

2 fp pointer unaligned,

2 bp pointer unaligned,

2 text bit (*);

declare Tlastmp pointer unaligned automatic;
declare stacq ext entry (pointer, pointer unaligned, pointer unaligned)
returns (bit (1));

step_1: lastmp = pq;
step_2: message.bp = lastmp;
step_3: if ~stacq (addr (pq), lastmp, addr (message))
then goto step_l;
return;
end PQSADD_MESSAGE;

PQSREMOVE_CHAIN: procedure (pq) returns (pointer);
declare pq pointer unaligned parameter;
declare chainp pointer unaligned automatic;

declare stacq ext entry (pointer, pointer unaligned, pointer unaligned)
returns (bit (1));

step_1: chainp = pq;
step_2: if “stacq (addr (pq), chainp, null ())
then goto step_1;
return (chainp);
end PQSREMOVE_CHAIN;

NOTE:; it is assumed that the internal representation of PL/1 "pointer unaligned®
data type occupies a single memory word.

Figure 2
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The operation PQSREMOVE_CHAIN is performed in the following steps:
1 - Copy the pointer from the p-queue header into a local area.

2 - If the p-gueue header hasn't changed then change its value to null.
Again this step is performed by a single stacq instruction. If it
succeeds the copied value of the pointer points to the chain of
messages. If the stacq fails we go back to the step 1 and try again.

Using these two operations it becomes possible to construct the ENQUEUE and
DEQUEUE operations on the MPSC queue.

In this algorithm we have assumed that each message has the same unique address
in the producer and consumer processes. Since each message has a unique
address, adding a message to the p-queue will necessarily change the value of
the p-queue header which is essentially a change in the version number of the
p-queue. However, it should be noted that even though the message addresses
correspond to version numbers, it is still possible to reuse message addresses.
Let us examine the algorithm PQSADD_MESSAGE. Suppose that while a producer
process is executing PQSADD_MESSAGE between the steps 2 and 3, the p-queue is
changed by other processes such that the p-queue header contains the same
address, that 1is, even though the p-queue has changed, its version number has
not changed.l In this situation, process executing PQSADD_MESSAGE at step 3
will not be able to detect the change in the p-queue and therefore it will
succeed in appendinhg a new message to the p-queue. However, structure of the
p-queue is still correct and the operation remains well defined. The algorithm
to remove an entire chain of messages from the p-queue also works in a similar
fashion and produces correct result. However in a single consumer system, while
the consumer is executing the algorithm to remove an entire chain of messages
from the p-queue, the p-queue can not change such that the version numbers
remain the same.

Despite the apparently non-terminating loops in both operations on the p-queue,
notice that an attempt to perform any one of the operations can fail only if
some other process has succeeded in altering the p-qgueue. For a
single-producer, single-consumer system if the first attempt to add a message to
the p-queue fails then the second attempt is guaranteed to succeed since the
first failure could have resulted only from the consumer having emptied the
p-queue. The p-queue has another interesting property which is that to add a
message to the p-queue the producer process does not need to touch the old
messages in the p-queue. Both these properties make the single-producer,
single-consumer version of this queue particularly useful for use by the
interrupt handlers for the input devices. In most operating systems, interrupt
handlers execute in severely constrained environments. In Multics, interrupt
handlers can neither take page faults nor can they wait indefinitely for a lock
to become free. The inability to take page faults implies that every part of

' This type of change may occur if after step 2 and before step 3 of an add
operation, the consumer-process has processed the p-queue, freed the space
occupied by the message at the top of the p-queue, and some other process has
used the same space for another message which is now sitting at the top of the
p-queve.
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the virtual memory that can be referenced by the interrupt handler must be
constrained to the primary memory. And, since the invocation of an interrupt
handler must be completed in a short period of time, an interrupt handler is
usually programmed such that if it encounters a lock already set by some other
process, it quickly returns rather than wait for the lock to become free and
then it becomes the responsibility of the locking process to complete the action
initiated by the interrupt handler. This often requires extremely complicated
synchronization mechanisms between the interrupt handlers and processes that
share data with the interrupt handlers. Using the algorithm presented here, the
interrupt handiers can ENQUEUE new messages into a shared queue for some
consumer process in a finite number of operations without having to wait
indefinitely for a 1lock and secondly, the old messages are freed from being
constrained to the primary memory.
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3.0 An algorithm to synchronize resource assignment

In this section we present another algorithm for one of the most common
synchronization problems that occur 1in any modern multi-programmed computer
system, namely, the problem of synchronizing the use of shared objects and
facilities among processes that might be executing in parallel. A tape
controller, controlling several tape drives, is a shared object that should be
in use by at most one process at any time. The synchronization problem in using
the tape controller is that of ensuring that not more than one process uses the
tape controller at any given time. The tape controller problem is a restricted
case of a more general problem that occurs when there are more than one
functionally equivalent objects to be shared among several processes and for
proper operation it is required that the use of the shared objects satisfy
certain rules. One common rule is that an object may not be in use by more than
one process at any given time. To enforce this rule, computer systems require
that a process can use a shared object only after the object in question has
been assigned to that process and the assignment algorithms ensure that no
shared object is assigned to more than one process at a time. In general, we
have a pool or a set of functionally equivalent objects and a process may
request that it be assigned one, any one of these objects. The synchronization
problem consists- of ensuring that an object is not assigned to more than one
process at any given time. All the tape drives in the example of the tape
controller represent such a pool. In a paging system the pool of free memory
blocks represents such a pool of resources. The ENQUEUE and DEQUEUE operations
on the multiple-producer, single-consumer queue may also be viewed as shared
objects. However, while the use of the DEQUEUE operation 1is governed by the
rule that only one instance of it should exist at any time, the ENQUEUE
operation may be in use by many processes at the same time. Each instance of
the ENQUEUE or DEQUEUE must still be in use by only one process at any given
time.

It needs to be emphasized here that we are not trying to answer the question
whether a process should be allowed access to a particular resource or not -
that is the larger problem of resource allocation - we are merely interested in
enforcing a fundamental requirement of any resource allocation policy. This
requirement is a manifest of the nature of objects and states that no object
should be 1in use by more than one process at any given time. We are assuming
that a simple rule of not attempting to use objects that have not been assigned
is either wvoluntarily observed by the processes themselves or enforced by the
system in some manner. At the same time we are seeking a mechanism that can be
uniformly applied to either the system defined objects or user specified
objects.

Suppose we are given a resource set R, consisting of a fixed and finite number
of functionally equivalent objects. Even though these objects are functionally
equivalent, we associate a unique identifier with each object which makes it
possible to distinguish among them. Without any loss of generality, we can
assign the numbers 0, 1, 2, ..., n-1 to these objects. Thus resource set R =
{r(0), r{1), r{2), ..., r{n-1)}. We define the following two operations on R:
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1 - ASSIGN
2 - RELEASE

The ASSIGN primitive is invoked by a process seeking assignment of a resource
from R. This primitive returns two arguments, the first of which is a boolean
value indicating whether the assignment was performed or not, and the second
argument returns the identifier of the assigned resource if the assignment was
performed. Once a resource has been assigned, it becomes unavailable for
further assignment until released. A process may release a resource by invoking
the RELEASE primitive whose only argument is the identifier of the resource to
be released.

In order that same ASSIGN and RELEASE primitives may be used on different
resource sets, we add the name of the resource set as an extra argument to each
of these primitives, whereupon the primitives look as follows:

1 - ASSIGN (resource_set, assigned_sw, resource_id)
2 - RELEASE (resource_set, resource_id)

The "assigned_sw" and "resource_id" in the ASSIGN primitive are return or output
arguments and all other arguments are input arguments.

3.1 A simple resource _assignment algorithm

Consider an array R(0:n-1) associated with the resource set R containing n
objects. Let each element of this array be a single memory word such that the
stacqg instruction can operate on it. Let R(i) = 0 indicate that the resource
object r(i) has not been assigned to any process and is available for
assignment. Then a succesful execution of the stacq instruction with the second
argument (the expected value) equal to zero and the third argument equal to some
non-zero value on the element R(i) may be defined to be the succesful assignment
of object r(i) to the process on whose behalf the stacq was executed. The
ASSIGN primitive simply consists of cycling through the array R(0:n-1) with
stacq operations (as defined above) on successive elements until one stacq
operation succeeds. Notice that it does not matter on which element the ASSIGN
primitive starts. RELEASE (R, i) merely consists of setting R(1) to zero.

The most important characteristic of this algorithm is its simplicity and there
are situations for which this algorithm is quite suitable. However, the
following disadvantages make it less attractive as a general resource assignment
algorithm:

1 - If none of the objects in th2 resource set R is available, the ASSIGN
primitive will cycle through the array indefinitely thus wasting
processor time.

2 - The processor time taken by the ASSIGN primitive will depend upon the
number of objects, n, 1in the resource set R. It is to be expected
that larger the value of n, greater will be the time taken by the
ASSIGN primitive. '

There are methods of solving the first problem, but only at the cost of added
compiexity. The second problem is intrinsic to the algorithm and not much can
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be done about it.

3.2 An efficient but impractical resource assignment algorithm

In this section, we present an algorithm that is efficient in the sense that the
time taken to execute the ASSIGN and RELEASE primitives does not grow with the
size of the resource set, but somewhat impractical in the sense that its
implementation requires an unbounded array. Despite its impracticality, this
algorithm is presented here as a stepping stone to the final resource assignment
algorithm described in the next section of this paper.

Let R(0:*) be an infinite length array, each element of which is a single memory
word capable of storing an integer and hence a resource-id. Let IN and OUT each
be a single memory word also capable of storing an integer value that indexes
into the array. Let each element of the array be initialized to an integer
value of minus one (-1). The choice of -1 is somewhat arbitrary; it merely
needs to be an integer value that can not be assigned to a resource-id. Let IN
and OUT be initialized to zeroes. - Roughly speaking IN points to the array
element available for storing the next resource-id and OUT points to the array
element where the next resource-id can be picked up from, and all the elements
between IN and OUT contain identifiers of resources that are available for
assignment. The RELEASE primitive consists of storing the resource-id into
array element pointed to by IN and advancing IN to the next element. The ASSIGN
primitive consists of grabbing a resource (if any) from the array element
pointed to by OUT and advancing OUT to the next array element. If we view the
array as extending from left to right then initially IN and OUT are positioned
at the left-most element of an empty array and each RELEASE operation moves 1IN
by one to the right, and each ASSIGN operation moves OUT by one to the right.
Now we assert that the algorithms presented in figure 3, correctly implement the
ASSIGN and RELEASE primitives as defined previously. An explanation of the
steps involved 1is provided next. First, the RELEASE procedure. In step 1, we
copy the value of IN into a local variable "in". The null step 2 1is provided
solely to facilitate comparison with a modified version of this algorithm to be
presented later. In step 3 we attempt to store the resource-id into the array
element being pointed to by "“in". However, it is possible that some other
process has already used up this word, in which case our attempt will fail.
After completion of step 3, regardless of success or failure, the array element
pointed to by "in", has been used up and IN needs to be advanced to the next
element of the array. This is accomplished by step 4. Step 4 is crucial in the
effective use of this algorithm. If we were to rely upon the process that used
up the array element to advance the IN pointer to the next element, then we
would have a situation where if a process stopped between steps 3 and 4, every
other process trying to perform the RELEASE operation would have to wait for the
stopped process to restart and complete the step 4. In step 5 we examine
whether we succeeded in releasing the resource or not, and if not, we start the
operation all over again.

The ASSIGN procedure: In step 2, we are trying to get a resource, but it is
entirely possible that there are no more resources, in which case we return to
the caller with an indication of failure (step 3). If, however, we had
succeeded 1in getting a resource-id in step 2 then we must ensure that no other

(.
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RELEASE: procedure (resource_set, résource_id);

declare 1 resource_set aligned parameter,

2 (IN, OUT) fixed binary (35),

2 R (x /* 0:infinity */) fixed binary (35);
declare resource_id fixed binary parameter;

declare (word_value) fixed binary (35) automatic;
declare in fixed binary (35) automatic;
declare (SUCCESS, ignore) bit (1) automatic;

declare stacq ext entry (pointer, fixed bin (35), fixed bin (35))
returns (bit (1));

step_1: in = IN;
step_2:
step_3:  SUCCESS = stacq (addr (R (in)), -1, (resource_id));
step_4: ignore = stacq (addr (IN), in, in+¢l);
step_5: if ~SUCCESS then goto step_l;
return;
end RELEASE;

ASSIGN: procedure (resource_set, assigned_sw, resource_id);

declare 1 resource_set aligned parameter,

2 (IN, OUT) fixed binary (35),

2 R (x /*x 0:infinity */) fixed binary (35);
declare resource_id fixed binary parameter;
declare assigned_sw bit (1) parameter;

declare (word_value) fixed binary (35) automatic;
declare out fixed binary (35) automatic;

declare stacq ext entry (pointer, fixed bin (35), fixed bin (35))
returns (bit (1));

step_1l: out = OUT;
step_2: word_value = R (out);
step_3: if word_value = -1 then do;
assigned_sw = *0"b;
return;
end;
step_4: assigned_sw = stacq (addr (OUT), out, out+l);
step_5: if “assigned_sw then goto step_1; '
step_6: resource_id = word_value;
_ return;
end ASSIGN;

Figure 3

PACE 13
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process takes the same resource-id. This 1is accomplished by step 4 which
attempts to move the OUT pointer one element beyond the current element.
Whichever process succeeds in moving OUT from “out" to "out"+1 has the resource
in R(out) assigned to it. If we fail to accomplish it, then clearly some other
process has grabbed the resource and we try again from start.

If the resource-set contains a maximum of n objects, then at most n elements of
the array may be in use at any given time. This corresponds to the situation of
all resource objects being available for assignment. Using this fact we can
modify this algorithm to use a finite length array rather than an arbitrarily
large, unbounded array. The algorithm, thus modified, is described next.

3.3 An _efficient resource assignment algorithm

Rather than view the array R as a straight line extending from left to right,
let us view it as a spiral staircase starting from the ground and going
vertically up. We view each step of this spiral staircase as corresponding to
an element of the array. We define those steps that correspond to the elements
containing identifiers of available resource objects to be "active" and others
as "non-active". Thus if the resource-set contains n objects then there can be
at most n active steps at any given time. Now, let a rotation of 360 degrees
correspond exactly to the ascent of N steps where N is an integer greater than
or equal to n. Then an orthogonal projection of the spiral staircase on any
horizontal plane is a circle and each step is mapped onto a piece of the pie
formed by the angle 360/N degrees. Furthermore, we can divide all steps into N
equivalent classes such that any two members of an equivalent class are
projected on the same piece of the pie. Also, any two members of the same class
must be at least N steps apart (because N is greater than or equal to n). Since
at any given time all active steps must be on a contiguous section of the
staircase and there can be no more than n active steps, projection of all active
steps must be on a contiguous section of the circle. This suggests that it
should be possible to describe the state of the staircase by a circle as far as
the active steps are concerned. We can accomplish this if, with each piece of
the circle, we keep a measure of how many 360 degree revolutions have been
completed to reach the corresponding active step on the spiral staircase. For
step number S (the first step being number zero), this quantity is the quotient
that results when S is divided by N. Since the projection circle and its pieces
can be represented by a single dimensional array R(0:N-1) of length N, we have
succeeded in representing the infinite length array by a finite length array.
However, each element of the finite length array must store two quantities: (1)
the resource-id of the object, and (2) the number of circles transcribed by the
corresponding element 1in the infinite array. Next we describe a method of
fitting both these quantities into a single memory word.

If we identify resource objects by integers 0, 1, ..., n-1 (as we did before),
then we can combine the circle number and resource-id into an integer capable of
being stored in a single memory word by the following PL/1 computation:

c
vV

divide (S, N); /* Compute the circle number %/
Cx*N +resource_id; /* Compute the combined value %/
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Given a value V, the circle number, resource-id, and step number (corresponding
element of the infinite length array) can all be computed by the following PL/1
computation:

C = divide (V, N); /* Compute circle number %/
resource_id = mod (V, N); /%X Compute resource-id %/
S = CxN + index; /*Compute step number %/

where index is the number of element on the finite length array
from which the value V is obtained.

In the above formulae, the function "mod" returns the remainder and function
"divide" returns the quotient. Complete PL/1 procedures for these algorithms
are presented in Figures 4 and 5. These algorithms are quite similar to those
described in the section 3.2 for an infinite length array. In the RELEASE
primitive (figure 4), the most significant difference occurs in steps 2 and 3.
IN points to an element in the infinite length array and a corresponding stair
in the spiral. Before we attempt to store the new resource-id into the finite
length array element pointed to by IN, we must make sure that this element
represents a stair lower than the one being pointed to by IN. We do this by
computing the number of the stair being represented by the value contained in
the finite length array element and comparing it with IN. The ASSIGN primitive
of this section (Ffigure 5) differs from that of section 3.2 in a similar respect
in steps 2 and 3.

Initialization of the finite length array differs from the unbounded case in
that it is the circle number portion of the array elements which is initialized
to minus one rather than the complete element. Initial values of IN and OUT are
zeroes. The PL/1 entry INIT of procedure RELEASE (Ffigure 4) will properly
initialize a resource-set.
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RELEASE: procedure (resource_set, resource_id);

declare 1 resource_set aligned parameter,

2 N fixed binary,

2 (IN, OUT) fixed binary (35),

2 R (x /% 0:N-1 */) fixed binary (35);
declare resource_id fixed binary parameter;
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declare (word_value, word_circle, word_step) fixed binary (35) automatic;

declare (in, in_index, in_circle) fixed binary (35) automatic;
declare (SUCCESS, ignore) bit (1) automatic;

declare stacq ext entry (pointer, fixed bin (35), fixed bin (35))

returns (bit (1));

step_1: in = IN;
in_index = mod (in, N);
in_circle = divide (in, N, 35);
step_2: word_value = R (in_index); .
word_circle = divide (word_value, N, 35);
word_step = word_circle*N + in_index;
step_3: if word_step < in
then SUCCESS = stacq (addr (R (in_index)),
word_value, in_circle*N+resource_1id);
else SUCCESS = "0%b;
step_4: ignore = stacq (addr (IN), in, in+l);
step_b: if ~SUCCESS then goto step_l;
return;

INIT: entry (resource_set, size);
declare size fixed binary parameter;

N = size;
do in_index = 0 to N-1;

R (in_index) = -1%N;
end;

IN, OUT = 0;
return;

end RELEASE;

Figure 4
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declare

declare
declare
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procedure (resource_set, assigned_sw, resource_id);

1 resource_set aligned parameter,

2 N fixed binary,

2 (IN, OUT) fixed binary (35),

2 R (x /* 0:N-1 /) fixed binary (35);
resource_id fixed binary parameter;
assigned_sw bit (1) parameter;
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declare (word_value, word_circle, word_step) fixed binary (35) automatic;

declare

declare stacq ext entry (pointer, fixed bin (35), fixed bin (35))

step_1l:

step_2:

step_3:

step_4:
step_b:

(out, out_index) fixed binary (35) automatic;

returns (bit (1));

out = OUT;
out_index = mod (out, N);
word_value = R (out_index);
word_circle = divide (word_value, N, 35);
word_step = word_circle*N + out_index;
if word_step < out then do;

assigned_sw = "0"b;

return;
end;
assigned_sw = stacq (addr (OUT), out, out+l);
if ~assigned_sw then goto step_l;
resource_id = mod (word_value, N);
return;

end ASSIGN;

Fiqure 5
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4.0 Some Comments on the MPSC-queue and Resource Assignment Algorithms

The most important property of these algorithms is that the objects manipulated
by them (i.e. MPSC queue and the resource-set) remain in a consistent state at
all times and do not have any locks associated with them. This implies that
even if a process is stopped forever while executing in the middle of the
primitives used to manipulate these objects, other processes may continue to use
these shared objects without having to wait for completion of the primitive
initiated by the stopped process. We discussed the benefits of this property in
section 1.3.

The main disadvantage of these algorithms 1is the possibility of endless
repetition. In practice, however, it 1is not likely to be a serious problem
other than occasional wasteful repetition.'

As we discussed in section 2, a single-producer, single-consumer version of the
MPSC queue has the property that the producer is guaranteed to succeed in
appending a message to the queue in at most two attempts. This property makes
this queue particularly useful for interrupt handlers for input devices.

One Tlimitation of the resource-assignment algorithm of section 3.3, not yet
discussed, is that the number of times the RELEASE operation (and ASSIGN
operation) can be performed for any resource-set is limited by the size of the
memory word on which the atomic operation stacq acts. For a 36 bit word length,
one can perform 34,359,738,367 RELEASE operations and an equal number of ASSIGN
operations on any given resource-set. Assuming a rate of one RELEASE operation
per millisecond, it will take 397 days before the number of permissible
operations 1is exhausted. Therefore, in a practical sense, this limitation does
not cause any problems in a machine of adequate word length.

! while executing one of these algorithms, a process will loop endlessly only if
during each failure, some other process (or a combination of several processes)
succeeds 1in performing an operation on the same data base. This, of course,
implies that the sequence of succesful operations (carried out by other process
or processes) is 1in exact synchrony with the sequence of failures. There are
two reasons why we believe that this synchrony can not continue indefinitely.
First, the 1looping process is continually executing the basic loop of the
algorithm and doing nothing else whereas the succesful process is not only
executing the basic loop but, presulmably, carrying out some other operations as
well. One would therefore, expect that the processes will eventually get out of
this synchronization. Secondly, in a muiti-programmed system, any sequence of
operations (whether successes or failures) would eventually be interrupted by
the action of the scheduler whose job it is to multiplex the CPUs among several
processes.
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5.0 Applications

In this section, we shall briefly discuss applications of these algorithms. In
section 2.0, we discussed an interesting application of the MPSC queue
(multiple-producer, single-consumer) to interrupt handlers for 1input devices.
This queue is applicable to output devices in a similar manner. Processes
wishing to transmit data on a shared output channel can queue their data into a
p-queue, which can be processed by the process controlling the shared channel.

wWhenever a shared storage area consists of a fixed number of fixed size storage
blocks, the resource assignment algorithm can be used for allocating and freeing
of these blocks. Thus, this algorithm is applicable to assignment of entries in
tables, assignment of message space in mail segments etc.

Since the MPSC queue can be used for transmition of messages among processes and
the resource assignment algorithm can be used for allocation of space, it should
be possible to construct almost any kind of inter-process communication system
using these two algorithm. Such a system will have no software locks and none
of the associated problems that we discussed in section 1.1. In its most simple
form, Multics ipc_ event channels are nothing but a MPSC queue. In the next
paragraph we shall briefly discuss construction of a mail system.

In mailing systems, where the recipient provides the space for storage of
messages, there are two synchronization problems:

1 - allocation of space among senders and freeing up of space by the
recipient.

2 - queueing of messages by senders and removal of messages by the
recipient.

The first problem can be solved by the resource assignment algorithm if we
divide the mail segment into fixed size blocks. The second problem can be
solved by using the MPSC queue.
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