PROJECT MAC January 9, 1976

Computer Systems Research Division Request for Comments No. 100

DOMAIN CHANGING MECHANISMS FOR MULTICS
by Warren Montgomery

Several mechanisms have been proposed for the implementation
of domains on Multics. This RFC presents these mechanisms and
discusses their adequacy for use in controlling process
initiation and protected subsystem calling. This RFC does not

discuss the technical details of the implementation.

This note is an informal working paper of the Project MAC
Computer Systems Research Division. It should not be reproduced
without the author's permission, and it should not be referenced
in other publications.

-1=
Introduction

Protection domains are a very powerful model to use as the
basis of a computer protection system. The Multics system places
a severe restriction on the use of protection domains., It
supports only eight domains per process and forces the access
rights of these eight domains to be linearly ordered. These
eight domains correspond to the rings of the hardware protection
mechanism.

It is not possible for mutually suspicious subsystems to
coexist in one process using linearly nested domains. Several
mechanisms have been proposed to support more than eight domains
per process and to remove the restriction that the domains be
nested. We will considgr mechanisms for authorizing domain
changes. The problem of authorizing domain changes that can
occur when a process makes a call is very similar to that of
authorizing the creation of a process in its initial domain.
Both problems require that the procedures used to enter a
particular domain be controlled. A process initiation mechanism,
however, must be capable of authorizing domain changes bethen
domains whose access rights are unrelated. A calling mechanism
should require that the access rights of the called and calling
domains overlap so that references to the arguments of the call
can be easily validated. We will describe several mechanisms
that have been proposed for controlling domain changes and
process initiation. We will evaluate the adequacy of each

mechanism for these two problems.

-2~

These mechanisms all make use of two new kinds of objects in
the Multics hierarchy, domain objects and domain gate objects.
This is done because the Access Control List (ACL) mechanism of
Multics can be used to perform the actual authorization through
the use of the ACLs associated with these objects. Such objects
can easily be implemented in a manner similar to the current
implementation of message segments. Each of the mechanisms
described makes use of both domain gate "objects" and domain
"objects". Domain gate objects authorize the domain changes,
while domain objects authorize the creation of new domain gate
objects. There is a unique identifier for each domain that we
will refer to as a Domain identifier (Domain ID). These Domain
IDs will be used to designate domains in the same way that
Principal Identifiers designate domains in the current Multics
implementation. Thus, in the proposed implementation, each
Access Control list consists of a list of terms (ACL terms) that
specify a Domain ID and a set of accesses. The algorithm used to
determine the accesses available to a particular domain is the
same as that of the current Multics implementation, unless
otherwise specified.

The remainder 6f this RFC describes four domain changing
mechanisms. These mechanisms represent a number of ways to
control domain changing in an access control list based system.
They represent a number of attempts to obtain the functionality
required to support the features of Multics extended to allow

mutually suspicious subsystems to execute in the same process.

-3-

Included in this set of mechanisms are mechanisms similar to
those used by Jones [1] and Schroeder [2] to authorize domain
changes.

I have named the four mechanisms to be presented Exact
Specification, Partial Specification, Last Component
Specification, and Appending Specification. The first two of
these mechanisms are intended as process initiation mechanisms,
while the last two are for calls of protected subsystems. Exact
Specification is the simplest of the four mechanisms, but is not
powerful enough to implement the authorization scheme used in
Multics. Partial Specification is slightly more complicated, but
can easily be used to implement the Multics authorization scheme.
Last Component Specification is a mechanism that can be used for
protected subsystem calls and is reasonably easily implemented in
Multics. Appending Specification is much more general and allows
the entire call history of a process to be used for access
control. Unfortionately, Appending Specification would be very

difficult to implement on Multics.

Exact Specification

The first mechanism for domain entry control to be discussed
will be referred to as Exact Specification. Each domain change
is authorized by a domain gate object. The domain gate objects
each specify a Domain ID and a pathname and entry name. A

process makes a call to a procedure in another domain by calling

T

the "domain call" primitive and passing it the name of a domain
gate object. (1) If the process has "call" access to the domain
gate object, the domain of the process is switched to that
specified by the domain gate and the process executes the
specified procedure. To create a process, one must call the
process creation primitive passing it the name of a domain gate
object to which the caller has "start" access.

The "call" and "start" accesses described above are
determined from the ACL of the domain gate. The ACL mechanism is
not really needed in this case, as the phocedure specified by the
gate can perform its own access checking. The important function
of the domain gate object is to bind together a procedure and a
domain.

The creation of new domain gates is controlled by the domain
objects. £Each domain object specifies a Domain ID. A process
may create a domain gate by specifying a domain object to which
it has "create_gates" access and a procedure. The "create_gates"
access is determined from the ACL on the domain object. 1In this
case, the ACL mechanism is performing an important protection
function.

Domain objects are created by a kernel procedure. This
procedure only will create domain objects that specify Domain 1IDs

that have never appeared in domain objects before. We can allow

(1) The dynamic linker could be modified to recognize attempts
to transfer to domain gates and automatically perform the call to
the "domain call" primitive. The calling procedure could then
call the gate just as it would call any procedure in the same
domain.

-5-

any process in any domain to call this procedure, as creating new
domains does not violate security. If desired, however, access
to this procedure can be controlled through the ACL on the gate
used to call it.

It is important to understand the system of control being
employed in this mechanism as it is common to all the mechanisms
discussed in this RFC. This system of control is very similar to
that used by Schroeder [2] to control the creation and calling of
protected subsystems. The creation of new domains is an
unprivileged operation, while the creation of gates into a
particular domain is under the control of the domain object for
that domain.

Notice that access to a domain gate object is sufficient to
use a domain gate. Access to a domain object is not required.
Thus we cannot, through the ACL of a domain object, revoke the
right to use domain gates that were created using that domain
object.‘ Adding to the ACL of a domain object is in some sense
non-revokable. This non-revocability is true of all of the
domain changing mechanisms discussed by this RFC. We could
provide some mechanism to destroy all of the domain gates created
from a particular domain object. This can be done easily because
domain gates cannot be freely transferred or duplicated as could
capabilities so that we can keep track of which gates were
created from which domaiﬁ objects.

Exact Specification is sufficiently general to be used for

both calling and process initiation in the sense that it can be

-6-

used to produce all of the desired domain changes. It also seems
relatively straightforward to implement. There are, however, two
disadvantages to this mechanism that make it less suitable.

Up to this point, we have assumed that there is one
authority responsible for each domain. This is reflected by the
fact that there is one ACL that authorizes the creation of new
gates into each domain. 1In the Multics system, there are two
authorities that independently authorize entry to a domain. This
notion is captured by the multiple component structure of the
Principal Identifier. A process executing in a domain with a
Principal Identifier of "Jones.CompSys.a" has in some sense been
authorized by bcth Jones and the project administrator for the
CompSys project. This is what gives meaning to ACL terms with
"¥" components, such as "Jones.¥. %" Anyone using such 2 term
knows that all rrocesses that gain access through it have been in
some sense authcrized by Jones.

In order tc preserve this meaning using the Eiact
Specification mechanism, we cannot allow the domain object
generator to gererate a Domain ID that matches a previously used
Domain ID in any component. If this were not the case, any
process could call the kernel to create a new domain object with
Jones.New_Project.a as its Domain ID. Gates into this domain
could then be.created to obtain access to objects through ACL
terms of "Jones.¥*.¥" yithout the authorization of Jones.

The restriction proposed above is too severe in that it

makes it impossible to generate Domain IDs that match in some but

-T-

not all components. Such Domain IDs would have to be generated
by Multics whenever a project has more than one user. The Domain
IDs of all users registered on one project will match in the
"project" component. We therefore cannot enforce the restriction
and still implement the current Multics authorization scheme.

The Partial Specification mechanism to be discussed later
provides a solution to this problem.

A second major difficulty with this mechanism is that if it
is used to control calls, the Domain ID of the called domain is
not necessarily related to that of the calling domain. This
means that a protected subsystem executing in the called domain
cannot make use of the normal access control mechanism to check
the caller's access to objects (including the arpguments of the
call). The calling domain must therefore grant the called domain
access to the arguments. The subsystem fhust be very careful when
accessing arguments to be sure that the caller had legitimate
access to them. An untrustworthy caller might pass pointers to
the subsystem's private data bases and thus trick the subsystem
into releasing or modifying information. Partial specification
shares this difficulty. Schroeder [2] and Jones [1] present
solutions to this problem that fall outside of the usual concept
of domains. These solutions involve temporarily augmenting the
access rights of the called domain to allow it to get at the
arguments. Such solutions can be combined with the domain
changing mechanisms presented in this RFC to obtain calling

mechanisms adequate for protected subsystem calls, but it is

-8-

still useful to try to obtain a domain changing mechanism
sufficiently powerful to handle protected subsystem calls without
extra machinery. Last Component Specification and Appending
Specification are attempts at such mechanisms.

Partial Specification

The second mechanism will be termed here Partial
Specification. Domain IDs for this mechanism have a fixed number
of components with implied meanings, just as Principal
Identifiers have Person, Project, and Instance Tag components in
the current Multics implementation. These components represent
the independent authorities responsible for each domain. Domain
objects in this mechanism specify one or more components of a
Domain ID. Domain gates specify a complete Domain ID and a
procedure as before. Domain gates are created by passing to a
kernel primitive the name of a procedure and a set of names of
Domain objects that completely specify a Domain ID. This set
must specify each component of a complete Domain ID and not
conflict in the specification of any component. For example,
Jones.* ¥ *.Projl.#%, and *.Projl.home form such a set, while
Jones.Proj2.#%* andg ¥.Projl.home do not. Domain gates are used in
creating processes and calling subsystems as before. New domain
objects that specify previously unused Domain ID components can
be created.

Figures 1 and 2 show one way to use this mechanism to

implement the current Multics pattern of authorization. Domain

-9~

IDs have two components, corresponding to Person and Project.
project is created by creating a domain object specifying only
the Project component of a Domain ID. A new user can be
registered by creating a domain object that specifies only the
Person component. The ACLs on these objects determine who may
use them. Notice that the domain Locksmith.SysAdmin is given
"sma" access to the directory ">udd". This allows a process
executing in this domain to obtain access to any of the objects
shown (by modifying ACLs). This domain will have special uses,

as shown later.,

-10=

Figure 1

Root

Locksmith.SysAdmin sma
* % S

fJones.* create_gates

PlAdmin.Projl sma
*,Projl S

PlAdmin.Projl Create_gates
Jones.* - create_gates |\

Jones.* sma

Jones

*,Projl s

Key:
—— ACL

7——7_-T Directory
<:::> Domain object

Aﬁ:; Domain gate object

DS

-11=

Figure 2

udd

PZzAdmin.Proj2 sma
%, Proj2 S

b=

P.Admin.* create_gates
Jones.» (nil)

Jones.* sma
* Proj2 s

Jones.* call,create

Jones.Proj?2
listener_

In Figure 1, Jones has been given free access to project
Proj1, as he may create‘new gates into it from any domain with a
Domain ID with his name as first component. These gates can be
created by presenting the object ">udd>persons>Jones" and the

object ">udd>Proj1>Proji" to the create gate primitive.

-12-

Figure 2 shows the hierarchy below the Proj2 directory.
Although Jones cannot create new gates into Proj2, he may enter
the domain "Jones.Proj2" by using the gate
">udd>Proj2>Jones>gate". This gate had to be created from the
domain "Locksmith.SysAdmin", as this is the only Domain ID that
can access the domain objects required to create the gate. The
procedures of "Locksmith.SysAdmin" would presumably not create
such a gate without the approval of both Jones and the
administrator for Proj2. The power of the Locksmith.SysAdmin
domain should be used carefully. Notice that if at any future
time the administrator for Proj2 wishes to allow Jones to create
gates to the project, he can do so by modifying the ACL on the
object ">udd>Proj3>Proj3", without any help from
Locksmith.SysAdmin.

Partial Specification seems to model the Multics
authorization mechanism quite well. It does not seem
substantially more difficult to implement than Exact
Specification and therefore seems to be a more attractive
mechanism,

However, this mechanism has the same drawback for subsystem
calls as Exact Specification. The calling and called domain are
not constrained to share access rights. This requires special
action from both caller and callee in order to péss arguments

with a call.

-

-13-

Last Component Specification

The third mechanism to be discussed I will call Last
Component Specification. This mechanism cannot be used to
authorize domain changes between domains whose sets of access
rights are unrelated. This makes the mechanism unsuitable for
authorizing process initiation, however it makes it more
attractive than the previously discussed mechanisms for
authorizing protected subsystem calls. As before, Domain IDs
have a fixed number of components. Domain and domain gate
objects specify.only the last of these. (1) A call to a
particular gate causes the domain of the calling process to be
changed. The domain of the process following the call is that
which corresponds to the Domain ID formed by replacing the last
component of the Domain ID of the process at the time of the call
with the component specified by the gate. Thus if a process
executing in the domain "Jones.Projl.home" made a call to a gate
specifying "editor" as its component, the domain of the process
would be changed to "Jones.Projl.editor". New domain objects can
be created as before as long as they do not specify the same
value as previously created domain objects.

This mechanism is very similar to that proposed in

Schroeder's thesis [2] for this purpose. Its implementation in

(1) We could allow them to specify any one component. This
generalization does not seem to have any use on the Multics
system and just complicates the description of an already complex
mechanism,

-4~

Multics seems relatively straightforward.

For the Multics system, we could use three component Domain
IDs. The first two components of the Domain ID could be used to
épecify Person and Project, while the last component could
specify "Protected Subsystem". All of the subsystems called in a
single process will be executed in domains that share some access
rights (all access rights that can be obtained by the process
through ACL terms with "¥" as their third component). Although
this does not totally solve the access checking problem discussed
before, it does help somewhat by guaranteeing that all of the
subsystems in one process will share some access rights.

This mechanism is relatively easy to implement. The
component of the Principal Identifier now used for the Instance
Tag could be replaced by a Protected Subsystem component without
requiring the modification of all ACL terms now in existence. We
might want to restrict access to the domain creation primitive to
system administrators in order to maintain a list of currently
supported subsystems. Each user could then easily find out about
a subsystem before placing it on an ACL for one of his objects.
The combination of Last Component Specification for calls, and
Partial Specification for process initiation, appears to provide

a reasonable set of domain changing mechanisms for Multics.
Appending Specification

The last mechanism I will refer to as Appending

-15-

Specification. Again, this mechanism is suitable only for calls.
The domain and domain gate objects specify only one component of
a Domain ID, as in Last Component Specification. The Domain ID
of the target domain of a call is formed by appending the
component specified by the gate to the Domain ID of the calling
domain. A return causes the last component of the Domain ID to
be dropped. Thus the Domain ID of a process behaves like a
stack, with call and return acting as push and pop instructions.

We can see that Domain IDs can have different numbers of
components with this scheme. We therefore need to augment the
rules for matching of Domain IDs and ACL terms to specify what
happens when the Domain IDs being matched are of different
lengths. A reasonable set of rules is the following:

If the Domain ID of the Process is longer than that of the
ACL term, then no match can occur.

If the Domain ID of the ACL term is longer than that of the
process, then they match only if all of the "extra'" components of
the ACL term are "¥",

In addition to these rules, we will add the rule that a
component of "¥¥" in an ACL term specifies exactly enough "*"
components to make the ACL term and the process's Domain ID have
the same number of components. We will allow only one "¥#¥v

component in an ACL term. (1) Figure 3 illustrates these

matciing rules.,

— i T Bk b Rk @ L A A e e we

(1) Allowing more than one "¥*¥" component makes the matching
algorithm much more complicated and makes it difficult for s waser
so3a2 wnich Donain IDs will matceh sach a term.

16—

Fieure 3

Rulez for matchine ACL terrs

Process Domain ID

ACL term ID L a.b.c.d i a.b.c ! a.b.d |

i]]]

] | | I
a k% i __match | match | mateh !
*E o 4 no i __match | no H
a.b,* ! no |__mateh ! match !
a.b.c.d., »% ! match | ne | ne !

I'he combination of Appending Snecification for subsysten
calls and txact Specification for Process initiation seems to be
a very attractive set of mechanisms for authorizine domain
changzes on Multics. These mechanisms can be used to model the
Multics authorization mechanism verv well. The first two
components of a Domain ID could be used for Person and Project,
and the rest would represent the outstanding subsystem calls in
the process. All processes would be created in domains with
single component Domain IDs (the Person component) and would
acauire their Project component through a call. Thus the Person
component 1s authorized through the gate used to create the
process and the ?Project component is authorized throuch the rate
used in the first call. The matchine algorithm for Domain IDs
allows easv specification of any combination of Person, Project,
and current subsystenm.

A process can grant access to an object about to be passed
by a call by puttine a term with the Domain ID of the domain

about to be called followed by ".**" on the ACL of the object.

-17-

In this way, the object will be accessible to the subsystem to be
called and any subsystems that it calls. The ACL term need not
be removed following the call, as all of the domeins that it
matches can only be reached by calling the same csubsystem argain.

This scheme has a serious practical disadvanrtace in that the
chance to the ACL mechanism would be difficult to make, as the
length and structure of ACL entries appear in mary parts of the
system,

With Exact Specification and Partial Specification, each
protected subsystem is assirfned to one domain. Any call to a
particular subsystem always enters the same domain independent of
the domain of the caller or the process in which the call is
made. With Last Component Specification, the domain that a
particular subsystem enters depends on that prdccss it is called
in, but not on the subsystem that makes the call.b This allows a
more precise specification of the access rights to be granted to
a particular subsystem. With Arnpending Specification, the domain
in which a protected subsystem executes depends on the subsystem
that called it., This allows very precise specification of the
access rieghts to be giveﬁ to each invocation of » protected
subsystem.

There are, however, some undesirable effects of not
assirning a particular subsystem to the same domain at each call.
A3 each subsystem can now be invoked in several domains in each
process, Appending Specification will tend to usc more domains

than the other mechanisms. This, and the fact that each domain

-1 -

will require its own stack and linkace sezments, could make this
mechanism very expensive. We can also see that linking will have
to be performed in every domain that a particular subsystem is
invoked.

The "internal static" storace class of PL/1 is now used for
variables that are common to every invocation of a particular
procedure in a subsystem. With Appending Specification, this
will not necessarily be true, as the procedure might execute in
different domains in the same subsystem. Although we could
change the implementation of Internal Static such that it
continues to be accessible to every invocation of a procedure in
a subsystem, we would then need a name for storage that was
accessible only in one domain. The PL/1 language does not offer
enouzh storage classes to specify all of the classes bossible
with appending specification.

We micht consider placing a limit on the depth of calls to
simplify the implementation. 1In order to allow a reasonable
depth of calls, we would have to choose a limit greater than
three. This would probably recuire just as much change to the
ACL mechanism as no limit at all.

We might also consider using this mechanism in some limited
way to provide independent authorization for Person and Project
components. This could be done by allowing a process with a one
component Domain ID to make a "eall" that apovended a second
cemponent. Thus a process could be created with only its Person

conmponent and could obtain its Project component throuzh such a

-19-

"agll". This seems significantly more complicated than Partial
Specification and does not seem much more effective.

Thus, although Appending Specification appears to be a very
powerful mechanism for domain changing, It does not seem suitable

for Multics.

Conclusions

This RFC has presented some of the mechanisms proposed for
the authorization of domain changing on Hultics. The suitability
of each mechanism for Multics was considered. The combination of
Partial Specification for process initiation and Last Component
Specification for calls seems to be the most feasible.

Any comments on these ideas would be greatly appreciated.

~20-

References
[1] Jones, A. K.‘"Protection in Programmed Systems" Ph.D.

Dissertation, Department of Computer Science, Carnegie -

Mellon University, 1973,

[2] Schroeder, M. D. "Cooperation of Mutually Suspicious
Subsystems in a Computer Utility", M.I.T. Project MAC,
MAC-TR-104, 1972,

Lt

