Project MAC September 5, 1975

Computer Systems Research Divislon Request for Comments No. 87

5{ T
Ph.0Da. Thesis Proposall ~Methodology Joﬁ3ﬂeslgn1ng Certiflably

Secure Computer Systems

by Richard J. Feler tag

Abstracts

The abliity to certify that a computer system operates In a
secure manner Is hignly desirable.(A method of designing complex
“Computer <systems that will make them easler to certify as secure
Is proposed. This method Involves lsolating those parts of the
system having to do with security into a "kernel®™ subsystem and
organlzing this kernel Into functlonally orlented program
“reglons® whose relationships to one another are highly
__structured. [The careful sfructuring of the kernef allows 1t “to
- be easlIly certlifiede In order to demonstrate the usefuiness of
this method [t will be used to deslgn a computer system that Is
secure. Problems arlsing in applying the method to real systenms
will be exploreds The technique for certifying the security of
the system will be demonstrated using the example system.

Thlis note is an Informal working paper of the Project MAC
Computer Systems Research Division, It shouid not be reproduced
wilthout the author®s permisslon, and It should not be referenced
in other pubticationse.

Overview

The maln purpose of the thesis Ils to describe and
demonstrate a particular method of designing a certifiably secure
computer system. One essential part of the method Is the use of
a particular structure for designing a system. The maln feature
of the structure ls the “kernel®” that Includes the part of the
system that must be correct In order to assure the security of
the system. The kernel itself Is divided iInto three hierarchlical
levelsy, each level bullding on lower levels to provide a more
sophisticated type of security. The cholce of three levels is
somewhat arbitrary, however the hlerarchical nature of the levels
s an Intrinslc property of securlity.

The thesis wilil Incltudes as a case studyy the deslgn of a
sample system for which the correctness of the lowest level of
the kernel can be certiflede The thesls willl show that the
lowest level is the only level that can reasonably be certifled
by existing techniques. The lowest level wil! be divided into
small, tunctionally orlented modulese The use of functlonal
orlentation for separating modules Is one means of minimlzing the
amount of interactlon between modules and, therefore, eases the
certification process. Although most of the above ldeas are not
newy this Is the tirst time they have been appllied together to a
design and certliflcation of a practical operating system.

The overall design of the modules [s made without regard to
the location of the hardware, firmware, and software boundaries

of the system. The determination of the hardware, flrmware, and

software boundarlies ls largely an efficlency and economic
declision and should be delayed untit later in the design process.
These boundarles can, therefore, occur In the middle of modules
and methods of certifying modules that are partiy hardware,
firmware, and software will be described.

Some difficult problems arise when using a high flevel
tanguage for programming the kernel. Some programs will have to
run in a very primitive environment and others will run in
heaviily embetllished environments. It is lmportant that the
certifiery, programmer, and compiler know the precise nature of
the environment of the program he, shey, or It ls working one.
High level languages tend to Isolate the programmer from
knowledge of the preclse nature of the environment In whlch the
programs operate. Thls ls especlally troubtesome during system
initlalization when environments may be only partly operatlional.
The thesis will describe a scheme by which a program's
environment wiil be obvious to all concernede The Sscheme witll
force the programmer to Incfude In the programs he writes a
descriptlion of the environment he expects the program to run In.
The compiler will be able to check at compiie time that the
environment specified for the program It Is compliiling will be
avalilable to the program when [t runs.

In a general purpose operating system, there is no guarantee
that a user written program running outside the kerne! wllt
adhere to the conventions of the fanguage used to Implement the

kernel, This presents a probiem at the kernel! interface. A

&

scheme wilil be described tﬁat guarantees that the kernel! cannot
be led astray by Improper calis. In this scheme the compller and
the call mechanism will together assure that each call into the
kernel from outside the kernel wlll be made only to defined
kernel entries and that the arguments passed to the kerne! are
those which the kernel expects (l.e. the arguments It is
certitfled to handie correctiy). The methodology will also
include a means of protecting the kernrel programs and data from
modification by programs outslide the kernel. It wlil be
demonstrated that this protection scheme Is at least as deslirable
for protection of the kernel as others in use In other operaflng
systems.

One of the objectives of the methodology ls to place much of
the burden of certlfication on the methodology iltselt rather than
on the system designer. The methodoliogy need oniy be certifled
once and then can be used In the constructlion of many dlifferent
systems.

The overall goal of the thesis is to demonstrate that the
- method described can be used to design a secure operating system
that is highly readable, understandables and easily modifiable
and yet is useful and efflicient. To accomplish this the theslis
will include a complete design for the lowest level of the kernel
of a system that Implements a useful subset of the features of
the Multics operating system.

Introduction

An extremely desirable property of a computer system ls that

It operate properiy. Thls vague statement can be Interpreted to
mean that the computer system operates In a manner consistent
with the Intent of Its designers and users. Much effort is
currently being directed towards finding ways of assuring that a
computer system behaves as Intended. I will use the word
certitication to express the general! Idea of assuring that a
computer system does what was Intended.

Another desirable property of a computer system Is that It
be secure. A secure system Is one that allows a user to maintaln
Information on the system In privacy, i.e. other users cannot
acqulire or modify the information uniess authorized to do so. A
secure system is also one whose Integrity Is assured, il.e. the
system cannot be tampered with improperiy. A more preclse
definition of security will be given later.

Both proper and secure operation are necessary If a computer
system is to function as a utility serving many different users
of diverse needs on a regular basis. B8elng able to bulid a
computer system that can be demonstrated to be secures, l.ee. IS
certiflably secure, Is a necessary‘step to providing a true
computer utitity. The problems of certifying a system and the
problems of system security will be carefully examined and a
method for building a certitfiably secure system will be proposed.

The first part ot this proposal brlefly outllnes current
certification techniques and describes some methods for designing
more easily certifiable systems. The advantages and

dlsadvantages of these methods are dlscussede A new method iIs

proposed and justifieds The second part of thls proposal
discusses securlty and the difficulties of buitding a truly
secure system. A definition of securlity is outllned as a goal
for certitication.

To demonstrate the feasibliity of this new method of
designing a certifisble systemy, a case study Is proposeds The
case study involves the design, using the proposed method, of a
certlfiably secure system. The overall plan for the design is
outiineds The certifiabliity of the system resulting from the
design will be demonstrated In the thesls.

System Cectlifjcation

Certificatlon of a system can be divided into two parts.
Firsty, the intent ot the designers (s expressed iIn a formal
fanguage and the result Is called the specification of the
system. Second, one must “prove" that the programs and hardware
operate in a manner consistent with the speclification. 1In
reality, one would expect the two parts of certification to be an
integrated iterative process. The work to be described here
deals malnly with the second part.

Proving that the software meets the speci{fication IS calted
program verjitication. In program verlficatlon a formal
mathematical description of a programming fanguage is derived. A
specification, In terms of mathematical assertlons about the
relationships between lnput and output varlables of the desired
program, is deflned. Then the progras In question, written In

the formally described languages ls shown to loglcatty imply the

assertlions of the speciflication. These technlques are described
and demonstrated by Elspas et al. [EI172] and surveys of the area
are glven by Elspas et al. [EI72) and London [Lo72].
Unfortunately, success in this area is Iimited to very simple
programs (e.g9. sorting, mutual excluslion) with very simple
specifications. Even In these cases the proofs are nontriviale.
Some larger programs have been verifled, but these proofs require
tfremendous amounts of effort. If one were to scale these efforts
up to the size and complexity of a sophisticated operating
system, the effort would be staggering, Lf not Impossible. The
maln hope In thils area lles In automation. Igarashli, London, and
Luckham (Ig73] have developed some seml-automated technliques for
program verlification by computer. At thls point these techniques
can be applled only to falrly simple programs In a restricted
tanguage and are not always successful. Certification of entlire
systems by these techniques Is stlil a tong way off. If there Is
to be any means of certifying systems In the near future It wil!
be necessary to somehow divide the system into much smalfer and
less complex pleces that can be verifjled separately by
contemporary techniguese.

Once one has divided a system into smaller pleces so that
each plece may be more easlly verlfied, one Introduces the new
problem of demonstrating that the individually verlfied pieces
together form the deslred whole. One would expect that thls new
problem is easier to solve than the original problem of

Certlifying the entire system. However, for an arblitrary division

Into pleces, there is no guarantee that the new problen is
easier. The designer must carefully divide the system In such a
way as to slmpliify the task of demonstrating that It forms the
desired whole. For ease of certlticaf[on, one would {lke to have
these pieces or modules interact with each other as little as
possible to (imit compltexity and to make the déscrlpf[on of each
module as simplie as possible. In Parnas® (Pa72M, Pa720]
“information hlding™ approach, the descriptlon of each module
states only what Is necessary to provide the stated service of
that module. Any other features that may exlst due to the
implementation of the module are not described. The Parnas
technlque encourages the simplest possible description of each
module and also altows the greatest filexibllity in the
implementation of the modules The thesis wmill show that these
desirable properties (simple descriptlon and flexibitity in
implementation) of the “information hlding™ approach are also
present in the desian presented In the thesis.

Clearly, the cholce of modularization Is critical to the
success of a certification attempt. The main goal of the thesls
will be to describe, Justify, and illtustrate one particular
methodology for modutarizing a computer system so that It may be
easlily certitled.

Structural Approaches Used by Others
Several methodologles for modularizatlon appear in the
titerature. One such approach, called "fevels of abstractlon®,

was originally described by Di)kstra {01681 and more recently

used by Neumann et al. [Ne7?4). 1In thls approach, the programs of
the system are divided Into a set of dls)olnt tevels. The bottom
level implements the most primitive functlons and uses only the
machine hardware. Higher flevels Implement more complex functlons
and may utilize the functions of lower levels as well as the
hardware. The uppermost level lmplemen?s_the functions of the
entire system by utillzing altl the functions implemented in the
other ltevels. In this technique the levels are totally ordered,
lee. each level utilizes, and therefore ls dependent upon, onily
functions implemented In lower levels. This total ordering
provides an obvious proof technique. The designers must write a
specification for each level. One verifles each level by
veritying the correctness of programs In that level using the
speclifications of the lower levels. The fowest level can be
directly verified since it is not dependent upon any other
levels. It the levels are properiy designed, the verification of
each level should be relatively straighttforward. The maj)or
drawback of this technlque is the difticulty of modularlzlng a
system into a total ly ordered set of levels. 1In existing complex
systems many system functjions are mutually dependent and it Is
not clear that they can be totally ordereds In these systems a
total orderling apparently requires a modularjizatlon along
artificial llnes and this can requlre splitting functions among
several levels and dupllication of mechanisms In several levels.
In the Dl)kstra "THE" system, the system Is very simplie and the

total ordering Is easily achleved. However, 1t |[s not clear that

10

a stralghtforward total ordering exists for larger systems. The
targe system described by Neumann demonstrates the problem. It
necessitates splltting the same functlon among several levels.
His virtual process manager and virtual storage manager are so
divided. This artificlal splitting ls undesirablte because the
recurrence of the same conceptual functlon in different tevels
makes the system harder to deslgns, harder to understand, and
harder to modify. It Is more desirable to have each function
Ilmpiemented at only one level. Neumann has, therefore, not yet
demonstrated that a total ordering is a optimal approach.

Another approach lIs descrlbed by Wulf et al. (HWHu74l. In
this case, a small group of functions fundamental to the
operation of a computer system are lsolated. These functlons are
collectively called the "kernei™ and form a small central core of
the computer system. Wulf assumes that since the kernel ls small
it can be veritied by present techniques of program verlflication.
Thlis approach is qulite usetul as far as lt goes. The Hult kernel
ls designed to be a central core around which many operating
systems can be bullt and run simultaneously on the same machlne.
For this purpose it may serve well. However, this kernel is not
an operating system ltself and cannot be used as such. The
systems built around the kernel must stiil be certified and the
same problems of slze and complexity stlil remaln.

The approaches to modulfarlization of Neumann and Wuilf have
been dliscussed In the context of software certlification. Such

modularization technlques can work equally well with hardware

11

certification. The general view of the author Is that these
techniques apply to systems as a whoie without distinquishing
between hardware and software. Whether a particular algorithm Is
implemented in hardware or software Is not of concern In these
modularization technlques. Of course, the verification
technlques are different for hardware. Instead of programs, the
correctness of wiring diagrams must be verifled.

This thesls wlll not attempt to advance the state of the art
of verlflcatidn of hardware or software. It will be assumed that
such verificatlon techniques do exist and can be apptied to
programs and clircults of moderate slze, The thesls, Instead,
will concern itself wlith the problem of uslng a good
modularization technique to divide large complex systems into
programs and circults that can be certified by such verification
techniques, and to demonstrate that the modules so derived, when
collected together, can be shown to form the deslred whole. Even
If It should be the case that verjification techniques are not
sufticlently advanced to be applicable to the programs resulting
from the modularization technlques to be proposed, the
modularlization techniques wili stili be of beneftit In allowing
readers of the system to better understand the system and have
increased confidence in its correct behavior. If mathematical
proot techniques camnot be used, then simple review of progranms
by impartial observers might be a viable alternative In many
situations. Although not nearly as reljable asvmafhematlcai

proot, the manual review of code by observers can uncover many

12

errors and provide a degree of conflidence In the correctness of
the code suffjiclent to satisfy at least some customers. Proper
modularization will make the understanding of code much easier
and glve an observer the abllity to say that he or she
understands the system, a feat not possibile iIn fhe farge systems
of today. The Important point is that proper modularization s
Important no matter which method (mathematical proof or manual
reading) ls used to verlty programs. Elther program veriflcatlion
method 1Is made easier by proper modularization. The choice of
program veriflcati.on method can be made largely lIndependently of
the choice of modvulerization technique.
Ihe Kernel Approach

The modularlization technique to be proposed here also
involves designing a kernel. However, fhe criterion used for
deciding what should be in the kernel ls different from that of
Wultf. Before stating this crilterion I must observe that In a
computer system that [s to be certifled, it ls probabty true that
not every program or llne of code Is critical for meeting the
speciflcation. No matter how these noncritlical portions are
modifledy, although the operation of the system may change In some
ways the system wiill continue to meet the specification. These
noncritical portions of code arise because a speclfication does
not necessarily ccver all aspects of the operation of the system.

{1) For exampley, a system may be specified to contaln virtuat

{1) For the purpose of this paper I use the word specificatlon to
include the definltion of only those properties of the system
which the desligner uwishes to assure the presence of by

i3

processes and that each process be guaranteed to run for a total
of at least one minute in each hour. Such a specification leaves
unstated most ot the scheduling algorithm, e.ge. tﬁe order In
which the processes will run, whether each process will run for
one continuous mlnute or shaii be run several tlmes within the
hour for shorter periods, etc. The scheduling algorithm of the
system must be known [f the system ls to be bullt, but alt of It
need not be verifieds The scheduling algorithm can be
constructed so that one can verlify that each process gets Its
minute under all possible circumstances, without having to verify
other properties of the scheduling algorithm. One such SCheme
might have a special program that, at the time of each
scheduilng, checks to see If at the time of the next schedullng
there will be enough time left In the current hour to meet the
speclfication for all processes. If such ls not the case this
special program preempts the regular schedutling algorithm and
schedules the deprived processess In this case only the specla!
program need be verified.

In any system, for any gliven specification, It Is likely
that much, if not most, of the code is noncritical. Once the
critical code ls lsolated, only thls code need be verified. A
kKernel is the criticat code of a systemy l.e. that part ot the
system that must be verifled In order to certlfy that the system

meets a specifications This kernel s not the same as HWulf®s and

certification. Such a specification might not [nclude more
general Iinformation that must be known In order to use the

system, such as calling sequences for library trigonometric
functionse.

14

all future uses of the term will refer to this new detinltion.
Clteariy, one can write a specification for a system In which all
code Is criticale In such a system, defining a kernel is not
useful because the kernel will lncigde the entire system.
However, in many applications |t is desired that only certaln
aspects of system behavior be verifleds Security Is an exampie
of such an aspect of system behavior. To many organlizations, the
privacy of Information ls more important than accesslibility to or
correctness of the information. 1In a multiplexed computer
systemy, a user can usually provide his own means of assuring the
correctness of Informatlon, but the security of the Information
can be assured only by the system. Therefore, it might be
considered more Important to certify the securlty of the system
than to certify that the system processes user Information
correctly. One of the main objectlves of the thesls wlt! be to
show that code critical to securlty can be isolated and that |t
Is a small subset of the code In a typlcal operating system. The
thesis wlill also discuss other sltuations In which a kernel
cannot be isolatede This will help identify those cases In which
definlng a kernel Is a useful approach to certificatlon.
Although detining a kernel [Is not a completely general approach,
It ls applicabte to some important cases.

I have, above, talked about critical flpnes of code. Program
verification techniocues are easily applicablie only to entire
programsy not to Individual lines. Unfortunately many programs

In a system are likely to have only a few critical lines. To

15

verify these few lines [t would be necessary to Incliude the
entire program info the kernel, thereby making the kernel much
larger than [t has to be. Unnecessary increase In slze makes
veritication more difflcuit. For this reason, It iIs Imperative
that the system be designed to isolate the critlcal code Into
separate programs. In facty it Is to the designer®s advantage to
first wrlte the kernel specification. The deslgner can then
‘demonstrate the correctness of the kernel speclfication by
proving that It Implles the system speclficatlon and then write
and verify the kernel programs. This Is the approach taken by
Bell and LaPadula (Be73,LP73] and Walter et al. [Wa74l.
Ihe Kernel Infrastructure

The above approach ls useful In the case where the kernel is
sufficlently smatier than the entire system to justify the
additional burden of defining and proving the correctness of a
kernel specitication, However, even if such is the case the
kernel may stlil be too targe to verlty by present technlques. A
flrst thought might be to find a subkernel for the kernel,
however, 1f one could find such a subkernel smaller than the
kernel 1t would mean the kernel was not deflned properly In the
tirst place. Another possible method Is to use the “levels of
abstraction™ approach mentioned earller. This approach applies
Just as well to a kernel aé It does to a whole systenm.
Unfortunately the disadvantages still remain. To élleviafe the
disadvantages, I propose a two stage generatization to the

“levels of abstraction®™ approach. These generalizations relax

16

some of the restrictlons on the structure of the system.

The tirst generalization Is to permit the levels to be
partlially ordered rather than totally ordered. In a partialily
ordered hierarchy, the word “level® [s not approprlate and the
word cegjon wiilt be used insteads. An example of a schematic
representation of a totally ordered and partially ordered system

structure jst

Total Ordering Partlat Ordering

Flge 1
Circles represent reglons (or leveis). The relation <:>h—ﬂcg>
means that reglon U ls dependent upon (hlgher than) reglon
(level) Vy lese. that U is dependent upon some service provided by
V In order to meet Its specificatlon. The partlal orderlng
retalns all the advantages of the total ordering In that there is
stiil an obvious proof technique. The desligner writes a
specification for each region and verifies the correctness of the
region by verlifying the correctness of programs In that reglon
using the speclifications of other reglons upon which the region

In question is dependent. Reglons which are not dependent on any

I

17

other regions, l.e. regions with no arrows teaving, are verifled
by proving the correctness ot the programs In the reglon. The
veriflication process ls stralghtforward because, as with total
ordering, there are no directed loops. The partial ordering
structure is more useful than the total ordering because the
tormer displays more structural information about the kernel.

Consider the case!

~

Flgo 2
It this structure were deslgned using the total ordering

technique some llkely structures would be?

(a) {(b)
Flge 3
In the first two total orderings the relationship between U and V
is extraneous. U and V are actually unrelatedy, but the total
orderling constralnt forces thls unnecessary relationship. In

case (c), the distinction between regions U énd V are jost and

18

one large level must be verifled rather than two smatll
Independent regions. The partial ordering clearly shows the true
relationship. Such a relatlionship cannot be expressed In a total
ordering. One can argue that this advantage Is Insignlflcant In
practices, but any representation that clarifles the structure of
the system is useful for purposes of certlfication.

The second generalization is to allow for directed toops In
the structural graphs. Directed loops are undesirable because
they make verification dlifficult. If two reglons are mutuaily
dependent upon one another then there are no obvious reglons upon
which to base a verification., Wlthout directed loops the
starting points are the nondependent reglons. For this reason
directed {oops are to be avoldeds However, directed loops do
occur In actual system designs, usually In the form of mutually
recursive programs. Rather than try to design away dlrec ted
toops as does Neumann, the technique proposed here wiitl alilow
directed loops but will try to Iimit the amount of added
complexity to the verification process. This will be done by
designing the system so that the number of reglons contalned In a
directed (oop iIs minimal. Ffor the purpose of minimizing the
number of reglons In a directed loops the partlal ordering
technique is superior to the total ordering technique, because,
as shown earljery, the partlal ordering technlque more clearly
shons the true dependency relations between regions without
adding extraneous dependencies. For example, conslder Flgures 2

and 3a again with a dlrected toop between U and W3

i3

Fige 4 Flge 5
In Figure 4 it is cilear that the dlrected (oop iInvoives only
reglons U and W, whereas, In Flgure 5, V ls apparentiy part of
the loop even though in reallty it is not lnvolved,

This technique does not make the verification of systems
with mutually recursive programs easler to verlfy, but [t does
provide a means of indicatlng the refative difficulty of
veritying a particular directed ftoop. In thos: cases where a
directea loop Involves a large number of regions, It might be
advantageous to try to eliminate or reduce the size of the toop
by some readesign. However, In some cases the cost of a redesign
may be greater than the cost of verifying the correctness of the
directed toop. By allowing for directed loops, the technique
proposed here recognizes that there [s an englieering tradeoft
and provides some means for evaluating that tradeoff,

The concepts of kernel! and region suggest the methodology to
be explored In the thesis. Once a system speclfication has been
determined, the algorithms and data essentlial ftor the fulfiliment
of the specitication are identifled and a kernel speciflcatlion |s
written., The algorithms and data of the kernel are‘then

subdivided Into regions and specifications are written for these

20

reglons., The designing of the kernel and the reglon
specitications isy undoubtedlyy, not a strictly sequential
processy but is more likely to be an iterative process with
successive refilnements being made to all speclfications as
problems become befter understood. The concept of a kernel
serves to minimize the amount of code that must be dealt with,
The regions serve both as 3 structuring technique to keep the
system organlized and to further reduce the size of the units
which must be verifiede With both the concept of the kerrel and
the concept of regions serving to iimit the size of unit of
veritication, i.e. the regiony, the resulting regions shouid be
small enough to be verifjied by elther mathematlical proof or
manual review technigues.

In addlition to understanding the Inherent advantages and
disadvantages of the structures presented above, it is necessary
to investlgate the ease wlth which these structures can be
applied to large computer systems. If a system designed using
the structure descr ijbed above Is to be comprehensible and
certifiabley, the regions and dependencies of the deslign shouid
easlily ldentiflable 3as modules and iInteractlons between modutles
in the system. In software, regions can be identitfied as
programs or ccllectijons of programs. However, in most
conventional programming languagess the interactions between
programs [s not always easlly ldentiflable and even when
identified, the Interactions can be difficult to describe., For

example, several projrams may [Interact by sharing a varlable

21

common to all. In order to describe this interactlon, one may
have to know how each program can modify the value of the
variable and when each program will reference the varjable
relatlve to the other programs. Since Interactions such as these
usually constitute dapendencies between regions, the interactions
must be fully specified if the overall structure of the kernel
is to be understood.

In order to facititate the ldentification and description of
Interactlions between regions, it Is desirable to use a
programming language that permits only a few well deflned means
of interaction between programs. Clearly, the means of
Interaction that are permitted by the language must be properly
chosen so as not to make the necessary interactions clumsy or
inefflcient. One gucn language Is CLU {Li741ls CLU deflnes a
program unit called a gcluster. Clusters may interact only by
means of procedure calis. Implementing regions as clusters makes
identiftication of interactions between reglions easys le.e. all
interactions between reglons are simply procedure calls from one
cluster to another. For this reason, the thesis will use the CLU
language for programming examples of reglons. The thesis will
also discuss other langhage features and system features In
general that will make regions and dependencles between regions
easier to identify and describe.

System Security
At least some minimum security Is essentlal In a certifiable

systems To certify a system one must not only prove that the

22

programs operate correctiy, one must also demonstrate that the
Programs cannot then be improperiy modified. Such protection is
a form of security. Also security is necessary to insure prlvacy
of iInformation and rellable operatlion of the system. For these
reasons, among others, security must be consldered fundamental to
the operatlon of any large certifiea computer system. Assuring
system security s of great general Interest among system
designers and users because of the desire to Insure the privacy
and tongevity of information.
One common definition of a secure system Is one In which

there can bes

1. no unauthorjized release of Information,

2« no unauthorized moditication of Iinformation,

3+ and no unauthorized denlal of service,
There are some key words in this definition of security.
Information refers to data stored in tiles by users of the
system, data stored by the system itself, and data about the
operation of the system. Examples of Information aret a user
stored list of names and addresses in a file in the system to be
used as a maillng list, a system list of users who are currently
permitted to use the system, ang whether or not the system is
currentiy running. service Is any operation which the system
provides. The ablillity to log into the system, to use I/0
devicesy and to communicate with other users are examples of
services provided by many systems. Clearly, what constitutes a

system service depends upon the system. Authorlzation is a set

23

of rules or algorithms which determine which requests tor
operations to be performed by the system are to be honored.
Agains, what constitutes authorization is dependent upon the
particular system. Some common types of authorization mechanisms
are capabliitiesy access llistsy, and securlty levels and
categorlies. The choice of a form of authorization 1s crucial to
determining how usefully secure a system will be. The cholce
that all requests for operations be honored will hardly tead to
a usefully secure systems The authorization pollcy must,
therefore, be consistent and produce some minlimum level of
protection, l.e. enough protectlon to Insure the Integrity of the
system programs themselves. The issue of what constlitutes a
meaningtul authorization policy will be dliscussed In the theslis.
The above definition of security, being very general,
appears to Include ail the securlty which a deslgner would wish
- to Include in a computer system. However, It Is the author®s
betief that thls definition Is too general and too strong and
that it is not achievable in any practical operating system.
This bellef is due to what Lampson has descrlbed as the
confinement problem [La73]. Lampson describes a solution to the

confinement problem. This solution requlres enumeration of all

information paths in the system and the suitable restriction of
Information flow along these paths. The thesis will attempt to
demonstrate, by discussing the difficulties, that the enumeration
of ali Information paths In any nontrivial computer system is

impracticaly If not impossible. tLampson®s solution is not

24

workable. Therefore, there Is no known way of achleving
securitys as defined above, in operating systems which attempt to
simultaneousiy support more than one user wilth Information he or
she wishes to keep private. I will define a workable definition
of security less strong than the one glven above. Using thls new
definltion of security, the security kernel and the regions
within that kernel wil! be specifled for a practical operating
system.

The cholce ot securlty as the object of certificatlon |is
advantageous because a system must have secure programs to be
certiflable and securlty [s an important property of operating
systems., There is currentiy much interest in builiding secure
systems. Speclfying a securlty kernel also has one major
problem. Security is a pervasive property of a system. Every
resource or object provided by the system for use by other
programs wilil, in general, need some kind of security. Thls wi!l
mean that the security kernel may not be so small. However, |t
does provide a natural means for further modularlzlng the
security kernel Into reglonss l.e. each module belng responsible
for the securlity of one type of oblect or resource, and this
modularization will be employed In the thesis.

Ihe Case Study

The actual specitication of a security kernel and its
reglons is important. The actual specification of a3 kernel and
Its Intrastructure will demonstrate the practlicallty of thils

approach to certification. That isy It will demonstrate whether

Y

25

or not a small kernel and Its constituent regions can be easlly
identified and implemented andy if sSos whether or not the
resulting regions are small enough and simple enough to be
verified by mathematical or manual review technlques.

The thesis witly, therefore, include a casé study. A design
for a security kernel for a practical operating system will be
performed. The operating system for which thls securlty kernel
is to be designed is a mildly abstracted form of Multics (Or721.
The cholce of an actual operating system Is necessary to avold
designing a toy example In whlch many real problems have been
abstracted away. The use of a mild abstraction, however, Is
necessary to avold having the thesis mired down in discusslons of
detalls ana ldlosyncrasies of the actual Multics Implementation.
The kernel specification produced wiltly however, be directly
appliicable to Multics,

There are,séveral reasons for making Multics the system of
cholcet

1. It is belleved that the Multics architecture is baslcally
secure and that there are no fundamental flaws In lts
security designe Many other large operating systems would
require very fundamental changes to make them secure.

2. Multics ls a commerclaliy viable systems, having actuaily
been marketed.

3. Multics is a large and complex systeme It is a general
purpose system wlth wide applicability and a full range of

functions,

26

b Multics Is well documented and the documentation |s
generally avaitabie.

5. The author is Intimately famitlar with Multics.,

6 It is possibie that some of this work may be Incorporated
into Multics.

7. The faciiities of Multics are sufticiently general that
parts of the specification of a security kernel for Multics
will be directly applicable to other systems.

The security kernel specification will concentrate on the
objectst filesy processes, and 1/0 devicesy since these objects
are common to most ooerating systems In some forme It is these
objects that must be made secure In order to have a secure
operating system. As stafediabove these protected obj)ects
provide a natural means for modularizing the kernet, that is, for
each type of oblect, there will be a region In the kernel whose
purpose it is to provide the security for that object. A
specification for each reglon will be described. For example,
one of the most fundamental objJects In Multlics Is the page of
data. The thesis will show that the following six functions (2)
impiemented in the karnel! wlill assure the security of the data In
a page?

cead (PAGE , offset)
neite (PAGE 4 offset 4, value)

rake copy (PAGE.COPY(n) , FRAME)

delete copy (PAGE.COPY(n))
set currcent (PAGE.COPY(n))
cemove cyrrent (PAGE.COPY(n))

(2) A detailed description of the six functions will be given In
the thesls. They are included here only to glve the reader an
ldea ot the slze and compliexity of a reglon,

27

The programs necessary to Ilmptement these functions constitute a
reglon ot the kernel., The definition of the six functions are
the specificatlion of the region.

Dependencies between regions develop when some objects are
constructed using more primitive objects.e In Multics, segments
are collections of pagesy SO the reglion that assures the securlty
of segments will be dependent upon the reglon responsible for
pages. Specitications, In terms of definitions of the functlons
provided by the regions, wili be derived for regions concerned
with the security of files and I/0 devices in Muitics. The
specification for the page reglon, the calls of which are given
above,y ls tairly simple and the design will attempt to malntalin
thls level of simpllcity for the specification of all reglons.
Programs for the regions will also be written using the CLU
language.
conclusiaon

The maln goal of this thesls ls to demonstrate a new
.methodology for designing certifiably secure operating systems.
A new technique has been proposed for structuring a system design
so that It may be more easily certifieds Thls proposal has
argued that this new technlque has advantages over other
technlques that have been proposed. The thesis wlil! Include a
case study which applles thls technique to a practical operating
system. Thls case study wlll demonstrate the appllicablilty of
the technique.

To limit the scope of the thesis to a reasonable level, I

28

have chosen to concentrate on certiflcatlon of one speclfic
property of a systemy, namely security. Thls partlcular property
was selected because of Its Importance to users of the system and
because some securlty ls necessary In a system if It is to be
certifieds A defilnitlon of security that Is both usefut! and
workable will be described more fully and formallzed In the
thesis.

The case study will derive a design, using the new tecknique
proposed above, for a secure system slmllar to Multics. The
design will describe the kernel for a Multics like system, giving
specifications for the reglons which comprise the kernel.
Programs that implemant these regions should be small enough so
that contemporary verltication technlques can be used to
demonstrate their correctness. The thesis will aiso show how the
speciflications for the reglions can be used to prove the securlty
of the kernel and the system.

Securlity ls one property of a system that appears well
sulted to certification using the design methodology proposed.

It Is not clear that this methodology Is equally well sulted to
certitying other properties of systemss The timitations of the
methodology wlil be explored; examples will be discussed and an
attempt will be made to define the bounds of [ts practical
appllcation.

The major results of the thesis will be a general method for
desligning certlflably secure systems and a design for a speclific

certlfliably secure system. The general method will also be

29

appllicable to designing systems about which propertlies other than

security can be certified.

(Be731

{Dl68)

(EI172]

(Ig73]

{La73]

(Li74]

(LP731

{Lo72)

{Ne74]

tor72]

(Pa72M)

{Pa720]

[Wa76]

30

BIBLIOGRAPHY

Bell, D.E. and LaPadula, L.J., Sacure Computer Systemss

Mathematlcal Foundatlonss MTR - 2547, Vol. I, MITRE Corp.
March 1973

Oljkstray Ee<Hey “The Structure of the ~THE® -
Multiprogramming System™, Comm. ACM, Vol. 11, No. 5y May
1968, pp. 341-346

EISpasy Bey Levitty KeNey Waldinger, ReJey and Waksman,
A. "An Assessment of Techniques for Proving Program

Correctness™, Lomputing Surveys, Vol. &, No. 2, June
1972y ACMy ppe 97-147

Igarashlis S« London, RelLey and Luckham, D.C., Automatic

Bcogram Veclfication It A Logical Basls and Its
lnplementations Stanford Artlficlal Intelllgence

Laboratory, Memo AIM-200, May 1973

Lampsony, B.Wey ™A Note on the Confinement Problem™, Conmm.
ACM,» Vole. 16, No. 10, Oct. 1973, pPp. 613-615

Liskovy Bey “A Note on CLU", Computation Structures Group
Memo 112, Project MACy MeI.T., November 1974

LaPadulay L.Je and Bell, D.E., Secure Computer Systems: A

Mathematical Modetls MTR-2547, Vol II, The MITRE Corpe.,
May 1973

Londony Rel ey "The Current State of Proving Programs
Correct™, Progce. of ACM Apnual Conf.s ACM, 1972, pp. 39-46

Neumann, P.Gey Fabry, ReSey Levitt, KeNoo et aley "ONn the
Deslign of a Provably Secure Operating System*y, Stanford
Research Institute Computer Sclences Group, Mentlo Park,
Californla

Organicky E«les Ihe Multics Systams¢ An Examination of its
Structyrey MeI«T. Pressy Cambrlidge, MasSsS., 1972

Parnasy DelL«y "A Technique for Software Module
Speclfication with Examples™, Comm. ACM, Vol. 15, No. 5,
May 1972, pp. 330-336

Parnasy Del «y "On Criteria to be Used iIn Decomposing
Systems Into Modules™, Comm. ACMs Vol. 15, No. 12, Dece.
1972, ppe. 1053-1058

Halter, KoG.' Ogden, NoFo' ROUﬂdS’ "-Cog et Aley
Beimitive Modeils for Computer Securltys Department of

Computer and Information Scienceses Case Western Reserve
University, Jan. 1974

31

(WU74] NWulfy Wey et aley “HYDRAZ The Kernel of a Multlprocessor

Operating System™, Comm. ACM, Vole. 17, No. 6y June 1974,
PDe 337‘3‘95 :

