/\

PROJECT MAC ' | 2 December 1975
Computer Systems Research Division Request for Comments No. 97
A NOTE ON THE FINAL REPORT FROM SRI

by Philippe A, Janson-

My interests have been drifting lately towards the study of virtual
memory systems and storage systems, and methodologies for designing them.
A relevant document on these topics is the final report recently issued by
SRI on the design of their provably secure operating system. I have
investigated the design of their virtual memory system with particular care
and I have extracted from the report and summarized here for interested
people a description of it. Less interested readers will probably find all
they want to know about the system. More interested readers will be able
to decide whether they want to read the report itself. v

This note is an informal working document of the Project MAC Computer

Systems Research Division. It should not be reproduced without the author's
permission, and it should not be referenced in other publications. '

Foreword

The following document will attempt to describe the structure of the
virtual memory (VM) mechanism contained in the provably secure operating
system designed by SRI. It is hoped that our description will match as
closely as possible the formal specifications (FS) presented in the SRI
report. Any inaccuracy is of course to be blamed on us although it should
be said that the report itself is unclear on a few occasions.

The report presents a very promising methodology for describing and
implementing structured operating systems. To demonstrate the use of the
methodology, SRI has applied it to the design of one operating system.
Unfortunately, SRI has not tried to implement the so designed operating
system. The design suffers from this lack in that it overlooks several
feasibility and efficiency issues. After reading the report, we believe
that the virtual memory implementation suggested in appendix' B would indeed

be impractical.

The VM system
The SRI system comprises 11 levels of AMs as summarized below. The

following names try to capture what I feel is the actual function of each

level.
level manages provides
0 interrupts, capabilities address interpretation
, interrupt dispatching
1 addresses address calculation’
2 virtual processors process switching
3 fixed-VM segments paging, device control
(permanently active)
4 ‘user segments segmentation, revocation
revocable capabilities ‘(paging?)
5 mapping of ETOs to REPs extendibility
6 directories name-uid mapping
: access control
7 user objects lost-object problem
handling
8 linkage sections (Iink_man, etc...)
9 links dynamic linking
10 processes process scheduling

In this document, we will be concerned about levels 0, 3 and 4 which
implement the VM Levels 1 and 2 are of interest only as they are used by
levels 3 and 4. Level 1 basically fakeé care of indexing and indirection
in addressing. We can ignore it if we assume that all addresses uttered by
levels 3 and 4 refer directly to the appropriate operands. Level 2
basically allows switching processors between scheduled processes, much
like in Reed's proposed design, when waiting for a page to arrive in core.

While the system seems well structured above level 4 thanks to the

type extension mechanism provided at level 5, the lower levels of the

system are not as well organized because they are not based on data
abstractions. Each level manages more than one type of object (provided
interrupts, capabilities, addresses, fixed-VM segments, devices and user
segments are viewed as types) and many types are managed by more than one
‘level. The hierarchical structure exists only through the functional
structure provided by the AMs (see mapping functions in appendix B) but
does not correspond to any hierarchy of extended types. This functional
hierarchy leaves several mechanisms undefined becausé the FS are interface
oriented and not enough inside-mechanism oriented. They fail to convey
information about the internal operation of the system. For instance, a
page is not recognized as an object per se and therefore, there is no AM
dedicated to the management of pages. Thus, concepts like paging and
resource control, which are attached to the concept of a page, are regarded
-as mechanisms internal to various levels and are not specified at any
interface of any specific level. It is impossible to understand or to
prove anything about these mechanisms as they are not described in the ES
but rather left to the discretion of the implementer. |

Level 4 is claimed to cqntgin a backup mechanism but this does not
show through the FS either and it is not described in the report.

LEVEL 0

~-Data bases

cap_map addr_map

evocable cap:virgin cap virgin cap, pageno:core addr
irgin cap :virgin cap

The cap_map maps revocable capabilities into virgin capabilities that

directly point to the object they denote (see Redell's revocation scheme).
Virgin capabilities are mapped into themselves. The addr_map maps any
in-core page to its absolute address. The two maps are core resident. 'If
a particular capability is not in the cap_map, a cap_map fault occurs. It
ls our guess that cap_map faults are directed to level 4 as level 4 is the
repository for all capabilities, even though level 0 is the official
capability manager. If a page'is‘not in core, an addr_map fault occurs
that is directed to level 3 (or level 4 for user segments?). It is not
immediately clear which AM handles 1/0 for page faultﬁ because the
fault/interrupt side of an abstract machine (AM) is never specified in the
FS of the AM. Such interfaces are only loosely mentioned in the
accompanying text but never described. Some paragraphs suggest that level
3 handles paging 1/0 (pp 0-4, A.3-1). Other parégraphs suggest that both
levels 3 and 4 are responsible for it (pp 5-18, 7-5). Also, the FS do not
embodyfconcepts like a wired page. Thus, it seems unclear how one would
prove that page control programs, wherever they are, do not take page
faults. The text does state that certain pages must remain in core at all
times but this does not show through the FS.

--Primitives _

The primitives comprise hardware functions to add and delete entries
in the two maps, extract information from the various fields of an entry,
generate a new capability, and move information from one core word to
another (processor_ registers are part of core). Level 0 primitives are
actually accessible only to level 1. But level 1 has pfimitives that
directiy map into levelvo primitives after address calculation. Thus, we

may regard level 0 primitives as accessible to higher levels.

LEVEL 3
é-Data bases
t1 , t2
irst entry
uid pageid
size sec. stor. loc.
page list addr. - - core addr. .
next/0 _ .:? next/0 -;2

T1 contains one entry per fixed-VM segment. T2 contains one entry per
fixed-VM segment page. T1 and t2 are’cope resident. Thus, fixed-VM
segment are always "active" in the Multics sense but their pages are not
wired down. T1 and t2 basically corresponds to a wired down AST with
linked entries for all the segments that have to be permanently active but
can be paged in/out of core. Four such segments will be used by level 4 to
contain the system map and the tree of revocable capabilities.

N.B.: pageids are not used anywhere in the FS.
--Primitives

There exist primitives to read and write fixéd-VM segments, and‘to
set/get their size. There also exist primitives to create and delete
fixed-VM segments (p A;3-3). This sounds reasonable but contradicts the
text of the report (p 5-17), which says that there'iéhonly a fixed number

of fixed-VM segnments.

LEVEL 4
--Data bases

Level 4 manages two data bases, sl and s2 of formats identical to
those of tl1 and t2 respectively. S1 is the system map. It describes all
usef segments. $2 is an AST that compounds page tables and file maps of
user segments. As sl and s2 are fier-VM segments, their pages are not
core resident.

Two more data bases are used to store the tree of revocable

capabilities.
s3 sd
first entry ”
revoking capability uid revocable uid
revocable list pointere next/0 .
next/0 - ;)

--Primitives

Level 4 primitives comprise functions to read, write, create and
delete segments, to change their size (explicit call), to chase down a
virgin uid given a revocable capability, and to create and revoke revocable

capabilities.

Conclusion: problems

To conclude our discussion, we presume that SRI realizes that more
work is required to produce a design that would lead to an efficient and
practical.implementation. The above design is oversimplified and‘not very
realistic as illustrated by the examples in the next two paragraphs. SRI
has demonstrated the use of the design methodology on a "paper" system but
the effectiveness of the method remains to be shown on a real system
design. |
1) Assume that the 256th page of a segment s is not in core. An
addr_map fault will occur when it is first referenced. Since the file map
for the segment is in s2, a fault handler must be invoked presumably at

level 4. It will look in sl to find the address.of the file map of s.

This may cause a second addr_map fault, on sl this time. Then, the linked .

file map will be followed down 255 linkS (potentially causing a flury of
addr_map faults) before the original fault will be resolved. Finally,
execution can proceed ... until the next fault, which is bound to happen.
soon since the previous flury of faults has substantially increased thé
working set of the user program, which, in a system with limited core
resources, would cause most of that working set to be thrown out of core.
2) It seems as though addr_map faults on level 4 segments must be
directed to level 4 and faults.on level 3 segments hust be directed to.
level 3. Thus, there must exist local paging device management functions
at each level since the interface of level 3 does not seem to provide such
functions to lével 4. Unless the paging device cannot be shared across
levels 3 and 4, there has to be one paging device map aécessible to both

levels. This defeats the whole idea of hierarchical dependancy.

