PROJECT MAC December 2, 1975

Computer Systems Research Division Request for Comments # 96

THE IMPLEMENTATION OF ALGOL 68C ON MULTICS
from J. H, Saltzer

The attached memo was received from Professor Maurice Wilkes of
the University of Cambridge. It describes a project, undertaken by
M. Richards and J. Grant, to import an ALGOL 68 compiler to Multics
using the ARPANET from the London TIP. Although the project was not
completed, some interesting ideas are contained here, and the files

(including an ALGOL 68 manual) are available for future use.

This note is an informal working paper of the Project MAC Computer Systems
Research Division. It should not be reproduced Wwithout the author's per-
mission, and it should not be referenced in other publications.







UNIVERSITY OF CAMBRIDGE
COMPUTER LABORATORY

THE IMPLEMENTATION OF ALGOL68C ON MULTICS

In early 1974 shortly after a connection to the ARPA net
had become available to us, machine time was made available on
Multics for us to embark on a project to transfer the Cambridge
implementation of ALGOL68 (ALGOL68C) to the Honeywell 6180
computer which supports Multics. It was hoped that this project
would give us some experience of the remoteuse of Multics and
would also give useful practical experience of the transfer of
the ALGOL68C compiler, one of the design objectives of which
had been that it should be as portable as possible., Dr.Martin
Richards was in charge of the project and he was assisted by
Mr.J.Grant. It was realised at the outset that the task was an
ambitious one to attempt with the limited manpower and resources

available, but it was hoped that at the very least useful
experience would be obtained.

Connection to the ARPA net

: Connection is by means of o leased line to a TIP in
London. At the Cambridge end there is a GT40 with a display

and keyboard. The GT40 is programmable and equipped with cassette
tapes for the storage of short files. The software for it was
developed at Cambridge in connection with another project and has
proved to be completely reliable and reasonably convenient to use.
It provides facilities for driving the cassette tapes and the
keyboard, and also for driving an Olivetti typewriter. It may

be connected either to the TIP or to a local IBM 370/165 computer.,
The latter is not a host to a TIP and bulk data transfer must
therefore be made via the cassette tapes. This limits the amount
of information that may be transferred and the maximum data rate
obtainable amounts in practice to about 30 characters per second.
There would in any case have been the fundamental limit imposed

by the fact that the connection across the Atlantic has a band-
width of only 7.2K bits per second.

LATTLI e T

BN NI, ~ KT IR K L P RO

PR

S EL . T

W ATIIRITEIEST LN e

.

v e -

e —
e —— ————— s 5



o

-

ALGOL68C
ALGOL68C is a substantial subset of ALGOL68 and its

compiler has been under development at Cambridge for several
years, It first ran on the Cambridge Multiple Access System
which was implemented on an Atlas 2 computer, and it has since,
after further expansion, been transferred to the IBM 370/165, a
PDP 11/45, and the Cambridge CAP computer, as well as to other
machines elsewhere. The compiler was designed under the direction
of Dr. Bourne and much of the implementation work was done by |
himself and his two research students Andrew Birrell and Ian
Walker., The resulting system has proved to be portable,
particularly between machines whose architecture is similar to
that of Atlas or the IBM 370, This portability was achieved

by splitting the compiler into two parts, one being machine
independent and concerned among other things with syntactic

issues and the other being a code generator which is necessarily
highly machine dependent. The interface between these two halves
is a language called Z-code which resembles a typical assembly
language in form but is, in fact, specifically designed for
ALGOL68C.

~

Unlike the intermediate object codes of most portable
systems, Z-code can be modified to take advantage of the
characteristics of the target machine. A parameterised speci-
fication of the target machine must be supplied to the machine
independent part of the coﬁpiler for each transfer to a new
machine. This has the advantage of allowing much of the routine
optimization of register and storage allocation to be done in a
general way by the machine independent part of the compiler, thus
making the highly machine dependent code generator smaller and
easier to write than it would otherwise be. The main part of the
parameterised machine specification gives the number of each kind
of register and what types of value they can contain. With this
information the machine independent first part of the compiler is
able to generate appropriately optimised Z-code for machines

with multiple registers, such as the IBM 370 or PDP 11, The

optimising capability is made less use of in the case of a

¥
» S A e e AR

LSRR it

R e A e - L

Ve ST BTN I N

A L T

C

AP e




single accumulator machine such as the Honeywell 6180,

Implementation Strateqy

The ALGOL68C compiler was more or less complete and
working in the summer of 1974 and by January of 1975 it was
sufficiently free of bugs to be fit for distribution. The first
step of the tronsfer to Multics was to construct the parameterised
specification of the Z-code that we pfoposed to generate and then
compile the entire ALGOL68C compiler into Z-code using this
specification. The only problems at this stage resulted from
the large size of the compiler and the organisation of the many
dotasets involved. It turned out, for instance, that we needed
our own private version of the compiler'on the IBM 370 with one
of the moin tables slightly enlaorged. The source code of the
compiler emounted to about 12,000 lines of text and when compiled
into Z-code it expanded to approximately 40,000 lines. This
quantity of data wos for too great to transmit to Multics using
the net because of the low speed of our line and the small capacity
of the cassette tapes, and so we chose to transfer the material on
a magnetic tape that was physicolly sent to M.I.T. For this
purpose we used standard IBM 9 track tape, since we did not
consider that an attempt to write o standard Multics tape on our
computer would be likely to succeed. The tape format chosen was
one used when transferring BCPL to non-IBM installations and
consisted of 80 character card images in which 36 EBCDIC
characters of IBM data were represented by pairs of hexidecimal
digits (0-9,A-F) in positions 1 to 72, the remaining character
positions holding a sequence number. With the expert assistance
of o Multics systems programmer during a brief visit to Project
MAC, we were able to read ond decode this tape with the aid of
a PL/1 progrom and a newly available IBM magnetic tape package.

We were in this way oble to transfer the entire source and
Z-code forms of the compiler to Multics together with files
containing among other things the lenguage manual and a variety
of test progroms. It was clearly most desirable that the Z-code
on the tape should be correct, since it would be both slow and

inconvenient to send replacement topes. The compiled Z-code was




-

therefore checked by eye with great care. However, one problem
with the specification of the torget machine was not spotted at
this. stage. In the original specification we had allowed only
one register (MQ) for reals and integers. However, it was soon
realised that the compiler would only work if at least two such
registers were allocated and so a second was added. At the time
it was thought that this would cause no problem to the code
generator since, if necessary, the second register could be
implemented as a storage location. However, a problem did

arise since most arithmetic operations needed to be done in the
machine accumulator and so its current contents frequently had to
be saved. Unfortunotely, it was not always possible to determine
from the Z-code whether the current value of the accumulator was
an integer or a recl and for this reason the code generator could
not be designed so as to compile satisfactory code. It turned
out, however, that the compiler used no floating point arithmetic
at all, and so it was decided that for the initial bodtstrap

only integer crithmetic would be provided.

Having generated the Z-code for the entire compiler we
had three possible strategies available to us. First, one could
implement an assembler and interpreter on Multics. This was
ruled out because of the expected inefficiency of the interpreter
bearing in mind the size of the compiler to be interpreted.
Secondly, a code generator could have been written and run on
the IBM 370 at Cambridge. This would have allowed for easy
program development since we were, of course, familiar with our
own computing service and could take advantage of its excellent
facilities to the full, including the simple but valuable ability
to produce line-printer listings conveniently. However, this
approach was not chosen since one of the primary aims of the
project was to gain first hand experience with Multics and this
approach would have meant that most of the development work
would have been done on our own machine. There would also be a
problem with the debugging of the massive quantities of assembly
code generated since it would have had to be transmitted across

the Atlantic before it could be test properly. Any errors found

———"




=5~

in this code would usually have indicated an error in the code
generator and re-transmission of the corrected assembly code
would have been necessary. We therefore chose the third possible
strategy which was to implement the code generctor on Multics
having transferred the entire Z-code of the compiler once and

for all by way of magnetic tape.

The Code Generator

It was clear that the code generator for Z-code should
be written in a high level language and in retrospect perhaps
we should have adopted o more coventional approach and used PL/1,
since this is the stondard Multics programming language. However,
we had o particuler interest in BCPL and chose to use it for the
job. BCPL is a much simpler language than PL/1 and generates
more straightforward code which is less well optimised but easier
to follow. It was useful to study the code produced by this
compiler to help us plan the code generator for ALGOL68C, and it
was also interesting as an example of how to incorporate a foreign
language into the PL/1 environment of Multics. One of the
problems with BCPL on Multics is that its library is undocumented
and so it took more time than we expected to learn how to use it

effectively.

We designed the code generotor to translate from Z-code
into ALM, the assembly language for the Honeywell 6180, rather
than into binary since we wished to avoid the need to learn the
detailed format of binary object modules. Although the syntax
of ALM is well documented, few Multics users find they need to
use it and one needs to be o Multics expert to program in ALM
effectively, Our basic documentation was the GE 645 Processor
manual which was later augmented by a supplement. We chose, at
an early stage, to generate very simple code in the hope that we
could keep within the time .scale available. For instance, we
chose to use none of the Extended Instruction Set (EIS) instructions
available on the H6180 and also chose to compile code so that all
the ALGOL68C data were held in one segment. This allowed addresses
to be held in the index registers of the machine but, of course,
it meant that much of the multi-segment structure of Multics would




6=

not be accessible directly to this first version of the compiler.

Conclusions

From our point of view the project was generally success-
ful and most educational to us. However, like so many projects
it overran its planned time period and did not reach the level of
development that we had hoped for initially.

When we chose to write a code generator rather than an
interpreter we made the conscious decisionto expend very little
effort on optimisation, since we were only planning to perform
the initial level of bootstrap. As work on the code generator
progressed it became clear that the compiled code would be
substantially more bulky than we had predicted. This was not a
serious problem, since Multics was well capable of supporting
large programs, but it did have indirect drawbacks. For instance,
the cost of machine time to generate and assemble the code was
higher thon we hod expected, and it was also a problem to find
sufficient disc space for the files involved. We now realise
that the cost of running an interpretive compiler, although high,
would not have been substantially greater than the cost of con~
structing and debugging the compiled compiler. Thus, in retro-
spect, we might have done better to implement an interpretive
system. We also found that Z-code was not nearly as well
matched to the H6180 as it was to the IBM 370 and that in con-
sequence the code generator itself was much larger than we

expected.

Debugging the code generator at the BCPL level was not
a difficult task since it was a fairly simple program, but
debugging the assembly code that it produced was quite another
matter, since we had to become experts in the rather complex
inner structure of Multics. For instance, it turned out to be
necessary to have a detailed knowledge of the implementation of
many of the PL/1 data types, the coding of the standard calling
sequence, and the layout and organisation of the stack and
linkage segments. This knowledge was certainly of great in-

terest and improved our understanding of Multics, but its




7~

acquisition took a long time and contributed to the delays in the

implementation of the code generator.

At the conclusion of the project the code generator was
virtually complete and compiling correct but inefficient code.
The parts that were left unimplemented involved rare special
cases that were thought never to occur in practice. In order
for the compiled code to be run a package of input/output
routines has to be provided to serve as an interface to the
operating system. Much of this package is itself implemented
in ALGOL68C and consists of two segments of code: system code,
and user code. The former provided very primitive input/output

procedures, many of which were defined with the aid of sections
written in assembly code. The latter contained higher level
ALGOL68C transput procedures defined in terms of the primitive
ones. Both the system and user code segments were based on

the corresponding segments in the implementation of ALGOL6SC on
the Cambridge CAP computer; however, their conversion for Multics

was not completed in time.

A list of files remaining in Multics is given in the
appendix in case anyone is able to take the project up. The
ALGOL68C compiler, in machine-independent form, is currently
supported by the University of Cambridge Computing Service.

APPENDIX

This appendix gives the names, purpose, and status of the
more important files used in the implementation. Unless other-
wise stated they all resided in the directory of J. Grant.

a) mrlCrrf.ex

~ This is the exec_com file that was used to extract
documents from the ALGOL68 tape. The tape is currently in
the Multics machine room and the use of the exec_com is most
easily deduced by typing the file. The first file on the
tape is called JCLADUMP and is the IBM job that wrote the

——on




-8~

tape. It is useful as a reference since it specifies the
position and names of all the other recorded files.

b) mr10>manual

This is a copy of the ALGOL68C manual written by
S.R.Bourne, A.D.Birrell, and I. Walker.

c) system.A68 and system.zcode

These are the source and Z-code files of the library of

primitive input/output routines.
d) user.A68 and user.zcode

These are the source and Z-code files of the part of

the library that provides the high level transput routines.
e) A68CTXT '
This is the entire ALGOL68C source of the compiler.
f) AGBCMPLZ

This is the entire Z-code compilation of A68CTXT
compiled on the IBM 370/165 at Cambridge.

g) cg.bepl
This is the source of the Z-code to ALM code generator
h) cg

This is the executable program corresponding to cg.bcpl.
It is called with one argument which is the name of the Z-code

segment to be ccmpiled.

November 1975

A

e e L

POV T T

D L D TNt

C e dad o Mk s W st €

. T L F



