PROJECT MAC | o 19-December1975

Computer Systems Research Division ‘ Request'for Comments No. 99

A METHODOLOGY FOR THE DESIGN OF STRUCTURED VIRTUAL MEMORY SYSTEMS
Thesis Proposal by P. A. Janson

Thesis Supervisor: M. D. Schroeder

This note is an informal working paper of the Project MAC Computer Systems
Research Division. It should not be reproduced without the author's
permission and it shoud not be referenced in other publications.

Massachusetts Institute of Technology
Project MAC
Computer Systems Research Division
Cambridge - M&ssachusetts
Proposal for Thesis Research in

Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

Title: A methodology for the design of structured virtual memory mechanisms

Submitted by: Philippe A. Janson ' Author's Signature:

Date of Submission: 19 December 1975

Expected Date of Completion: May 1976

Brief Statement of the Problem:

Much effort is currently being devoted to producing certifiably secure
computer systenms. The general methodology to reach that goal consists of
decomposing a system into a structured set of modules. Each module should be
sufficiently small so it can be proved correct with existing verification
techniques. A partial ordering based on functional dependency should exist
among the modules so that a structured verification of the entire system can
be generated from the verification of the individual modules. No methodology
published today has succeeded in decomposing the virtual memory mechanism of a
computer system into modules that are sufficiently small to be verified and
interact with one another in a way that allows & structured verification of
the entire system. A methodology is proposed to achieve that objective. The
essence of the methodology consists of generalizing the concept of type
extension to exploit it in an area of a system where it has never been applied
"before. It 1is suggested that, by using the systematic approach of type
extension, the virtual memory mechanism of a system can be regarded as being
implemented in terms of abstract objects and can be organized into a structure
reflecting that of the abstract objects. The usefulness of the method in
designing efficient and well structured virtual memory mechanisms will be
illustrated by a case study involving a model of a commercially avallable,
general purpose computer system. ' :

Introduction. | |) ~

A computing utility provides a community of users with the ability to
share access to its resources. If access to the resources is uncontrolled,
unauthorized access to the information stored in the computer system can
result. The advent of large computing utiiities has thus fostered the need
for computer systems that are capable of protecting the information they_
contain.

Much effort'is currently being devoted to proddcing secure computer

systems [see for instance Neumann75, Schroeder75]. A system is secure if its

implementation implies its formal specifications and if its formal
specifications match the security model it is claimed to implement [see'for
instance Bell73, Walter74], |

Proving the correctness of an entire system as a single unit, by
verifying that its implementation implies its formal specifications, is ,::;
impossible because existing formal program verification techniques are not
powerful enough. An alternative method to prove the correctness of a system
cgnsists.of partitioning the system into regions,.verifying each region
separately (in fact, correctness needs to be proved only for the security
kernel, which contains regions critical to security), and then proving that
the correctness of the regions implies the correctness of the system. This
methqd requires that each region be sufficiently small to be verified by human
auditing 6r eveﬁ by'automatic techniques. It also requires that the regions
be partially ordered by a functional dependency relation, so that a structured
proof of correctness of the system can Ee generated from the individual proofs
of cdrrectness of each region.

In many systems, the security critical procedures and data bases are too

large to be core resident at all times: they must use the virtual nemory
mechanism of the system. In additipn, the virtual memory mechanism supports
the user objects that the system claims to protect. Thefefore, the virtual
memory mechanism is critical to security.' [ts correctness must be proved to
produce a secure system. Unfortunately? no design methodology exists fhat has
succeeded in breaking the virtual memory mechanism of a large system into
regions that are sufficiently smallland well organized to allow verification
to take place,

The proposed thesis will develop a methodology for organizing a virtual
memory (VM) mechanism into a set of small and partially ordered regions. The
methodology is based on the idea of a world of objects that is structured by a
concept of type extension. This concept resembles the type extension concept
encountered in protection mechanisms. However, it is designed to be used in
the specific area of virtual memory design, and not in other areas of system
design or in user environments. This constitutes thg originality of the
proposed design methodology. All objects involved in the VM mechanism are
classified into several abstract types. The relation existing between an
abstract type and the types implementing it will naturally lead to the design
of type managers (regions) that are partially ordered by a dependency
relation. The proposed thesis will demonstrate the use of the methodolbgy by
applying it to the design of an efficient VM mechanism for an existing general
purpose computing utility.

Related work on partitioning systems into - regions.

Partitioning a system into regions includes two aspects. The reglions
must be sufficiently small so they can be verified, and they must relate to

one another in such a way that their individual correctness can be used to

4

ﬁrove the correctness of the whole system. This means that sbme ordering
Eased on functional dependency must exist among the regions so that the
correctness of a regioﬁ can be derived from the correctness of the regions it
depends on and the correctness of the system can be implied by that of‘the
user visible regions. | |

One can roughly distinguish two different -- although not unrelated --

approaches to the problem of partitioning systems into regions: the level of

abstraction (LA) approach and the type extension. (TE) approach. The LA
approach assumes a totally ordered set of regions that are usually based on
functional abstractions of the mechanisms encountered in the system. The TE
approach is based on data abstractions of the méchanisms encountered in the
system. It presumes partially ordered regions but does not preclude a total
ordering. The LA and TE approaches are in fact compatible. They can be and
usuallyvare used complementarily within one system.

The LA approach was first eﬁcountered in the THE system [Dijkstra68],
then in the Venus system [Liskov72]. It was also used in an operating system
for a PDP-11/45 (Schiller73], in a VM systen (Price73], in the CAL system
[Lampson75]) and more recently in three structured system designs (Saxena?7s,
Neumann?75, Biba75]. Each system is organiied into a set of regions called LAs
that are totally ordered by a linear dependency relation. Processor
managément, memory management and device management are examples of mechanisms
that usually constitute LAs. The LA approach has been used successfully in
decomposing the high level primitives of a system into regions. However, the
current literature does not propose any design that decomposes a VM mechanism
into LAs correspénding to regions of sufficienfly small Size to allow .

verification. 1In all systems mentioned above, the VM mechanism (or memory

management function) invariébly constitutes one or at‘most two LAs. When the
VV ls just a paged memory [Saxena?5], or a segmented memory (Schiller73], the
corresponding LA may be amenable to verification. But if the VM is composed
of paged segments [Neumann75, Biba75]), verifying segment, page, core and
device management within one or even two LAs becomes an impossible task. In
fact, in the SRI system [Neumann?5] and in Price's system [Price73], the use
of two LAs instead of one.does not help at all becau;e many functions (e.g.
paging) are duplicated as part of each‘LA._ Thus, neither LA is substantially
smaller than an equivalent single LA would be. In CAL [Lampson75), the use of
two LAs helps towards reducing the size of each LA but is not yet sufficient
to make their verification possible'and their understanding trivial, as each
LA still seems too large. .

A formal TE approach was first suggested for the Hydra system'[Jones73].
Somewhat different approaches are embodied in the CLU language [Liskov74], in
the CAL system [Lampson?75) and in the SRI system ([Neumann7S}. Under the TE
approach, data items such as directories or messages are regarded as abstract
type objects and are implemented in terms of more primitive type objects like
segments or pages. All objects of a certain type (e.g., directories) are
maintained by the manager for that type (e.g., the directory manager). The
type managers are the regions of fhe system. Since each abstract type object
is implemented in terms of objects of more primitive types (therefore the term
"type éxtension"), a partial ordering of the regions follOws‘from the
dependency between the type managers. This structure among the regions will

be called an object based structure as it results from the underlying

existence of abstract objects.

The TE approach to partitioning has two advantages over the LA approach.

6

First, in the TE approach, all the attributes of an object are defined and

. manipulated within the appropriéte type manager, whéreas in the LA approach,
different levels may be responéible for different attributes of the same
entity [Habermann7S] or, more generally, it may not be clear what the entities
are. Thus, the object based interface of a type manager tends to define
abstractions more precisely and more completely than the functional interface
of a LA. The user of an abstraction will tend to write programs that are
cleaner and simpler if the abstraction is defined by an object based interface
than if it is defined by‘a functional interface. Second, LAs assume a total
ordering of regions that is unnecessarily constraining, whereas the TE
approach allows a more natural partial ordering of regions.

However, thé TE approach is more difficult to apply to systems design for
two reasons. First, not every concept in a systen cén be cast into an objéct
bascd structure. Some of the mechanisms composing a system have an intrinsic
operational aspect, which may not be modeled properly by an object based
structure. For instance, a dynamic linking primitive does not "manage"
(completely and exclusively control) linkagg nor any other kind of abstract
objects; neither do code conversion, character comparison or bit string
manipulation roufines. Second, TE itself is a sophisticated feature that,
under its current form, requires the support of a VM mechanism, so that the VM
mechanism and lower level mechanisms cannot use TE.

The Hydra kernel ([Wulf74] has been designed to support operating systems
based on the TE approach. The TE approach has also been used in the CAL
systen [Lampson75] and in the SRI system (Neumann75) in conjunction with the
LA approach, as mehtioned earlier. In tﬁe.Hydra‘and SRI systems, the higher

level primitives of the system fit well into an object based strdcture.

However, the formal notions of abstract objects and extended types are all but
“absent from the implementation of the lower level primitives of the systenms,
where a functional approach similar to LAs was taken. - In both systems, the
most primitive type of object is precisely the type.of informatiop container
maintained by the VM mechanism (pages or segments). Howevér, the
implementation of these prihitive types of objects depends on functional
abstractions like resource allocation and paging, rathér than-on more

primitive data abstractions like core blocks and disk records for instance.

Thus, even though the VM mechanism implements data abstractions, the
advantages of TE are lost in the mechanism itself because those data
abstractions are not themselves implemented in terms of more primitive data
abstractions. (The CAL system is somewhat more successful in this respect as
it follows more closely the formalism of type extension.) 1In all three of the
Hydra, CAL and SRI systems, the partifioning techniques used for the VM-
mechanism have not succeeded in breaking it into regions of a size
sufficiently small to permit verification. The Hydra kernel ([Wulf74], which
supports pages as a primitive type is not partitioned at all. 1In the CAL
system, the VM mechanism is implemented by two LAs-each of which supports a
different type of file. Unfortunately, each LA supports many other types of
data abstraction in addition to files. As a resuit, the size of each LA seems
beyond the capabilities of existing verification techniques. In the SRI
systemv[Neumann74, Robinson75, Neumann75}, the software for the VM mechanism
is composed of two Parnas-like abstract machines (Parnas72a, 72b}. The higher
level machine provides user segments and the lower level machine provides a
fixed number of fixed size, permanently active system segments. The abstract

machines cannot properly be called type managers as they implement much more

8

than just segments. Their internal»opefation, which is pfecisely the complex
part of any VM mechanism, is an agglomerate of resource and 1/0 management
functions. These functions do not correspond to operations on any formal
abstract object. The design of the two VM abstract machines has failed to
recognize paging as a mechanism they share, which could have been isolated in
a‘separate LA. instead, the paging ﬁechanism is duplicated as part of each
abstract machine, as mentioned earlier. Consequently; the two abstract
machines are implemented by programs that seem too large and too complex to be
verified with existing techniques. |

The methodology to be proposed fdr designing an efficient and well
structured VM mechanism is based on a generalized TE concept that preserves
the advantages of the traditional concept used in Hydra, in CLU, in CAL and in
the SRI system, but make§ it applicable to VM mechanisms.

A generalized type extension concept.

Ts understand how the generalized TE concept and the traditional one
differ and how they may complement each other in 3 system, we will define a
model of an abstract object and point out the differences and the connections
between the two concepts on the element;‘of the model.

Every abstract type is defined by a set of operations that can be

performed on all objects of that type by the manager for that type. Every

abstract object is named by a unique identifier (uid). The uid is unique over
all objects of all types and over all times:_ ﬁhe uid of a destroyed object is
never reused. The uid is the concatenation of a type identifier (tid) and an
object identifier (oid)., The tid is unique over all types and the oid is
unique within each type to allow type dependant interpretation. Every

abstract type is implemented in terms of more primitive types. Thus, an

object O of type T is implemented by a set of components, which are objects
01, ..., On of more primitive types T1, ..., Tn réspectively. The
correspondence between an object and its components is called the map of the
object. The map together with the components of an object compose the

representation (rep) of the object.
object 0 of type T

" map

rep

object 01 objectloz object 03| components
(type T1) (type T2) (type TJ)}

With the above model of an abstract object, we are in a position to point
out the differences between our generalized TE concept and the traditional
one. |

The first difference has to do with the primitive types of objects we

will be manipulating., The traditional TE concept has always implicitly

assumed that the most primitive types, which we will further call base level
types, are the virtual information cohtainers supported by the VM mechanism
(pages or segments). However primitive these types may be, they are still
"extended". Pages and segments are logical entities but have no intrinsic
hardware connotation. Instead, the most primitive types we will be

considering, which we call bottom level types, are core blocks and disk

records, which are information containers with a direct hardware
representation. Segments and pages are implemented in terms of in-core and
out-of-core copies of information. Core blocks and disk records are the most

primitive objects one could conceive: they are implemented by themselves. The

10

fundamental difference between base level and bottom level objects-is their
life time. Base level objects are created and deleted [Liskov74]: we further
refer to them as C/D objects. Most of the objects manipulated by a VM
mechanism (those of types between boftom and base levels) are never created or
deleted (except for occasions when hardware modules are reconfigured). They
have a permanent existence and are only allocated and freed: therefore their
name of A/F objects.

The second difference between the two TE concepts is a direct consequence
of the distinction between C/D objects and A/F objects. In the traditional TE
concept, the uid of an object ié meaningful to a user of the objecf between
creation and destruction of the object. This time span corresponds to the
life time of the object. The.uid loses all meaning after the object is
destroyed. In the generalized TE concept, the uid of an A/F object retains
its meaning for a user of the object between allocation and deallocation of
the object. But this time span does not correspond to the life time of the
object. After the object is deallocated, the uid looses its meaning for the

users but keeps it for the type manager. The id of a core block is its

absolute address, which may cease to be used temporarily, while the object is
free, but continues nevertheless to exist.
The third and most fundamental feature of the generalized TE concept

deals with protection. The generalized TE concept does not afford to A/F

objects the protection that the traditional TE concept affords to C/D objects.
Protection of C/D objects is based, for instance, on sealing their ulds inside
capabilities. The use of capabilities implies the maintenance of a
system-wide table of currently valid capabilities. Since there is in general

a very large number of objects for which valid capabilities exist, such a

11

table is too large to be core resident at all times: 1t requires the support
of the VM mechanism. But the purpose of A/F objects is precisely to implement
the VM mechanism. Thus, they cannot at the same time depend on it to
implement the system-wide table to hold_capabilitiés,for them. Consequently,
'the use of capabilities for A/F objects must be rejected as impractical.
However, this does not mean that A/F objects are unprotected. The protection
of A/F_obJects is based on two constraints that are enforced outside of the
formalism of the TE concept. First, only those regions of the system
implementing.thé VM mechanism are allowed to use A/Fvobjects. Second, those
regions must be proved to "conserve" the<uids.of the A/F objects they use:
they must be proved to use only uids that were passed to them by higher level
callers or returned to them as the_result of downward éalls (requests for
allocation for instance), and they must be proved to destroy 6r cause
destruction of all instances of uids (except the originals owned by type
managers) of objects they return to free pools.

The security of an A/F object is thus dependent on the trustworthiness of
the regions using it, while the correctness of these regions is dependent on
that of the A/F type‘manager. This situation creates a dependenﬁy loop
between the A/F type manager and its users. In fact, this is a "benign"
dependency loop. The true reason for avoiding mutual dependency between two
regions is to make the design of the system more understandable and its
correctness easier to prove. In the present case, the correctness of the
region using the A/F object does depend on the correctness of the A/F type
manager but the correctness of the type manager depehds only on the proper
conservation of the uid of the object. The proposed thesis will show that the

conservation property does not depend recursively on the semantic correctness

12

of the type manager. Therefore the loop is Eenign in that it can easily be
broken conceptually and complicates neither the understanding nor the
verification of the system. Thus, while the protection property of the
traditional TE concept is not preserved for A/F objects, a different kind of
protection is provided by the certification of the VM mechanism. More
importantly, the structural property and the resulting ad&antages in designing
an object based system are presefved by the generalized TE concept.

The fourth generalization of the TE concept results from the essence of
operations on A/F objects. The essence of an operétion on a C/D object
consists of manipulating its components. Manipulating its map is a trivial
task. In fact, in most implementations, a C/D type manager does not even
bother to implement the maps for objects of its type. A central mechanism
creates and protects the maps for all abstract tybe objects under the form of
many capabilify lists [Jones73] or of a huge segment containing all the maps
(Neumann75]. On the COntfary, the essence of an operation on an A/F object
consists of manipulating the map and not so much of manipulating the
components. The reps of A/F objects consist essentially of maps that allow
the hardware to go, for instance, from a segment to its page table, from the
page table to a page and from a page to a core block or a disk recbrd to
ultimately perform an efficient "read" or "write" on a bottom level component.,
Not only is fhe map the crucial part of the rep of an A/F object, but A/F type

managers cannot depend on any central mechanism to implement maps: the

traditional TE concept uses abstract information containers to implement maps,
which is just what the VM mechanism is trying to implemenf. Instead, each A/F
type manager must implement the maps for the objects it manages out of

whatever primitive information containers are available to it.

13

The proposed design methodology.

Given the TE concept defined above, the methodology consists of defining
sohe sﬁitable set of abstract types to ultimately implement base level objects
in terms of bottom level objgcts. The choice of the abstraét types is a
tradeoff between efficiency of operation and ease of verification. If many
abstract types are defined between.bottom and base levels, the regions
implementing the type managers are likely to be small and thus easy to verify
- but the implementation is likely to be inefficient because of all the maps
that will be established between a segment and the core blocks that ultimately
implement it. Once the abstract types are defined, the dependency graph
between the regions of the VM mechanism can easily be drawn. . For a given
abstract type, the typé manager will depend on all type managers implementing
the components of the objects of the given type, and on the type manager
implementing the information containers used to store the maps of the objects
of the given type.

A casevstudz.

In order to demonstrate the use of the methodology, the proposed thesis
will apply it to a case study. This study involves é model of the Multics
system [Organick72, Multics74]. The model exhibits the general functionality
of Multics as perceived by its users: users see a ségmented VM of which each
word can be addressed by segment number and offset; thanks to a demand paging
mechanism, users are unaware of the pages of a segment; user segments are
catalogued in a hierarchical file system, protected by access control lists
and periodically saved by a backup mechénism.v However, . the model is an
abstraction of Multics in that none of the internal interfaces of Multics are

preserved. The functionality of most mechanisms not directly accessible to

14

the users is different from the original Multics and is abstracted as much as
is possible without oversimplifying the problem of designing the VM mechanism.
The Multics system has been chosen as the basis for the model for three
reasons.

First, it is a commercially available and viable system. Thus, by
applying the methodology to the redesign of its VM mechanism, we will avoid
the pitfall of triviality that wquld»result from using a toy system as a case
study.

Second, it is a large, powerful and sophisticated system of which the VM
mechanism is efficient but unamenable to any kind of proof due to its size and
complexity. While applying our design methodology to the case study, we will
preserve the functionality of the Multics VM mechanism as perceived by a user,
but we will completely reorganize its internal hardware.and software structure
to simplify it.

Finally, we have chosen Multics because it is available, because we are
- familiar with it and because the proposed thesis fits in the framework of an
ongoing research projéct aimed at restructuring the security kernel of Multics
(Schroeder75]. |

The design to be proposed will consist of the specifications for all the
abstract machines [Parnas72a; 72b] of the system kernel (in the Hydra sense of
the word as opposed to the securlty kernel). The system kernel will comprise
the VM mechanism and a virtual processor management mechanism that the VM
mechanism depends on. The virtual processor management mechanism is not an
original part of the proposed thesis. Stch a mechanism is currently being
designed at the Computer Systems Research Division of Project MAC along the

‘lines of an object based structure. Its specifications will simply be .

15

included in the proposed thesis for completeness. The VM mechanism will not
include any policy for user resource control but it.will contain mechanisms
for physical resource control (to avoid overflowing physically available
space). It will assume it is supporting Multics-like access control, user
resource control and backup functions but these functions will not be included
as parts of the system kernel. They will only have some impact on its design.

The efficiency of the new design of the VM mechanism will be rated by
showing that the number and the nature of the abstract object maps encountered
on the access path from a segment to its bottom level components match the
number and the nature of the data structures encountered on the equivalent
path in the current'Multics implementation. |
Conclusion..

The main purpose of the proposed thesis is to present a design
methodblogy for producing a structured VM mechanism for a certifiably secure
system, by extending the systematic approach of type extension to an area of
system design to which it was not originally thought to be applicable. A
second goal of the thesis is to demonstrate the applicability of the
methodology on a case study. One result of the proposed thesis will be to
demonstrate that a VM mechanism can be designed in a structured fashion and
still be efficient. ’

The design methodology is based on a generalized TE mechanism. It
consists of casting‘the concepts manipulated by the VM mechanism into an
object based structure and then deriving the depéndency graph of the type
managers involved in the operation of the VM mechanism from the object based
structure defined previously. |

The methodology wili be demonstrated by redesigning the VM mechanism for

16

Multics, a commercially available, genefal purpose computer system.
Specifications will be given for the different type managers involved in the
VM mechanism. The dependency graph will be shsﬁn to be loop-free. The
efficiency of the new design will be shown to be comparable to that of the
current design.

References,

{Bell73] D.E.Bell, L.J.LaPadula, "Secure computer systems'", ESD-TR-73-278,
Mitre Corp. (Nov.1973). oo

{Biba75] K.J.Biba, "Kernel levels of abstraction", Multics Design Note 13,
Mitre Corp. (Feb.1975).

(Dijkstra68) E.W.Dijkstra, "The structure of the THE multiprogramming systenm",
CACM 11, 5, p 341-346 (May 1968).

{Habermann75} A.N.Habermann, L.Flon, L.Cooprider, "Modularization and
hierarchy in a family of operating systems", to appear in CACM 19 3
(Mar. 1976). :

(Jones73] A.K,Jones, "Protection in programmed systems", Ph.D.Th., Dept of
Comp. Sc., CMU (Jun.1973).

[Lampson?75] B.W.Lampson, H.E.Sturgis, "Reflections on an operating system
design", to appear in CACM 19 3 (Mar.1976).

[Liskov72] B.H.Liskov, "The design of the Venus operating system", CACM 15, 3;
p 144-149 (Mar.1972).

[Liskov74] B.H.Liskov, "A note on CLU", CSG Memo 112; MIT Project MAC
(Nov. 1974).

[Neumann74] P.G.Neumann, et al,, "On the design of a provably secure operating
system", Proc. Workshop on Protection in Operating Systems, IRIA, p
161-175 (Aug. 1974).

[Neumann?5] P.G.Neumann, et al., "A provably secure operating system", SRI
Final Report (Jun., 1975).

{Organick72] E.I.Organick, "The Multics system: An examination of its
structure", MIT Press (1972).

[(Parnas72a) D.L.Parnas, "A technique for software module specification with
examples™, CACM 15, 5, p 330-336 (May 1972).

[(Parnas?72b] D.L.Parnas, "On the criteria to be used in decomposing systems
into modules", CACM 15, 12, p 1053-1058 (Dec.1972).

17

(Price73) W.R.Price, "Implications of a virtual memory mechanism for
implementing protection in a family of operating systems", Ph.D.Th.,
Dept. of Comp. Sc., CMU (Jun.1973).

(Robinson75] L.Robinson, et al., "On attaining reliable software for a secure
operating system", Proc. Intl. Conf, on Reliable Software (Apr.1975).

[Saxena75] A.R.Saxena, T.H.Bredt, "A structured specification of a
hierarchical operating system", Proc. Intl. Conf. on Reliable Software, p

(Schiller73] W.L.Schiller, "Design of a security kernel for the PDP-11/45",
ESD-TR-73-294, Mitre Corp. (Dec.1973). '

[Schroeder75] M.D.Schroeder, "Engineering a security kernel for Multics", ACM
Fifth Symp. on Operating Systems Principles (Nov.1975).

(Walter74] K.G.Walter, et al., "Primitive models for computer security", Dept.
of Comp. and Info. Sc., Case Western Reserve Univ. (Jan.1974).

(Wulf74] W.Wulf, et al., "Hydra: the kernel of a multiprocessor operating
system", CACM 17, 6, p 337-345 (Jun.1974).

(Multics74) ---, "Introduction to Multics", MAC-TR-123, MIT Project MAC
(Feb. 1974).

