PROJECT MAC November 14, 1975

Computer Systems Research Division Request for Comments No. 95

PROPOSED THESIS IN DISTRIBUTED SYSTEM

from Michael D. Schroeder

Attached is the M. S. Thesis proposal of Dan Milch, a VI-A student
at IBM Research for whom I am the thesis advisor. It may be of interest
to some because it addresses distributed systems, a potential future

research topic for CSR.

This note is an informal working paper of the Project MAC Computer Systems
Research Division. It should not be reproduced without the author's per-
mission, and it should not be referenced in other publications.

Massachusetts Institute of Technology
Cambridge, Mass.

Proposal tor thesis research in partial fulfillment
of the requirements for the combined degree of
Bachelor of Science / Master of Science
in Electrical Fngineering and Computer Science.

iitle: A Simulation of IEN's ARdvanced Administrative System
in a Distributed Environment.

%]

ubmitted by: Daniel Milch
461 Palmer Ave.

Teaneck, N.J. 076§§;:E3N;4 , \
\ H\\Q&\

(signature of author)

ot

ate of Submission: October 22, 1975

Expected Date of Completion: December 19, 1975

Area where research is being conducted: IBM
T.J.Watson Research Center
Yorktown Keights, N.Y.

Brief Description of FProblem: A model of a computer network
which operates with a distributed database will be
designed. The model will be based on IBM®s Bdvanced
Administrative System. A simulation of the network,
using this model, will be performed using actual
database reference streams obtained from the AAS
support group in White Plains, N.Y. The aim here will
Le to explore some of the problems, advantages, and
disadvantages of a distributed data network.

Supervision Agreement: The program outlined in this proposal
is adequate for a Master's Thesis. The supplies and
facilities reguired are available, and 1 am willing to
supervise and evaluate the thesis report.

Michael D. Schroeder
(signature of thesis advisor)

PAGE 2

POTIVATING CONSIDEKATIONS

The original motivation for the development of IBM's
rdvanced Administrative System (AAS) was to speed and make
more accurate the task of computer system order processinge.
The development effort was begun in 1965 and an initial test
system was operational in 1967. Prom the start, the
intention was for the system to be used only within the
company, and was never intended to be marketed as a "program
product®. As time passed, BmOre functional capability was
added to the system (this growth continues today) so that
there are presently twenty different mapplications®,
including order processing, that the systen is capable of
performinge. Today, AAS reaches approximately 400 IBM
regional and branch offices, located all across the country,
through a network of interactive display terminals. The
terminals are tied directly into four regionally distributed
concentrators via 4.8 K-Baud lines. The concentrators, in
turn, feed directly to two central sites over 50 K-Baud
lines. These sites, one located in White Flains, N.Y. and
the other in Bethesda, Md., jointly house the heart of the
BAS system: the application and support software, and the
database. The hardware at each site consists of the
computers themselves (currently converting from 360/85%'s to

370/168's), various communication-controlling devices, and a

PAGE 3

set of medium-to-low speed storage devices which hold much
of the software and the database. No part of the database
appears in duplicate; that is, data sctored at one of the
central sites is not stored at the other. The White Plains
database consists of roughly 17¢ data files, and anyvhere
irom one to four index files per data file, depending on the
type of data file in question. This gives .a total of
approxirately 460 files, or over two billion bytes. The
database at Bethesda is slightly smaller in size. There
appears to be no interaction between the two central sites
in terms ot exchange of data: files located at a given site
remain at that site and can only be accessed by processes
executing wholly at that site. Based on the preceding
observation, this study shall only concern itself with that
part of RAS which is housed at White Plains. This step is
taken primarily as a means of scaling down the problen
without the loss of important aspects, and will not be the
only simplifying assumption made for this purpose. The size
of the #®hite Plains databLase coupled with its 3.5 million
database access requests per day make that facility by
itself a very large one to study. Adding the Bethesda site
to the study would only complicate matters without adding

any new insight.

Today, the concept of a distributed database and distributed
systems in general is becoming more and more popular. As

engineers strive to design computers which can execute

PAGE 4

faster, they find that they are starting to run up against
certain physical limitations which tend to thwart such
efforts. One way of getting around these limitations is to
design a number of fast machines for use in a
multi-processor configuration. In this way, the execution
rate for the entire system may approach a theoretical upper
limit equal to the sum of the execution rates of the
individual machines. In order to approach this new limit,
however, the system design, both in terms of hardware and
software, must minimize the overhead cost of machine-machine

interaction.

In the case of AAS, one is tempted to consider the effects
of distributing ite large database amona a number of
geourapnically separated nodes, where each node is
essentially a scaled-down version of one of the original
central sites. If the only consideration here was increased
execution tiwme, geoaraphical distribution would not seen
advisable, since such an approach involves a certain
overhead on top of +that resulting from the transition to
multi-processors. However, there are other considerations.
To take & simple example, suppose that in a certain section
of +the country, AAS branch offices needed only to have
access to twenty of the files in the database, and no other
section of the country ever needed to have access to those
files. Then, removing those files, alona with a host

computer, to that section of the country and allowing it to

)

(

PAGE 5

run independently might seem like a good idea.
kealistically, things are not that simple. In fact, a
preliminary study indicates that +there is <come basis for
assuwing a deqree of regionality of access. That is, some
sections of some files in the database appear to be accessed
primarily by one or another geographical region of the
country. Other sections show no such regionality of access,
and in fact are accessed frequently by all regions. Still
other sections fall somewhere in between those two extremes.
Totally independent operation of distributed processors is
therefore ruled out. However, a network of processors which
are semi-dependent, but which can still operate if one or
two of their meabers becomes inoperative, appears somewhat
attractive. The "payoff"™ for such & distributed cystenm
could come in a nusber of forms. One possibility, of
course, 1is increased throughput, which was the original
motivation. However, another could be a reduction in
long-distance communication line usage and, therefore, cost.
A third would seem to be that a distributea system is less
likely to Le totally disabled Ly a local disaster. That is,
a nationwide system which depends totally on the operation
of & single, central comwputing site could be totally
incapacitated by a disruption affecting that site =such as
tlood, power failure, earthcuake, etc. The guestion then
becomes: 1is there actually a net payoff in using a
aistributed system, or will such a system he slower, more

costly, and less secure than its "centralizea® counterpart.

PAGE 6

FL0JOSAL OUTLINE

The aim of this study is to try to answver the above question
by developing a model of a distributed version of AAS, and
then simulating this distributed version as it might run
ander an actual demand situation. Such a situation will be
created by teeding the model data on some typical database
access request sequences. The latter data will come from
what is refered to as an AAS Trace Tape. In developing this
distributed version of &kAS, I intend to preserve in the
model as many features of the centralized version as
possible, adding only such functionality as 1s necessary to
deal effecitvely and efficiently with the change from the
centralized “orientation™ to the distributed one. In other
words, one of the guidelines in this effort will be to model
as ‘accurately as possible the various AAS operations
implemented in the currently running system, and to model as
realistically and consistently as possible new functions and
operations which have no exact counterparts in the current
system. In this way, comparisons between the operation of
the real, centralized AAS system and the new, distributed

version of that system will have a measure of validity.

The model will be implemented in the SIMSCEIPT II (SHAKE
version) simulation language. It will be run either on a
370/168 computer under V¥/CHS5, or on a 360,91 under 0S. The

languace implementation on both machines is virtually

PAGE 7

identical.

SOME PERTINENT INFORMATION ON AAS OPERATION

BAS is logically divided into a front-end and a back-end
system. The front-end, or message processor, deals directly
with the user network, interpretting their requests and
acting as an interface to the back-end system, known as the
data management processor. Using display screen technology,
the message processor transmits a screenfull of information
to each user, the content of wvhich is based on the history
of that user's interactionbup to the current point in time.
The transmitted information ends in a request for the user
to choose & reply from a displayed list of possible replies,
and enter it appropriately. This reply, and the subsequent
servicing involved, is refered to as an ®action®, The
interpretation process performed by the front end translates
each user reply (reguest) into a series of instructions in
the BAS Macro Language. This langquage, which consists of
roughly 140 different macro instructions along with a few
standarda assembly language instructions, is the one used in
actually accessing, manipulating, and updating the AaAS
database. There is a subset of the AAS Macro Language which
is concerned solely with the accessing and updating of the
database (il.e. those instructions not concerned with
kanipulation, adjustment, or testing of data in core, or
dealing with the flow of execution) . This subset, hereafter

reiered to as the set of Data Management HRequests (DMEs),

PAGE 8

comprises Just those instructions which are actually used by
the message processor to reguest information (data) from
D¥%. Every time one of the 30 (roughly) DMRs is received by
DM, a rTecord is made on the Trace Tape, which record
includes a specification of the actual request involved, as
well as various bits of information about the execution and
completion of that request. It is with this 1level of

execution that the model will concern itself.

DMRs are serviced by DM in a multi-processing mode, just as
user recuests to the message processor are handled in a
pulti-processing fashion. From the time a given DMR is
received by DM until the time its execution is completed and
the reguested information sent back to the front end, that
request is logically associated with one of a number of Data
Management Monitors (DMEs, or simply "monitors®™). The DHN,
then, detines the process which is servicing the recuest.
During the course of satisfying a request, the UMM is active
while bLeing serviced by the CPU or an 1/0 device, and
dormant while it is enqueued for such service. A particular
monitor is ucually dedicated to a particular user for some
portion of that user®s action (defined earlier), and thus
processes sequentially a portion of the DMRs involved in
that action. Subsecuent portions of that and other actions
on bebalf of that user may be assigned to the same oOr a

different monitor, depending on the demand level.

PAGE 9

FOCUS OF THE MODEL

Technically speaking, there are two ma jor areas of interest
which could be studied in terms of the transition from a
centralized to a distributead system confiqguration. The
tirst area deals with the effect of the transition on
aspects and facilities of the currently availabel systen,
namely resource contention and allocation. How will a move
to a distributed system affect the amount of time that DMREs
spend waiting in gqueues? How will disk contention be
affected? what will be the affect on buffer utilization:
will a buffer containing a newly-read data block be able to
satisfy more or less accessi requests before that buffer has
to be reused? The second area of possible interest is the
hature of the design and operation of the communication
£ystem and database shring protocols which must come into
existence as a result of the transition to the distributed
contfiguration. Will the database be partially duplicatd, or
will the common data contained at any two nodes be nil? Can
the sharing protocols be designed so that a minimum of time
is spent in thrashing (a high level of communication back
and forth between the various nodes)? It would bLe nice to
consider both of these areas initially. However, due to
time limitations, a more conservative approach will bLe
taken: various simplifying assumptions will be made about
answers to guestions arising with regard to the former area,
and the latter area will be explored in a bit more detail.

The actual wmodel will be designed to allow for expansion co

~

PAGE 10

that, should the time be available after completion of the
task juct mentioned, the model can be modified to deal more
carefully with aspects which may have not received

sufficient attention.

DEALING WITH CEU CONTENTION

Erietly, then, a first order approximation will be made for
the amount of CPU time and I/0 time that each DMR requires.
At first, the probable approach will be to draw this
approximation from a normal distribution whose mean value is
determined in some reasonable way. Two methods come to mind
for making such a determination: either by considering the
individual I/0 operations and the nupber of Cru-executable
instructions involved in the execution of each DMR and
obtaining time requirements from the device (1,0, CFPU)
specitfications, or by derivina the lump figures from
information contained on the Trace Tapes. | The latter
approachk has the advantage that it would constitute a true
measure of the actual system performance, which is the thing
that is really of interest. There is a problem, hovever, in
deriving even such a first-order approximation from the
Tapes; that is, the time stamping for each record on the
fapes ie done by refering to a standard machine clock which
is incremented every hundredth of a second. Unfortunately
(under these circumstances), actual CPU time requirements at
the DME level appear to be considerably less than the

hundredth-of-a-second accuracy of the clock. Additionally,

PAGE 11

there is a biasing inherent in the tiwe stampina process:
the nature of this biasing is not important, but the fact
that it exists and cannot be accurately estimated means that
the time fields are even less accurate as far as judging CPU
usage ic concerned. There may be a way of juggling figures
around to get a reasonable time estimate; otherwvise, the

tformer technigue will have to be used.

“HOLDinq" EECOKDS FOK UPDATE

As mentioned éarlier, database sharing techniques are, for
the most part, unique to the distributed version of ARS, and
will have to be carefully designed. However, there is one
existing facility in the centralized AAS that is concerned
with a lockout problem, and will be used in the distributed
version. This facility is embodied in the ®HOLD"™ option,
which is available on all of the various read~type DMRs. A
read with HOLD is used when the intention is to nodify
certain parts of the record and then write it back on the
aisk (or delete the record entirely). In fact, a record
cannot bLe updated (or deleted) by a user unless that user
was able to read the record initially using the HOLD option
(one of the two types of deleting operations contains an
automatic HOLD specification, so prior reading is not
necessary). Only one user can HOLL a given record at any
particular time, in order to pPrevent simultaneous updating.
The fact that one user has a HOLD on a given record does not

brevent another user from reading that record, but does

PAGE 12

prevent other users from reading the record with a HOLD
specification. Normally, a user can have a HOLD on only one
record at a time. HOLD on a given record can be released by

writing that record to disk, or by a few other operations.

mSN® AND mSS5" BLOCK

ftn

Up to this point, analysis has indicated that two different
sharing protocols would be useful in a distributed AAS.
uylocks containing records which are generally accessed by
only one region will be statically resident only at the node
which services that region. These will be refered to as
Static Non-shared (SN} blocks and records. 0f course,
occasional access reguests for records in such Dblocks
originating rrom outside of the owning region would have to
be dealt with. An outside request would cause a copy of the
recuested block to be transmitted to the requesting node.
trior to +transmission, the block would be fetched in
essentially the usual way by a "daemon®™ monitor specially
reserved for such purposes. Depending on the traffic, more
than one monitor might be required. Once located, the block
could bLe written to a buffer which, while appearing to the
monitor to be just like any other buffer, could actually be
the input pufier to the transmission control unit. When the
revuesting node receives the transmission, the block could
be transferred to a buffer which would remain in one of the
buffer pools (or perhaps in a newv buffer pool whose purpose

would be solely to handle such cases) until such time as the

PAGE 13

block is no longer needed. If the intent was to update a
record within that block, the original request would have
contained the HOLD option, and the servicing daemon would
have set the appropriate flags. If and when the block is
updated remotely, the actual disk update would have to take
place at the owning node. In such case, chandges are made
remotely in the buffer, and the buffer contents are shipped

back to the owning node.

klocks containing records which are frequently accessed by
more than one region wust be statically resident at the
appropriate nodes. This type will be refered to as
statically shared (SS) blocks and records. If a given S§S
Llock contains no records that are ever updated by any of
the owning nodes, no special treatment is reguired (the
validity of =such an assumption regarding any block in the
ARS database 1is in doubt). ‘However, if these recordas are
updated, new procedures rust be employed in order to insure
that the database remains in a consistent state. Nodes
owning 55 bLlocks must at the -vefy least be able to identify
thuse blocks as suche. kdditionally, a node owning an S$S
block might want to know exactly which other nodes contain
copies of that block. When one node wants to update a
particular record within an SS block, a HOLD on that record
must be Lroadcast to all the other nodes owning the block
containing that record. In order to avoid deadlock

problems, broadcasting a HOLD would actually involve

PAGE 14

capturing one semaphore (as opposed to capturing many
semaphores) located at a particular node having a copy of
the block. Lach SS block would have associated with it (at
each node that has a copy) an ordered list of owners, where
the {irst ™operational®™ node on the list is the one that
holds the semaphore. The purpose in having a 1list of
jossible owners rather than a sinagle owner identifier is to
avoid having one node depend unconditionally on any other
cspecific node, and thus recreate the problems of a
centralized implementation. With ordered owner lists, each
node operate: independently to the extent that it beconmes
the owner of the key semaphore when all other owining nodes
ahead ot it on the 1list are inoperative. Furthermore, this
ownul characteristic is implicitly and consistently
transmittea across the network by virtue of the fact that
when the first node on an owner list is deemed inoperative,
the second node becomes the owner of the key semaphore,
etc. (a "clean®™ solution would assume that an inoperative
node would be overative enouah to indicate its condition,
and thus avoid having to make a timing-dependent decision as
to how long to wait for a response before assuming the
inoperative condition). When the semaphore is captured, the
update can be performed. Once the wupdate is completed,
copies vof the new record must be broadcast +to all other

nodes having copies of that record.

In the two ypreceding cases, an update at a node (or nodes)

PAGE 15

which did not actually instigate that action was involved.
The question of precisely how and when the physical update
should occur is an important one, and one which has not been
aelinitively answered as of yet. Currently, more
information is needed on how updates are performed on the
centralized BAAS implementation. Indications are that
changes to existing records and additions of new recordé are
physically carried out immediately as part of the servicing
0ot those requests; that is, when a DM monitor issues a
change/add update request, it cannot service the next DMR
until the quate has been physically completed. Deletions,
on the other hand, seem to be Physically perfqrmed in a more
leisurely manner; all +that is immediatelj involved in
cervicing this type of Tequest is the flaggqing of the
appropriate index records pointing to the data record in
question. The physical deletion actually occurs some time
laver, though once the index is flagged, the data record is
no longer available. 1In a distributed environment, a large
amount of SS update (immediate) interaction among nodes
would probably tend to degrade overall systen performance.
The approach that may very well be taken here is the
following: when a broadcasted update is received by a node,
T.) the index record (s) of the updated record are flaggéd,
and 2.) the new copy of the record is held in a special
Mapdate pending®™ pool. The physical update would
subsequently be performed when the systenm resources

iecessary to complete the wupdate hecome available, or at

FAGE 16

least are not under a heavily loaded condition. If the
record which has an "update pending®™ flag set in its index
is requested by a DM monitor, the record is fetched from the
apdate pendina pool and not from disk. If the record is
locally requested using the q0LD option and then
subsequently updated, the update occurs as usual, but,
additionally, the flag is reset in the index and the updated
record is purged from the update pending pool. 1In this way,
the processing load at each node is more a consequence of
the activities of the users in the region which that node
serves, and less a conseguence of activities and load

conditions present at other nodes in the network.

DYNAMIC ALTERATION OF BLOCK STATUS

A third sharing protocol, which actually may be a
rodificaton ot the two preceding protocols, would involve
various blocks being %dynamically"™ resident at one or
another of the nodes. Multiple copies of the block might
exist at any given time, as with the SS blocks, or the block
might exist without «copies, as with the SN blocks. The
block and ite possible copies could be allowed to
dynamically change residence, depending on time-wise
shifting access patterns. For example, if a block is
accesced frecuently at one node during a given time period,
and then is not accessed at all for some time, and then is
requested frecuently by a user at another node, it might be

wise to chanue the residency of that block. The algorithm

PAGE 17

that would make such a decision, in addition to refering to
a time—of-day clock (available on most machines) would also
have to know at what time and by whonm (local.or remote) the
block was accessed. Having a block time-stamped each time
it is accessed, and‘indicating whether the access was local
or not, uouid be one approach. Another more costly approach
would be to keep track of how many times the block is
accessed 1locally as opposed to remotely. Based on this
information, a decision miqht be made to 1.) change the
status of the block from SN to SS (or from $S to SN) and/or
2.} change the residence "mode® from static to dynamic (or
vice vursa). The cost-effectiveness of the various
approaches would have to be considered when deciding which
one should be used in the model. Additonally, the assertion
that access patterns do indeed shift with time has not been
concretely established, although there is a general
indication that this might well be the case. Pinally, the
time scale over which shifting access patterns are to be
observed is important. Whether this scale should be on the
order of days, hours, or minutes is something that has yet

to he decided.

)
b

IKACE TAPES

Pt

LROFPER DSE OF T:

The Trace lapes will be used, among other things, to provide
a realistic 1load for the model when a simulation is run.
However, the exact order in which the DMRs are recorded on

the Tapes is not at all the order in which they were

PAGE 18

actually generated by the requesting users, and it is this
latter seguence that is really of interest. Much of the
orderinu of the Tape records is in fact a consequence of the
service times involved with those requests, as well as other
conditions existing at the time the requests were processed.
For example, consider the following two streams of requests
generated by two hypothetical users (the reguests and the
sequences in which they are listed are actually valid and
semantically correct, although their exact meaning need not

be discussed here) :

USER A USER B
GETSTK VALID

NEXT GET

NEXT GETDUP
ENDSTR GETDUP
REKREAD GETDUP (HOLD)
KEKEAD (MOLD) EKNDDUP

POT DELETE

. .

These two sireams, of course, would be merged on the Tape.
Jowever, the way in which they are merged depends very much
on the characteristics of the system at the time they are
received and processed; i.e., what blocks currently are
resident in the buffer pools, what the CPU contention is
like, what the I/0 contention is like, etc. There is no
reaston to assume that these characteristics will be
duplicated in the distributed system; in fact, any such
assurnption tends to defeat the whole pupose of the modelling
and simulation. It is precisely the individual user request
streams, therefore, and not the merged request stream that

appears on the Trace Tapes, that are needed as simulation

PAGE 19

input.

Unfortunately, in oraer to satisfy such a reguirement to the
letter, all the Trace records used in the simulation would
have to be scanned, sorted, and stored before the simulation
war beyun. FPractically speaking, this is not possible.
There are ceratin assumptions that can Dbe made, however,
which can simplify matters significantly, and at the same
time result in only a small deviation from the original
requirement. Wnat will be involved is a look-ahead process
which scans a finite number of records ahead on the Tape
while the simulation is in progress. The aim is, at any
given point in the simulation, to always have the next DMR
issued by each active user ™in hand® so that when the
request currently being processed for that user conpletes,
the next one can be supplied immediately. The question is,
how tar ahead does one look before despairing of finding
that next request, and thus assuﬁinq that the user has
tinished and logged off, has gone out for some coffee, or
has just stopped to collect his +thoughts. The answer is as
follows: according to figures supplied by AAS support
personnel, 95% of the inputs to the system (actions) are
serviced in five seconds or less. Since a number -of DMRs
are generated for each action, it can be assumed that an
even hidgher percentage of DM requects are serviced within
the five second period (or, similarly, that 95% of all DMKks

are servicea within a shorter amount of time). Information

PAGE 20

on the Trace Tapes indicates, for each DMP, when the request
vas received and how long it took to service it. Based on
thie information, one can decide that after looking ahead on
the tape for a certain amount of recorded time (and not
finding the next request for a supposedly "active"™ user), no
further look-ahead is required in order to provide the model
with an accurate picture of all the immediately pending

requests tror each user active at that time.

These, then, are what I see as some of the motivations for
and goals of the modelling / simulation effort.
Undoubtealy, specific requirements may change, o0ld ideas wmay
be discarded, and new ideas may be adopted. However, I feel
that this proposal has presented a fairly accurate picture
of the direction in which these efforts are currently

heanind.

FAGE 21

REFERENCES

o]

tooks and Articles

Kiviat, P., R. Villanueva, and H. M. Markowitz, The
SIMSCRIPT 11 Programming lLanguage. Englewood Cliffs,
N.Jd., PFrentice-Hall (1968).

Mihram, G., Simulation: Statistical Foundations and
dbethodology. N.Y., Academic (1972).

Reitman, J., Computer Simulation Applications:
Discrete-Event Simulation For Synthesis and Aneslysis of
Complex Systems. N.Y., Wiley-Interscience (1971).

wimbrow, J. H., ™A large-Scale Interactive Administrative
System®, IBM System Journal, Vol. 10, Ro. 4. 260-282
(1971) .

feorple

Conversations and private communications with the following
individuals have been of help:

C.K.Attanasio, M.Auslander, G¢.Bucci, H.Markowitz, P.Markstein
of IbM (T.J.Watson Kesearch, Yorktown Heights, N.Y.).

C.Eilis of the University of Colorado.
J.Saltzer, M.Schroeder of KIT.

D.Cretara, S.Xruse, R.Langham, J.Madziola, k.Nardi
of IBM (LPD Headquarters, White Plains, N.Y.).

K.Zabriskie of IBM (DPD, Bethesda Md.) .

