PROJECT MAC December 18,4 1975
Computer Systems Research Divislon Request for Comments No. 98

A Certifiable System Initlatization Mechanism

by Allen HW. Lunljiewski

This Is a copy of my recentiy accepted master®'s thesis
proposal. Comments and suggestlons on [t will! be greatly
appreclated.

Brlef Statement of the Prgblems

In order to certify a computer system as secure, [t |Is
necessary to certify an Inlitial state of the system as securee.
It is the purpose of system iInjitlallzation to produce this secure
Initilal state of the system. Current system Inltlallzation
technlques are very difflicuit to certlfy due to the ad hoc
techniques that they employ. MWe propose an alternative system
Inltlalization mechanlsm that ||s more easliy certified than
current mechanlismse 1Its chief characterlstlcs are the concept of
a minimatl system conflguration and the use of dynamic
reconflguration. These serve to greatly reduce the amount of
ad hoc initlatlzatlon code needed and thus make the task of
certification easier. An implementation on Multics, a prototype
computer utlllty, will be undertaken as part of thls thesis.

Ihesls Supervlsort David D. Clark

This note Is an Informal working paper of the Prolect MAC
Computer Systems Research Dlvision. It should not be reproduced
without the author®s permlssion, and It should not be referenced
In other pubtlicationse

Py

Introguction

The need for protection mechanlisms within a computer utillty
has become accepted wlthin the computer system communlty
(including users, designaers and researchers)s Once securlity Is
recognlzed as Important, It Is necessary to certlify that the
computer utliity meets this requirement. To show that the
computer utitity Is secure one normalily shows that It satisfles a
property of the form ™Gilven a secure state, a sequence of
stimulll applled to the security kernel (1) teaves the system In
a secure state™. This results In a need to certify the initlal
state of the system [1], created at system |Initlallzatlon time
(also known as bootioad time or Initial program. load time), as
secure. Current initjiallzation ftechnlques are rather ad hoc,
resulting In difficulty In performing thls terflficaflon. This
proposed thesis will Investigate a more easily certified method

of system Initializatione.

System Inltiatization - A Definition

The secure initlal state of the security kernel conslistsy In
generaly of five partst
1. Correct contents of maln memory.
2+ Correct contents of secondary memory (such as

disks)e

(1) The securlty kerne! ls that part of the system supervisor
which 1Is concerned wWith providing the facilities on which the
securlty and protectlon notions depende.

3. Correct contents of reglsters In hardware modulese.
4. Correct setting of manual switches on hardware
modules.

5« Correct physical intermodule connections.
The exact nature of each of these Items Is dependent upon the
security mode! one is operating under. (2) System Initialization
consists of all ot the activitles necessary to get each of these
areas into its oproper initlal states In doing so it also gets

the securlty kernel Into its correct Initial state.

Initlallzation and the Systenm Configuration

We defline the system conflguration to consist of the |[tems
of hardware Iin the system and the physical connections between
them. Additlonally it consists of software parameters whlch
control the actions of the security karnel. Thus the system
conflguration Inctudes the processors, memorles and the 1I/0
devices present as well as the sizes of system tables and the

values of tuning parameterss.

From our definition of the secuyre (Inltlal state of the
security kernely we see that +the secure Inltlal state of the
kernel is a functlon not only of the securlty notlons one |Is

using but also of the particular system conflgurstlion presente.

{(2) For some cases It may be that subsets of each of these areas
are unimportant to the secure Inltial state of the security
kerneil.

System initlallzatlon must produce a secure Initlal state of the
kernel that reflfects the system configuration. Thls means that
the actilons taken by system Initlalization are a function of the
system configuration. System lnlfla|lzétlon is thus driven, to a
farge extenty by the system conflguratlon present at bootioad

time.

Gkectification of an Inlitlal 3tate

The Initlal state of the securlty kernel can be certified as
secure In one of two baslc ways. One way Is to certlify the
result of system Initlallzation. That ls, we certlify that the
components of the initlal state resul ting from system
Initlallization represent a secure kernel. Alternatively, we
could certify the system Inltliallzation routines themselves. In
thls case we certify that regardless of the conflguration these
routines wlill elther produce a secure Inltlal state or they willl
report fajture to the operator (l.e. the attempt to inlitlallize
the system falls). He reject the tlrst method since the
certification process must take place each time the system IS
inltlallzed. This 1s so since al though It may be posslble to
certify a gilven Initial state on a given configuration as secure,
such a technique would atiow us to certlfy the system as secure
only for the duration of a particular bootload. Subsequent
bootioads would require recertiflcation of the Inltlal state.
This is because we do not know whether or not the system

inltiallzation routines will always produce the same state for a

given conflguration and we have no ldea what will happen lf we
change the contiguration. For Instance, they may have real tinme
dependencles (that are unlikely to be reproduced) that make the
dlifference between a secure and an Insecure system. For this
reason we choose to certify the system Initlafilzatlon routines
themselves. In this case we certify that, regardiess of the
configurationy, the system Initiallzatlon routines elther leave
the system in a secure state or cause the bootload to fall. In

thls way the certiflcation process need take place only once.

Ibesls Limlts

The general toplic of thls theslis will be the design of a
certiflable system Initiallzation mechanism. It wouild be nice to
develop a metadesign (one applying ¢to many computer systems),
however this wlill not be done since system Initlallzation Is tled
very closely to all aspects of a particular computer system.
This means that the development of such a metadeslign would entall
the development of a model of a large class of computer systems,
a task which looks very difflicutte. As our Interest Is not to
modet many computer systems thils theslis wit! restrict Itselt to a
particular system with the hope that the ldeas developed wli} be

applicable to other systams.

Thls proposed thesls wlll examine system initlatlization on

Mul tics (21, a prototype computer utilitys. Multics Is chosen for

three reasons. Filrst It Is written Iin a hlgh level language,
PL/I. Second it ls reasonably modiudlar, more so that many present
operating systemss These two reasons mean that understanding of,
and modification tos the existing software wlil be easler. These
also contribute to Multjics® designed ablllty to evolve easlily.
Since the Initializatlon scheme to be developed wiill be an
extension of the current mechanlsm this abillty to evolve Is very
deslirable. These two reasons also mean that the produced
Inltialtization mechanism could be more easily certifled. A third
reason is the avaltlabllity of Multics to the author and the

author®s famiflarity wlith It.

In this thesls we shall be concerned with that part of the
Muitics security kernel which runs In ring g. We will not ©be
concerned wlth the inltlallzatlon of those parts of the securlty
kerneil which reside outslde of ring (. Thlis Is a reasonable
restrictlon since the Initlalizatlon of the non-ring ¢ parts of
the securlty kernel s relatively easy. This Is because these
Inltialization routines can use the standard environment provlded

by a fully inltialized ring g to run In.

Ioltlalization on Multlcs

All of the actlons of system Inlitlallzatlon on Multlcs (and
on all systems In fact) take place elther before running on the

bootlioad processor(s) {(3) or while executling on lIt. Actlons

which take place before running on the bootload processor consist
entirely of generatling the bootload mediume (&) This medlum
contains kernel programs and kernel data as well as
initialization programs (l.e. programs to run on the bootload
processor prior to the attainment of the secure Initial state)
and thelr assocliated data. It 1s the purpose of the
initiatization routines, while running on the bootload processor,
to take the kernel programs, kernel data, configuratlon
informatlon, the contents of main and secondary memory and the

contents of the bootioad medlum and produce a secure Inltial

state ot the security kernel.

Currently In Multics very llttie happens prior to running on
the boottload processor. The programs comprising the kernel and
the initlatizatlon programs are complted and placed on the
bootload tape. Addlitionally access information is provided for
each segment for Incorporation Into descrlptor segments. Some
segments also have their ultimate location In the file system
specifled as thelr well as their access control Information. All

other actions necessary to Initjiatlze the system occur while

runnlng on the one bootioad processors.

Multlics presently uses an Incremental, or *bootstrapping”,

mechanlsm to Initlallze the system while running on the bootioad

-

{3) The bootload processor ls the processor that the system runs
on during system initlalization.

(4) Usually elther disks, magnetlc tape or punched cards.

processor (3]. That isy starting from a very primlitive
environment present when the first part of the system Is read
Into core, the Inltiatizatlon programs add pleces to the
environment, creating a new environmente. Then, whlie running In
thls new environment, they add more pleces to the environment
creating a new environment, This continues unt]ll at the very end
we have a completely Inltlallized Multtics. This scheme suffers

from two flaws from the polnt of view of certiflicatlon.

Flrst Is the fact that It is an Incremental mechanism.
During initiatlzatlon parts of the standard ring 0 environment
are serjally made active and then used by Initlallzation. Thus
parts of the securlty kernel are In use before 1t has all been
initiallzeds By Its very nature this Incremental mechanlism
defines a hlerarcnhlal layering of the system (4], For a
hierarchlalily designed system thls ls a reasonable way to proceed
since the fayers are well deflned by the system desligne. White
running on the virtual machline deflned by tayers 0 to 1 the
Initiatizatlon routlnes can construct a secure Initlal state of
tevel 141 and then run on the virtual machlne deflned by layers 0
to 1+1. However, for a non-hierarchlal system bootstrapplng ls
lnappropriate. The global interactions present in a
non-hierarchial system make the boofstrépplng process diffjicult

to understand and certify. (5) The Initlalization routines must

{5) It is not clajmed that this results In a3 non-certlfiabile
system. However, we do clalm that the system Is more dlfficult
to certify due to these Interactlions.

not invoke or alifowx to be invoked (via a fault or Interrupt) any
routine which can not yetbfunctlon properly. A routine might be
unusable because it requlres a data base that has not yet been
constructed, a routlne [t uses may be unusable or the routine may
not even be in the virtual memory yet. Invocation of an unusable
routine might lead to unexpected, and Insecure, results. The
non-hlerarchial nature of the ring 0 supervisor of Multics today
thus leads to the flaw of global Interactlons In a bootstrapping

Inlitialtlzation schemee.

The bootstrapping process and the non-hlerarchlal nature of
Multics 1lead to a second flaw - mul tiple non~-standard
environments. These multiple non-standard environments result
from the functional hierarchy 1Imposed wupon ring © during
Initlalizatlon. They make the task of certiflcation more
difficult by their presence. The certifier must understand the
many environments present, Instead of Jjust the standard
environment, thus Increasing the complexity of the certifier®s
taske. In Multics these flaws manlifest themselves In the rather

ad hoc nature of the bootstrapping process employed.

Ap Altecpatliye Inltlalizatlion Machanisy

It was pointed out earller that the actlions performed by the
Initiatization routines must be guided by the current system
configuration. The current structure ot Muttlics Inltialization

Ils targetly motivated by thils necessity. The varlous Incremental

stepss as they executey, create a verslion of the inltlal state
which i1s tallored to the particular conflguration present. In
this ways, Multics can be inltialized on a wlde varlety of

configurations without changlng the bootload medlum,.

This thesls wlll concern {tself with the design of an
alternative Initlalizatlon scheme for Multics that wlll avoid the
flaws mentloned above whlle preserving this highly desirable
property of having one bootload medium work for many
configurationse. The baslc ldea Is to reducey, as much as
possibley the amount of code executed during the Incremental
phase. Operations now performed In the lncremenfal bootstrapping
phase will be (identifled which are more properly regarded as
reconfliguration operations on a secure securlity kernel rather
than as Inlitlallzatlon operationse. Other activitles wlll be
ldentifled as belng common to aill bootloads and thus can be
per formed at the time the bootioad medium Is generated. The net
effect Is that much less code need be executed on the bootload
processor prjor to the establishment of the secure Injitial state.
This reduces the number of non-étandard environments praesent
during initlalization .and thus makes the task of certlfjication

easlier.

Initlatlzatlon wlll proceed baslcalily as follows. A core
Image of the system witl be constructed when the bootload medlum
ls generated. This will contain a copy of the security kernel as

it should appear in coree. At system inltlallizatlon time the core

Image 1Is 1oaded Into core and control transferred to It. The
theslis will show that only a small number of operations need be
per formed to <create a standard and secure environment at this
point. This standard environment wlll be the normal Multics
ring 0 environment, less the file systems (5) At thls polint
another set of operatlons wiill cause the flle system to worke
This results in a standard Multlcs ring ¢ environmert. At this
point reconflguration operations are used to adapt the now
running system to the deslired hardware and software

configuration.

The thesls will show that an expanded set of reconfiguration
operations makes It possible to generate the core Image whlle
making few assumptions about the actual configuratlion the systenm
will be coming up on. This ls Important since the assumptlons
that one does make about the configuratlion one will be coming wup
on serve to define a minimal configuratlion. This wminlmal
configuration will be a subset of all possible configurations
that one can bring the system up one. By keepling the minlimal
configuration small we Increase the number ot posslible

configurations we can boot one. (7)

(6) He exclude the fite system as It appears to be a speclal
case. It*s Initiallzationy while not ad hocy Is not a simple
matter. Thus we prefer to define an environment wlth no flle
system rather than trylng to Initialize the flte system as part
ot core lmage injtiatlzation.

{7) Thls Is desirabte In order to maintain compatiblilty with the
current system which can boot on an extremely wide range of
configurations wlth no specjal effort belng requlired to do so.

Recontlgyration

As part of this thesis we wlltl consider reconfiguratloﬁs
upon the securlty kernel. It iIs beyond the scope of this theslis
to design and implement all possible desirable reconflgurationse.
Instead we shall plck reconflguration operations whlch arel

\1. Retevant to the proposed Initiallzatlon scheme.
2« Illustrative of the types of problems one might
encounter in developling other reconfigurationse.
By wusing these crjitera we wlil choose reconfiguratlons which
indicate the correctness of the [nitizallzation deslign and which
provide guldes to developlng other reconfjlguration operatlons

which will complete a full Implementation.

Reconflgurations can be classltied as elther hardware or
software reconfigurations. Hardware reconflilguratlons include the
addition and delation of central processorss memorles,
Input-output multiplexors, front-end processors and I/0 devices.
Sof tnare reconfligurations basically Involve ad]usfment of
securlity kernel parameters (such as scheduler parameters) and

changing the sjize of system tables.

In this thesls we witl conslder only addltlve type
reconflgurations. In terms of Schell®*s thesls {5) we can
characterize aaditive reconfigurations as being those which do

not requlire a reblnding of logicat to physlcal resources nor do

-12-

they require the removal of a resource from a resource managers
Thus deletlng a central processor is not addltive since processes
running on It must be moved to another processor. We restrict
ourselves to additive reconflgurations for two reasons. Flrst
they wiil be the only kind needed for the proposed initiatlization
schemes Since we always start with a minimal conflguration we
need only aad to the minimal contiguration in order to get to the
actual configuration, we never need to delete. Second, as noted
by Scheil, non-additive reconfigurations tend to be much harder
than addlitlve ones. As recontiguration Is not the central toplc

of this thesis we will avold this harder probleme.

Hardware Reconflaucations

We will dlscuss and Implement two examples of hardware
reconfigurations, e will consicer the oproblem of adding an
Input-output multiplexor and of adding a front-end processor. HWe
do not discuss the reconfiguration of central processors and
memorles since Schell has already covered the toplc Iin detaltl.
These twWwo examples will jiflustrate solutions to two major
problems of hardware reconfiguratlons. Flrst we will see how the
new hardware module can be made known to the relevant software.
Second we will Investligate the problems of dynamically changing

channel masksy interrupt masks and simulate patterns (8) in

(8) A simulate pattern Is usec by Multics to allow a processor to
send a3 partlicular interrupt to a particular processor in the

system.

response to such an additions. These changes are needed In order
to open the retevant physical communication paths. These two
problem areas are lltustrative of the problems one might
encounter In adding other hardware ltems such as tapes, llne

printers and card readerse.

Software Recopntiguyrations

We will Investigate the dynamlc reconflguration of the
active segment table as an example of a software reconfiguration.
It Is chosen since 1t Is jllustrative of the major probiems one
can expect to encounter when attemoting a software

reconflguration. We shall now outiine three such problems.

On Multlcs It Is common practlce to place different tables
In the same segment. Thus if one tablie needs to be expanded It
may be necessary to move one or more tables out of the way wlth
all the potential problems assoclated with such a move. The
active segment table lliustrates this since 1t reslides In the

same segment as the core map and varlous pagling device tablese.

In Muitics the tables we are [nterested In reconfiguring are
shared by all processes. They also have the property that they
are paged and a segment fault can not be taken whlie accessing
them. Addltionally Multlcs wuses flxed sized page tables,
residing In a3 segments actlve segment table entry (ASTE), for
access to paged segments. All thls means that if such a segment

must get larger In response to a reconfiguration request and if a

-1(’-

larger page table (and hence ASTE) Is needed to do thls, the
segment descrilptor word (SOW), which points to the page table,
must Dbe changed In all processes to point to the new ASTE. This
must be done In a way so that all processes continue to function
properly., Ways to do this will be consldered for the actlve

segment tablie.

The third problem assoclated with software reconfiguratlons
are absolute (or physical) addresses of items In main memory.
For Instance the descriptor base reglster, page table words,
segment descriptor words and OCN tists (9) all use gbsolute
addresses to reference memory. Because the software runs 1In a
virtual memory, It has need to convert from real addresses to
virtual addresses and back agaln. This conversion |Is currentty
facilitated by keeplng each set (l.e. al! page table words) In
one segment which Is contiguous In real memory. Thus the virtual
to real conversion involves only an addition of the absolute
address of the base of the segment to the offset wilithin the
segment to get the real address from the virtual addresse.
Simitilarly to get the virtual offset within a segment from an
absolute address one subtracts the absolute address of the base
of the segment from the glven real address. For generallzed
reconfigurations ([t may not be possible to preserve this
contjgulty of segments. Thus alternative methods of perforslng

these conversions are needed. NWNe witl discuss thils problem using

{(9) A DCH list is a tist of words in memory used to control an
Input-output multiplaxor.,

the active segment table as our example.

Thus in this thesls we wlll examlne the problems of rardware
recontfigurations by using two exampless HWe wliill explore how to
add an input-output muitiplexor and how to add a front-end
processor to the system as examples of these problems. The
dynamic recontfiguration of the active segment table wlll be used
to Iinvestlgate the problenms assoclated with software

reconfigurationse.

lnplementation

As part of this thesls an lwsplementation of the design wllil
be undertaken. The main parts of the implementation will consist
of the routlnes to generate the core imagey the routines to load
the core Iimage and the routlines to lnitialize the core Image.
Additlonally some reconflguration operations wiil be explored.
The purpose of the [mplementation Is three folds First [t wltl
show that the system can In fact be Initiallzed by this method.
Second the implementation will demonstrate the ease In performing
and understanding these three parts of the design. Third It wlll
serve as a working model. It will provide a testbed on which

design problems can be seen ang corrected.

Current Status and Remalnling Lasks

At this time the basics of the deslign have been formrulated.

Also the design, Ilmplementation and testing of the dynamic

-16-

recontfliguration of the actlve segment table has been corpleted.
The detalls of generating, loadlng and Inltlallzing the core
Iimage are not precisely known at this time. The development of
the detalled deslign of each of these can proceed In parallel as
they should be essentially independent. The develogment of new
reconflguration operations can proceed [ndependentiy of these
three tasks since the reconflgurations can be designed and tested

by using essentlally the current system,

~

- 17 -

Bibllograghy

[1) Prolect MAC Progress Report XIs Massuchesetts Institute of
Technology, July 1974,

{2)] Introduction to Multigss MIT Project MAC Technlcal Report
123, Masssuchesetts Institute of Technology, July 1974,

{3) System Initiatizatlions, Honeywell Informatlon Systemss IncCay
OrderNoe AN70+s 1975.

{4) Di}kstrasEdsger Wey INe Structure of the "IHE®™

Multiprogramming Systems Communlications of the ACM, Vol. 11,
No.5 (May 1968), pp 341-346.

{5) Schell, Roger R., Dynaslc Recontlguration ln a Medulac
Computer Systems MIT Project MAC Technlicatl Report 86,
Massuchesetts Institute of Technology, June 1971.

