PROJECT MAC 12720775

Computer Systems Researck Dlvislon Request for Comments No. 101

A CASE STUDY IN OPERATING SYSTEM DESIGN! RECONCILING GSTRUCTURE
WITH EFFICIENCY

by Douglas He Hunt

In a previous report (RFC 73) the author describea an operating
system Interface whlch supports extended type objJects protected
by access control lists. This report describes In more detail
how that operating system mlght be modularlzed. A major
objective ot thls report is to show that that operating system,
with functional capapilities comparable to those of Multics, can

be organized as a collectlon of layered and object-oriented
modules. Such an oryganlzatlon s feasible because there are
techniques for achieving strict layering wlthout sacrificing

economy of mechanlsm,. Some of these technlques are descrlbed In
this report.

- P - — ——

This note is an informal worklng caper of the Project MAC
Computer Systems Research Dlvislon.s It should not be reproduced
without the author®s permission and It should not be referenced
In other publlcatlorse.

Hunt Page ¢ 12/720/75

Introduction

In recent years, considerable research actlivlity in the flela
of computer systems has been directed towards developlng systems
which are~certiflable, or perhaps even verifiable. There are =&t
least two motivating factors for thls research} first, the need
for more rellable operating systemsy and second, the need for
greater assurance that +the oprotection pollcles of a computer
system cannot be clircumventeds. Research inte developlng
certifiable (or even veriflable) systems Is occurring on several
fronts. One approach Is to improve our body of knowledge In the
area of module speciflcation technlaues, and proofs which
demonstrate that programs correspong to speclflcations [ref. SRI
WOrk]. Another Approach Is tc wor kK towardas improved
modularization of systems, employing technigues suct as layering,
or levels of abstraction, (ref, "THE" systeml and
object-orientation [ref. Hydrsal.

The research descrlbed herey wrich [s a part of the author's
proposed Ph.0. thesis, is an example of the second approach =--
improving the way we modularlze systems. In a previous report
(RFC 73) the author Jdescribed an opersting system interface whlch
supports extended type ob)ects protected by access control lists.
Except for the type extenslon facility, the system described wés
simitar to Multics I[ref. UOrganlckl, Thls report describes in
more detall how that hypotheticsal operatling system might be
modularlzed. A major objective of thls report ls to show that an

operating system with sophistication comparable to that of

Hunt Page 3§ 12720775

Multics can be organlzed as a collectlion of favyered and
oblect-orienteu modules, all the way down to the haroware (or
firmware) Intertace. The reason that such an organlzatlon Is

feasibley in the oplnion of the author, lIs that there are
techniques for achleving strict layerlng wlthout sacrlflclng
economy of mechanisms Some of these technligues are described 1in
thils report. (1)

This report s organlzed as follows. First, an
obJect-orlentea model for describing tha muttiplexing of memory
resources ls Introauced, The objects of the model resemble LISP
ob)etts; in Dértlcular. the objects have blindings designatling
other objects. Operatlons on tre oblects manipulate the
bindlings. These oblects, together wlth the procedures which
manage themy provide an abstrasctlon of memory called a block
space. Secondy a vparticular Irplementation of the block space
model lsldescrlbed. By conslderling tre objJects whlch provide the
implementation to be objects of the model themselves, the model

can be cascaded to provide a more sophlsticatec abstractlone.

Thira, a particular implementation of the system *"“map'" -- a aqata
structure which ylelds attrlbutes of an object glven lts name ==
is describeds It is signiflcant that the programs which provide

the *“map*™ function make use of tre block abstractlon, and as a

consequence the they are reasonably simple. Fourthr, a problem

o vane - - — ——— — i o A O S Vo A e (o s

(1) The lavering notlon does not imply that there be a strict
llnear dependency relatlon between modules; there can be partlal
orderse. In facty, two of the lzyers described In this report are
independent,

Hunt ’ Page &4 12720775
encountered In bullding layered systems == achleving strict
layering wlthout "re-Inventing the wheel"™ -- s cescrlbec, A

deslgn princlple which provides a solutlon to ttls problem Is

suggested and exploited.
Deftinltions and Assumptions

He assume that every oblect has 3 name} e.g. tre name of a
memory cell lIs 1ts5 aadresse. A segment [s defined to be Illke a
Multics segment [refs. Bensoussans, Cllngen, and Daleyl, except
that It has no attributes and that lts name Ils a system-supplled
unlque ldentifier, A principal is an oblect whilch is glven the
authority to reference other obJects, and |s descrlbed further In
the paper by Saltzer and Schroeder [ref., Saltzer and Schroeder
IEEE paper). HWe will almost always wuse the wora “princlpal™
rather than ‘'process® or "“domalin®™. The maln reason we do so Is
to defery, untll a later stage of thé researchy any assumptions
about the relatlonship of processes and domains} l.e. whetter
processes and domalns are equal, or whether multiple Instances of
one might be contained in the other. This lIssue ls discussed In
a paper by Lampson and Sturgls [ref. Lampson and Sturgis SIGOPS
paperl. Consequently, the mechanics of changlng a protection
context will not be addressed In thils report,

Finally, it ls lmportant to emphaslize that some of the loeas
presented here have been only partially exploreds In additlon,
there are some toolcs which are definltely relevant to this nork

but which, for time and space reasons, are not included here.

Hunt Page S 12720775

No attempt Is maue to determine what the "lowest" or most
primitive™ oblects in the system ought to bej the most primitive
obJects to be described nere are unoerstood well enough that a

consideration of their Implementation would not provide any new

Inslghts.
A Lisp=llke Object World

The first object to pe described Is called the page oblect.
A page ls a flxed-slzed <collectlion of bits. The blts are
generalily grouped Into units called bytes or words. Since the
name of a page object Is not actuatly used In thls model, it
would not be necessary to devise a way of namlng pagese. In order
to contorm to the view that every oblect has a name, however, let
the contents of a paje be lts name. If a page contalns K Dbjitsy
then there are 2**K page objects, each wWwith a dlstinct K-blt
name.,

A second type of oblect is the home oblecte A home object
Is an abstraction of a storage region in secondary storage whlch
has enough capaclty to hold a page objects A home oblect has (1)
a namey (2) a bindingy and (3) a property llst. As mentloned
before, thls model bears a strong resemblance to tre LISP object
worlde The name of a home oblect is its address in secongary
storage. For example, In &3 system whlch uses alsk drlvés to
provide secondary Storage, the name of 3 home object might
conslist of the concatenatlon of (1) a3 controller number, (2) 13

devlice number, (3) a cyllnger number, (4) a track nymber, and (5)

Hunt Page 6 12720/75

a record number. The blinding ot 3 home oblect deslcnates a page
oblect. Every home object is bound to some page objecty |n
general more than one home object may be bound to tre same page
object. Since the (only) binolng of the home oblect deslgnates a
page obJect, the binding ls called the page bindlng of the home
obJect, Propertles of home objects and operations on thenm will
be described as they are motlvated,

A third type of oblJect is the frame. A frazme cb)ect is an
abstractlon for a contiguous reglion or primary memory which has
enough capaclty to bholad a3ll of the bits in a page object. The
name of a frame obJect Is the absolute address of the first
addressable unit (usually a byfe'or 8 word) of the frame. Frames
have blindlngs and a3 property list. Unlike homes, frames have two
bindings: @ page binding and a home binding. The page binding
designates a page ob)Ject. The home bindlng designates eltrer a
home object or a meta-oblect callea NULL. It Is possible that
the page blnding of two or more frame objects may ceslgnate the
same page; howevers non=-null home bindings myst designate

distinct home objlects, Examples of blndlng relatlonshlps are

FR P P

' N

| H
P AP |

Fisure. T

Hunt Page 7 12720775

depicted In Figure I. Hhen we refer to Informatlon "In" a frame
or home obj)ecty that Is an Informal way of referring to trhe rage
deslignated by the pagje blndling of tre ftrame or home object.

The page, home, and frame oblects which have been described
are all used to provide the abstractlion of a paged memory. The
collectlon of mogules which support paging will multiplex frame
objects among various home objects to provlide a composite objJect
which retains the advantages of homes and frames, but not their

disadvantages (sce Tabile I).

advantages disadvantages

homes many {n number slow acceaess

In any implementation

frames fast access few in number

in any implementation
Table 1

This composite object [s callec a blogke The collectlon of
modules which multiplex frames among homes to provice blocks wlll
be called the blogk layer. Any data (other than that In hardware
registers) referenced by programs outside the block Jlayer must be
In some blocks Blocks are named by nonnegatlive Integers. Blocks
have two bindings: a home bincing and a page bincing. Progranms
can call the block layer to set the home and pége bindings of a
bDlocke. Thereafter, the programs can reference (load from and

store Into) the block aglirectliy. Thus, programs which execute

Hunt Page 8 12/720/75
outside the block layer use two part addresses of thre form
blockname | offset

Thls sort of addressing environment Is similar to that provided
by the TENEX operating system. (1) Programs which use this
addressing environment need not perform direct I/0. The set of
blocks which a program references which In turn have a non-null
home binding are called a block space. Block oblects wlll be
descrilbed further In a later section.

To see how tne virtual address space is supported, we now
descrilbe the operatlons deflned on home and frame objects.

The operations on home oblects are!
1) read (home_name, frame_name), and
2) write (home_name, frame_name),

The effect of the read operatlon Is to replace the page binaing
of “frame_name" 6y the page binding of "nhome_name'™., The affect
of the wurite operatlion is to replace the pace bindlrg of
“"home_name™ by tne page blnding of "frame_name", Thusy the read

and wrlte operations are deflned Jcintly on home and frame

— —_— —— o — o — et e T O

(1) In TENEX, the blocks are considered to be concatenated so
that they form a single llnear space. To reference

blockname | offset
In TENEX, 8 slipale address of the form
blockname * 1g0g{octal) + offset

is presented.

Hunt Page 9 12720775

objectse. The read and wrlfe operatlons can be performed only by
programs of the block lavyer.

Operatlons detlned on frame objects are
1) tetch (frame_name),
2) store (frame_name, blndlng),
3) assign (frame_name,y, home_name), and
4) release (frame_name).

The fetgch operatlon returns the current page binding of
“frame_name*, while the gtore operation replaces the page blnding
of "frame_name' by "blnding"™. It should be ctear that processor
Instructions which fetch from and store into ftrames can Dbe
modelled as functlons which respectlvely 6bfaln. aho replacey the
page binding., The 3s3sign operation replaces the home binding of
“frame_name' by “"home_name”™. The release oparation replaces the

home binding of *“framename®™ by NULL. The operatlons on frame

ob)ects can be performed only by programs In the block Jayer.
Implementing the B8lndings of Objects

The description of pages, homes, and frames and thelir
bindings has been glven, wup to thils polnt, In terms of an
abstract model. We now conslider how thase bilnadings mlight be
represented. The representation of the page blnalngs of homes
and frames are lImpliclty in the sense that the binclngs are tre

“contents'" of the object. The home blndlings for &t frames

Hunt Page 1y 12720775

must be represented In some other way, In fact, they 3are
maintalned In a4 table which is Itself an object. There Is a
subset ot the set of avallable frames which Is called the set of
interpreted frames, There 1s also a éubsef of the set of
avallable homes whlich Is called the set of Interpreted homese.
Informally speaking, Interpretea frames and homes are those whose
page bilndlngs the block layer cares abouty l.e. trose which the
block layer expects to interpret. There sy for exarple, a
particutar sort of Interpreted frame In which tte block layer
expects to find both homenames and framenames. This kind of
Interpreted frame wllli be calleag a3 f=frame (for "block tayer"
frame)s A B-frame Is used to reoresent the home bindlngs of

frames, Thus a B-frame contains a sequence of orcered pairs of

the form
< framename, homerame >

In which the flrst component may be thre meta-name NULL., A null
tramename fleld means that there is no frame which has the hone
binding "horename™. A glven B-frame represents the home blindlngs
of onty a subset of éll the frame ob)ects., Both framenames 3nd
homenames are wunlaue over the set of all B-frames. Flgure II
illustrates several 3-frames which represent home bindings of
frames. To find the home bilndlng of a given frame, it would be

necessary to search all the B-frames.

Hunt Page 11 12720775

B - frame B-frame
NULL| 0— H{ F o | o—>H

??izg:] NULL C>——----~~_,l L\

| d
= gure IC _H__

We can now describe how the asslgn and release operations

s 1o — o [
_\?H

b

3ffect B-frames. The effect of
asslgn (trame_namey home_name)
can be descrlbed as follonse.

1. Find the B-frame with "“home_name'" in it. If "™home_name"
Is found but [t already has a corresponding framename, the

assign operatlon returns without changlng any blndingse.

2. If "home_name"” cannot be foundy, the assign operation
returns wlthout having any effect, The homenzme must

exlst In some B-frame In order for the assign operation 1o

completea

3. Set the framename corresponding to *home_name™ (it must be

null) to "frame_name'.,
The effect of the operatjion

release (frame_rame)

Hunt Page 172 12720775
Is defined as follows.

1« Fina the B-frame with "frame_nzme" in [t. It “frame_name"
cannot be found, the operation returns withouyt changlng
any bindings. Elther the frame has already been released

or it does not exlst,
2+« Replace “frame_name" In the fremename flelc by NULL,

Implicit in the description of the assign and relezse operatlon
ls' a free list of frames. Frames which have null home bindings
are on this free Ilst. Thus, prilor to the assign operations the
frame calleag “frama_name™ would have been removed trom the free
,llst. After the release operationy, "frame_name” would be 3qded

to the free |ist of frames,
Implementing Blocks In Terms of Lower-level Oblects

At this point we are ready to describe the operatjions on
block objects and how the page and home bindings of block oblects

are represented. Tha operations on 3 block ob)ect are
1) fetch (block_name),
2) store (block_name, binding),
3) Inltiate (block_name, home_name), and
4) terminate (block_name) .,

The tetch andg store operations on blocks ara analogous to the

Hunt Page 13 1¢2/20/75

corresponding operations on frames. The ipnitlate operation
replaces the home binding of “block_name'”™ by *home_name", The
termjipate operation replaces the home binding of *"block_name"™ by
NULL., These four operatlons, wunilke any of tre preceeding
operatlonsy, can be performed by pragrams whlch are outslde the
block layer.,

The versatile B-frames represent not only the rome bindings
of frames, but also the home bindings of nlockss Any particular
B-frame, which holas N ordered pairs &s described abovey can be
used to support a block space whlch ccmprlses N blockse Consider
one B-frame, and a program executing in the block space supported
by thils B-frame. Initially, both comgonents of each ordered palr
In fthe B-frame ara null., Initiate ooerations set the honaname

parts; for example
Initiate (5, home_name_67)

sets the homename part of the 5th ordered palr to “home_naﬁe_&?";
leesa the home bindiny ot bjock 5 is now the home whose rame |[5S
"home_name_67". The framename part of an ordered pair ls set by
the asslgn operatlon. That 1s, the block ‘layer does the

operation
assign (frame_name_12, home_name_67)

This sets the home binding of “"frame_name_12" to the home n3med
"home_name_67"« These relationships are shown In Flgure III.

Recall that a home can be cesignated by the home binding of

Hunt Page 14 12720775

13—'F?QME,

8
F home_name_b7
‘F(me.-mme-\Z

SN—
F‘S“"Q jaul

at most one frame. Consequentiy, there is a welt-deflned concept

of a "frame binding” of a block? 1f the home binding of block B
deslgnates home H, and if there is a frame F for which the home
binding also designates H, then the frame binding of 8 ls F}

otherwlise it Is null. From the point of view of users of blocks,

the notlon of a frame blnding is hldden. For descriptlve
purposess, however, such a notlior Is useful. If the “frame
binding"™ of a block (s mentloneo, the meaning will be as dqefineg

in thils sectlon. We use this detinitlon to state that tre page
binding ot a block i3 guaranteed to be the same as the page
binding of the frame binding of a block., For examcley if a home
Is designated by the home binding of both a block and a frame (as
“home_name_67" Is In Flgure III), tren the page binding of the
block (block S5 in the flgure) always tracks the page blndlng of
the frame (“frame_name_12") in the tlgure.

The page, home, and frame objects whlch have been described

Hunt Page 15 12720775

SO far are manipulateog by programs in the block layer to support
the abstraction of a bltock space. Each principal wllil have an
associated B=frame wnich represents tre bindings ot block objects
In [ts block space., A princlpal can control which homes are
bound to blocks In its block space by means of the Initiate and
terminate operatlonss (1) The address (framename) of the OB-frame
associated with an executing principal Is stored In a spacial

processor register. Virtual addresses of the form
blockname | offset

are converted to absolute adaresses (framenames) by the simple

calculation
address = framename_part (B=-frame + W¥blockname) + offset

where W Is the number of words in an entry of the B-frame.

If the framename part of the entry lIs null, then a frame
fault occurs,. In this model, the handling of a frame fault
will be described as though it is being carrled out by a3 separate
processy ca|!ed the frame claiming ﬁrocess (at though the clalming
ot frames could take place In the feulting oprocess). (2) Thils

frame claiming process uses a block space deflned by a particular

e s e e s et s e e e —— —— i it A e et e s A St o e o e

{1) Unlike other principalsy the block layer has a block in |[ts
block space whose frame blnding is Its own B-frame, Thus. the
bfock layer can not only manlpulate lts own block space, but it
can manjipulate the block space of other principals; i.e. carry
out Inltiate, termlnate, asslgny ano release operatlons.

{2) All processes involved In lmplementing the block <space are
expected to be like the virtual processors descrlbed by D. Reed

In his Master®s theslse.

Hunt Page 16 12/720/75

B-frame, called the basigc B-frame, whlch describes all the
procedures and data bases necessary to handle the frame fault.,
{1) In partlcutar, the framename of the B-frame of the princlpal

whlch took the frame fault wil!l be containec In the basic

ISR S LIS

| o ~teame.
oA—H] o] |

NULL Lo E o—

O
O O o—
'\}
NULL s P Wkﬂ H
|

{

Fj 4o other B-me;;$ L*

B-frame. These relatlonships are strown In Figure IV.

The frame claiming process Is 1loosely <couplec to another
processy called the frame freeing process. The frame freelng
process also uses tra biock space gefined by the ©bsasic B-frame.
It 1l1s the responsibllilty of the frame freelng prccess to ensure
that frames are avalilable for cltalming by the frame clairlng

processe. (2)

The frame claiming and frame freelng processes are described

brleflys The Intent of these descriptlons Is not to exhiblt the

{1) No framename fleld of the baslic 8B-frame |ls ever null,

{2) As part of his Master's thesisy, {ref. Huberl Huber developed
a version of page control for Multlcs whlch nakes use of a

page-freejiny processe.

Hunt Page 17 12/2¢/175

algorithms In full detail, but rather to show how they use home
and frame obj)ects. Although the descriptlons given here suftjce
only 1t there is one frame claimling process and one frame freeing
process, they - could be extenged +to accommodate ryltiole
processess.s First we sketch the steps in the frame clairing
process. The arguments are a home, &nd a B-frame contalning the

home.

1e frame <=~ select (ftree_frame_1list)
Remove a frame from the free frzeme list, accorclng to some

selection pollcy.

2. read (home, frame)

Set the page binding of "frame',

3. assign (framey home)
The frame corresponding to “heome" in '"B-frame"™ wll! be set to

“frame*.

4es enter (assigned_frame_Ilist, frame, B-frame)

Put the name of the asslyned frame and its contalning B-frame

Into a list.

The descriptlion ot the trame freaelng process is simiiar, axcept

“In reverse®”.

1. frame, B-frame <=-=- select (assligned_frame_list)
Get the frame (and contalnlng B-frame) accorgclng to some

policy.

Hunt Page 18 127206/75

2e home <-- release (frame)

This sets the framename field containing "frame®” [in *“8-frame"
to NULL, which wili trigger a frame fault on the next
reference. The “release'" operation returns the honme

assoclated with "frame®"™.

3a wrlte (home, frame)

It s necessary to wrlite only if "home"™ has beer modlfled.

4a enter (free_ftrame_list, ftrame)

Enter the frame on the free frame ljist.
Using the Block Layer to Make Large Blocks

The objlects and algorithms whlch support the block space
abstraction are atmost sufficiert to support another addressing
abstraction whlch we shall call a3 "large block space™. As the
name would Indicate, the "large blocks™ abstraction Is the same
as the "blocks™ abstractlon except that the blocks are largers.
In order to Implement large blocks, we merely recursively utillze
the objects and aostractlons already describede That [sy let the
B-frameé which describes a block space of blocks instead deccribe
one large blocks. Then a coliectlon of such B-frames would
describe a block space of lJarge Dblocks,. The <cotllection of
B-frames would Itselt be described by a 8-frame. This extenslon
essentlally amounts to inserting one more layer ot B-frames |[nto
the freg shown In Figure IV, producinrg a tree as shown In Flgure

Ve To dlstinguish betwean B-frames which are directly below the

Hunt Page 19 12720775

leBVQFI -2 m
~Evame bas:
‘* aABiC
FA —© 0"/’,///’/’4? B‘f}xme H
0 | o — level- 1. ° m
- \T' O"""" B- frame ™ | o1—>
—o | o
NULL. NLLE] [] NN
NULL. :3 \ ,
NoE T E
NULL

4
4o other
level-1 B~Feames

“Figm’e SZ:

root {basic) B-frame and B-frames which are directiy above the

leaft node frames, we shall call the former group level-i B-frames
and the latter group level=-2 B-frames. Unless otherwise
speclflied, It wlll be assumed trat the block space of 3 "user

process' or "user domain' wll! be described by a level-1 B-=frame.

Virtual addresses of the form

where L ls the name ot a targe block and 0 Is an offset, are

translated by the hardware 3as follows?

1. 12_B-frame = framenama_part (l1_B-frame + V * L)}

2e trame = framenama_part (l2_B-frame + W * [0/F1)}

3« address = frame + MOO (0 4 F)3

where Il I and A stand for "level-1" and "level-2"

Hunt Page 20 12/238/75

respectively, V and 4 are the number of words in an entry of
level~1 and level-2 O-ftrames respectively, and F is the nurber of
words in a ftrame, In the implementation of large blocks, 1t is
not anly possible for leaf node frames to be multliplexeud among
homesy but also possible for flevel-2 B8-frames to be multliplexed
among pB-homess That is, 3 frame fault (from the point of view
of the block Jayer) may occur in step 1 or in step 2 of the above
algorlthm for mapplnyg virtual audresses. In a block space
described by a level~-1 B-frame, there may be a block which has a
non=-null home blndlnjy (designating some fevel-z B-home) but which
has a null frame binding (that isy, no level=-2 B-frame is
designated). In this case, a fault occurs and Is handled by
algorithms almost like those given above. To mocoify the above
frame cliaiming and frame freelng algorithms to handle *level=2
B-frame" faul ts, first substitute “level-1 B-frame™ for
“8-frame”, "level-2 B-frame' for "frame"™, and "level=-z2 B-home"
for *home'. If we allow non-null entries in the framename part
of a level-2 B8~-home, then no further modificatlons are needed.
Alternatively, all the entries can effectively be null by not
storing them In the level=-2 B-home at all. In this case, the
framename part of each level-2 B-frame can be set to null after a
read operation, and It can revert to null (by recurslve calls to
the frame freer) before a wrlite operatlon. It Is a deslgn
objJective th3t the block Jayer mzke as llttle aolstinction as
posslble between hanrdllng a frame fault for an uninterpreted rore

and a frame fault for an Interpretec home such 3s a B-home.

()

Hunt Page 21 12720/75

Extending Large Blocks to Segments

At this point wa have descrlbed how the mechanisnm whlch
Implements blocks can, with only a few extenslions, inplement
large blocks as well. This construction <could be cascaded
further to Imolement "very large blocks'", and so on. However,
the goal of this report is to show how this same mechanisms, with
only a few more extensions, can support 3 collectlon of segment
oblects. Compafing large blocks with segments as we have defined
them, we see that large blocks zre [n fact the same, except that
large block names are secondary storage addresses whrereas segment
names are unique ldentliflers.

To Implement segment objectsy there must be a way of
asslgning unique [dentifiers (UIDS) to segments as they ara
created., Further, there must be an efflclent way of retrleving
the B-home given the UID., Silrce we must assume that the B-homes
of segments cannot be calculatea dlrectly from the UIUs,s we shall
describe a data structure whilch inplements this rapplng tor atl
segment objects. Following the terminology ot Redell, (ret.
Redell]l we shall call this data structure the map.v A fundamental
aspect of the design belng presented here Is that the grojrams
which search and moaify the map are programs which axecute above
the block layer, The goal Is to provide the mapping from UIlOs to
B=homes while inventing as llttle new mechanism as possible.

The actual data structure usea to [mplement the map wlll ba
a B-tree [ref. Knuth, vol. IIIl. A B-tres [Is a balanced n-ary

tree whilch has +the property that searcning, insertlon, and

Hunt Page 22 ie/26/75

deletion operations all have a guaranteed worst-case efflclency.
A B8-tree is a structure which Is well=-sulted for external
searching} that Isy the nodes of the B-tree are [|mplemented zs
records of secondary storage. The Interlor nodes of the B-tree
are not Interpreted homes -- l.e. trey are not treated specially
by the block Jayere. However, the collection of programs which
manipulate the map {(the map Jayer) does expect the interlor nodes

to have a ftormat as shown [n Figure VI.

<chomename> <UID> <homename> ... <hcmename> <UID> <homename>
Filgure VI

The leaf nodes of the B-tree are level=-2 HB-homes. The homenames
in an interior node are names of other interior noces, unless the
Interjor node ls dlirectly above the leaf nodesy In which case the
homenames are names of level~=2 B=-nomes. The UIDOs surrouncing a
homename In Flgure VI are lower ano upper bounds on all the UIDs
reachable in the subtree with the glven homename as the root
node. Since the program that searches the 3-tree executes above
the block !ayer, each time it selects a homename out of one of
the Interlor nodes, It wuses the Initlate operation to bird a
block to the selected home, It then references the block
directly, searchlng for the next appropriate tomename., The
program can manage Its block spasce s0 that nodes near the root of
the B-tree tend to remaln In the block spacee.

Suppose that tha B-tree which provides the mappling from UID0s

to B~homes must accommodate 10*¥*¥8 segment objects., The B-home

Hunt Page 23 12/720/75

corresponding to a UID can be Jocated |in 3 references to
secondary storage It the B-tree s of order 100 (or more), anc |f
the root node is contalned In primary memory. The average seé&rch
time can be reduced |f 3 software-managed assoclatijve memory |s
provideds. This associative memory wlll contain (UID, B-home)
palrs. The éssoclaflve memory wlll contain enough palrs
{probably at least a few hunared) to vyleld a hlgh hit ratlo.

The ltarge block Jlayer and tte map layer, both ot whlch
depend on the block layer, together provide the segment Ilavyer.
Above the segment Jayer, it is possible for programs to pertorm

the operatlons

initiate (plockname, UIO) and
terminate (blockname)

on segmentsy, with “blockname®™ as an Input argument, Injftiating
oE terminating a segmant causes the respectlve oreratlon to be
per formed on the correspondling large block. For example, the
segment ‘Jayer Implements the Initiate operation on segments by
first mapplng the UID argument Into a level-2 B-hores ana then
calling the ltarge block Jayer to Inltlate fhe level=2 B-home.

Two other operations deflned on segments are
fetch (UID, of fset) and
store (UIDy offsety, bindirg).

{In this adescription we consider "execute"™ to be a subcase of

Hunt Page 24 12720775

“fetch™.) Slnce unlgue ldentiflers tend to be ratkter long =-- say
at least 32 blts -- there is a motivatlon for referring to
segment objJects by means of some shorter Jdentifler. Two

possibllities are brieftly described here.

One possibllity ls to allow blocknames to be visiole above
the segment layers Then the blockrame itself coulo serve as tre
shorter |dentifler tor the segment. In this «casey the segment
layer need not re-interpret fetch and store operatjions. Rather,
after a segment has been Initiated, the fetcr and store
operations can be interpreted directly by the large block layer
as fetch and store ooerations on a targe block object. In order
to relieve wuser programs of the necessity of managing the
avallabte blocknames, a simple layer could be bullt on tog of the
segment layer, Tan simpole layer would implement a policy of
asslgning blocknames to UIOs, and would record these assignments
In a per-level-1-8-frame table. Such a table would be similar in
tunction to the Known Segment Table In Multlcs [ref. Bensoussan,
Clingen, and Daleyl. In fact, the segment addressing metrog Just
descrilbed [s the same as the rethcd used In the Multics syster.

Another posslibllity for adoressing segment ob)ects s to
hlde the ©Dblocknames from any layer whlch [Is above the segment
layer, and Introduce another stratecy for asslgning shorter names
to segment UIOs. The processor could provide a number of UID
base reglsters, whlch <can be loaded with 3 segment UID anag an
offset, Then user programs could lcad segment UIOs Into base

reglsters, and refer to segment objJects by the reglster number of

Hunt Page 265 127208/75

the reglster contalning the segment UIOD. The first reference by
a principal 1o a segment would invoke the map and ftarge block
layers to establisn a fevel-2 B-~frame corresponding to the
segment UID., The name of trhe level=-2 HB-frame would be stored in
the level-1 B-ftrame corresponding to the principaly anc coulo be
retrievedy glven the UID, by a ftast search such as s hash lookup.
Such an addressing scheme "would be supported by a8 hardware
associative memory .whicn returns 3 level-2 #B-frame given a
segment UID. This second alternative is simllar to the aporoach

adopteo for the Plessey 250 system (ref., Plassey systeml.
An Interactlon petwean Property Llsts and Type Extenslon

Up to this noint, we have consldered a lavered design ftor
Implementing *“slmple' sejment objects. As vyety, wWe have noft
consicered attributes of segments. In particular, we now wWish to
conslder access attributes of segment objects.s We shall take a
list-oriented view of access control, [ref. Saltzer & Schroeder
IEEE paper] and tharefore consider access control lists. Slnce
1t 1Is also our goal to discuss type extension, .ana since there
are [nteractlons between access control (and other) attrlbutes of
an object and type extenslon, wne mention tnis Interaction before
proceedinge.

The basic issue we must address [s whether agttributes of a
segment obJlect are objects In their c¢cwn right, Speclflcally, Is
an access control 1list (ACL) an object? It sos then a type

extension faclilty seems more fundamental than access control

Hunt Page ¢6 127207765

listse If noty then ACLsS can be imglemented by some layer which
Ils lower than the type extension facillty. There seem to be
reasons for favoring both choices. A reason for making the first
cholce is that an extended type manager (ETM) must be 3ble to
determine, wusing an ACL, if an operation on an extendea type
oblJect Is permitteds On tre other hand, an ACL is a special aata
structure with searchy, dlsplay, and update ooerations defined on
It -- 3 good candldate for objecthood. |

Our solution to this problem is to consider an ACL to be
both an attrijibute of a segment and an object, as [t sults our
purposes. More preclsely, as 1long as we do not conslder the
dynamjc aspects of access control, [t seems qulte approprlate to
view an ACL as an attrlbute. Taking the dynamic aspects of
access control into consideration, it becomes more appropriate to
view an ACL as an object. Thus, we view "statlc"” ACLs as more
tfundamental than extended types,y but "dynamlic®™ ACLS as extended
types.s This stratlficatlon technique, based on the distinction
between the static and dynamic characteristics of an oblect, bhas
been used In other areas of layerea system design, as In the work

of UO. Reed on processes [ref. D Reed].

Given thls approach, the Initla)l description of access
control will not characterlize an ACL as an extended type object
(ETO0)s Later, after Introducing type extenslon, we will take &g
second look at ACLs and olscover that a change in attituge

coupled with minor agesign modlflicatlons allows us to treat ACLs

as extended type nblects.

Hunt Page 27 12720775
The (Static) Access Control List Layer

Thls sectlon shows how an ACL mlght be Implemented as an
attribute of a segment objJect. To as great an extent as
possibley the programs responsibie for providing access control
for segments will make use of obJects whlch h3ave already been
detined, We shall refer to the programs whlch allocate and
search the access contro) lists for segments and other objects ss
the access control list (ACL) layer. The ACL layer associetes a3
list of access control atfrioutes with each segment oblect. A
necessary prerequlsite for access by s oprinclpal to a seqgment
aoblect 1Is that access attributes of the princlpal be ccmpared
with the access control Jist of the oblect. For axampie, the
unique Identlifier of the principal may be comparead to a list of
principal ldentifiers associatea with tre segment.
Alternatively, both the principal and ‘tne segment may bhave.
associated security compartmentsy, which must relate in a
particular way (such as set contalnment) In aorder that the
principal be grantea access. In any casey, the function of ‘the

ACL layer is to provlide the followlng mapplng?t

(ob}ject_UID,y operatlon, principal_UID) =--> boolean

whlch ylelds "“true”™ wonly 1If the accessor (princlpal UID) is
allowed, accoraing to the ACL, to perform "operatjion® on
“object_UID"™. This mappling Is called the "search ACL" operatlon

of the ACL Jlayer.

We propose that the access control |lists be Irplemented in

Hunt Pagye 28 12/72¢/75

terms - of segment oblectss that s, the ACL layer wll! depena on
the segment layver., (1) To ald the followlng descrintion, we
Introduce some new terms. An ACL-segment ls a segment which |s
usea by the ACL tayer to contaln access control llsts. A
P-segment stands for "protected"™ segment, and refers to a segrent
whlch has an assoclated access controtl llst (Implemented In an
ACL-segment)., The ACL tayer must malntaln blndings between 3
segment and Its assoclated ACL-segment, Any segment exceot an
ACL~-segment may have 3an access control liste. ACL-segments, as
well as some other oojects, have a degenaerate form of access
control list to be gescrivea later.

The ACL layer must, In =effecty, sesarch the ACL-segrent
corresponding to a P-segment on eachk reference to tre P-seqgment,
To provlde for effjiclent operatlon, part of tre ACL layer is
implemented in hardware. The level-1 rﬂ-fréme ls extenced to
contain one more ftleld per entry, which 1Is to contain a
bit-encoding ot access modes allowec the oprincipal. Then each
reference to the segment oblect wiliy prlor to fetching the
level-2 B-home, compire the access rode bits wlth the type of
operatjon belng attempted. The access mddevfleld is Initlallized
the first time a principal references a particular P-gsegment, If
the access mode field s uninlitialized, the hardware asslsts the

ACL layer by causing a processor fault. The ACL layer takes the

— 3 e st —— —— " e e s et s s i s s D

(1) Although thls section is cevotec to the implementation of
access control tists, the deslgn presented here could be used as
a basis for provliding general praoperty Illsts for segments or
other objectse.

Hunt . Page 29 1¢/720/75

UID of the referenced P-segment as an argument ang performs the

following steps.

1. It finds the UID of the correspondlng ACL-segment in [ts

table.
2o It Initjates the ACL-segment, If necessary, ana searches It.
3. If access is not allowed, it signsls an access vlolaticn,.

4. Otherwise, it sets the access mcde fleld In the level-1
B-home entry to contair the proper mode ©btits for the

referencing princloal. (1)

Since access control lists will generally be rather short,
the ACL 1layer may choose to represent the ACLs for several
P-segments In the same AGL-segment, The ACL layer can carry out
a pollcy regardinjy grouping of access control llsts 1into
ACL-segments: P-segments whose access control lists are actually
contained in the same ACL-segment are all admlnisterea by the
same offjce. (2)

One difficulty wlth the ACL layer lImrplementation, 2s
described so ftary, has to do with the mappliny from P-segments to
thelr corresponding ACL-segments. It Is clear that proviaing

this mapping functlon Is tre responsiblilty of the ACL itayer; vyet

———— — — —— - — ————— e e it

(1) These same operations applty lf the ACL Is a degenerate ACL -~
3 slmple data structure which deslgrates only one princlpal and a
set of modes.

{(2) The office oblect ls due to Rotenberg {ref. Rotenbercl, and
ls mentloned In RFC 73.

Hunt Page 30 12/720/75

providing such a map seems to be "re-lhventlng the wheel*, slince
another laver (the map layer) alreedy has an elaborate mechanism
whlch maps UIDs Into attributes. Qn the other hand, [f the map
layer were to "know about’™ any of the data structures of the ACL
layery thils would be a viotation of layering,

We solve thls probliem by appealing to a orinciolé. which we
shall call the "plgiyyback princliple™, which seems fundamental to
constructling efficlent |3ayerea systems. The prircioie states
that there s no violation of layering 1If a lower layer malntains
an uninterpreted ogata reposlitory for a higher layver. For

exampley the lower layer can grovide a
name =~=====-- > attributes

mapplng for the nigher laver, if the attributes are
uninterpreted. Essentlally, the only operatlons which the higher

layer ls allowed to perform are
tetch_attributes (name), and
replace_attributes (name, attrlbutes).

The only cause tor an error condlitlon Is a name unknown to tre
lovwer layer., The correct operatlon of the lower tayer does not
depend on the correct operations, or even the existence of,y, the
higher layer.

He explolt the pliggyback princlple In this case by 1letting
the map layer provide the mapping from P-segments to

ACL-seymentse. The map layer wll) mainrtaln, as unlnterpreted cats

Hunt Page 31 1¢720/75

In each level-2 B-home, the UID of the ACL-segment (it any)
corresponding to each segment, The map Jlayer oprovices tha

operatlons
get_ACL (segment_UID), anc
set_ACL (segment_UID, ACL_UID)

wnhlich the ACL layer can jinvoke, Performing elther of tresa
operatlons would cause the triple (segment_UIDy Jevel-2 8-home,
ACL_segment_UID) to be oplaced in the 'map layer associative
memorye

The retlatlonship of the ACL layvyer to the other {ayers which

- fha
AcL /? layg\‘

layer
Seggn2n+

lay qe
layer \ blgck

lay er

[block

\ayer

Do

|

F'\gure 1T

have already been gescribec is shown in FIgure VIile

Hunt Page 32 12/20/75
A Layer to Support Oynamic Type Extension

Th;s last section shows how the layers which have been
described so far can support a type extenslon facility, In which
the extended type oblects (ETOs) are protected by access control
Jists. In generalizing trom one protected oblect -- the
P-segment -- to many, we observe that objects are partitloned
into dis)oint classes, or types. Extenaed type manager
subsystems eftectlively deflne a -type as a coliectijon of
operations [(ref, Jones & Hulf IRIA paverl. All oblects, and
princlipals (which are also obJects), have UIDs.,. In our
lmplemenfaflon) the type of an object Is represented by the UID
of the princlipal which s the extended type manager of the
ob)ect. The ACL of an ETO s represented by a UID, as is the
representatlon, or REP, The REP of an ETQ may simoly be another
objecty or an object which designates a set of other oblects and
serves as a catalog for them.

We model a call on an ETM as
call ETH (operation, objJect_UID, consumer_UID)

In which a consumer, as defined In RFC 73, ls merely any
princlpal that wisnes to referenrnce the partlicular oblect. We
assume that the consumer UID Is wunforgeable. Before ectusclly
referenclng the representstion of the extended oblect, any ETM

would perform the followlng three functions.

1. It woutd check the type by the mapplng?s objJect_UITD =--> type.

Hunt Page 33 12720/75

An ETM should not be able to perform any ooeﬁaflon on an

object of lncorrect type.

2e It would check the ACL by the mappling?! object_UID =--> ACL.
The ETM should not be able to request an ACL search tor an
object of Incorract type. Also, the ETM should not ©proceed
unless the consumer has the rilght +to do the specifled

operatlon.

3. It should obtaln the representation of the exterded objlect by
the mapplng!
object_UID =--> REP.
The ETM should not be able to get the name ot tre REP {f the
extended oblact lIs of incorrect type. (0Of courses even |f
the ETM had the name of the REP of an E£E£TO0 of a dlfferent

typey it could not access the REP.)

In order to perform the mapping from extendea coblect UIOs to
type, ACLy and rep information, we specify a layer called the ETO
layer which pertorms these ttrree mapplng functlons for ETMs. We
elaborate briefly on each of these three functlons. First, there
is type-checking., Each ETM must be able to determine [f an
object glven it is one of its own. This informstion coula be

supplied by a tunctlon which maps object UIDs Into tyopes, ls Se
(oblect_UIN) -=> type.

Another functlon whlch still sufflces but whlch provides Jless

Informatlon Is

Hunt Page sS4 12/20/75
(obJect_UIDy consumer_UIl) =-> boolean,

yleldlng "TRUE*™ only It the type of the object Is the same as the
unforgeable consumer UID. We stall choose the flrst alternative,
which allows any orincipal to determlne the type of an oblect.
The second function is ACL searching. We specify that the ETO

layer provide the mapplng?
(obJect_UID, operation, consumer_UIO, supofier_UIU) =--> boolean.

The ‘“suppller™ of an oblect s merely that principal which
“suppllies™ 1t; i.es the ETM, The supplier UIO Is assumed
unforgeable, If the supollier UID Is correcty, the ETO fayer wil]
pass this request on to the ACL Iaye; as a "“search ACL"™ request.:
In the case of the thira function == obtalning the rep =-- we

choose the mapping .
{oblect_UID, suppller_UID) ==-> REP

which prevents an unauthorizea ETM from getting the name of the
representation. These three functlons providec by the ETO layer
are calleda "get_type"™, *“search_AGCL", and '"get_rep" resoecflvely.
Each of these functlons depends on a functlon of the same name
provided by some {ower {3yer.

Rather than dupllcating mechanlism, howevery, we srall rely on
the oplgyyback principle once again and let the map layer provice
these three mapplngs for tre ET0 layer. The map can be augmented
to contain entries wnlch describe ETU0s. An entry which describes

an ETO has four entrles, as srown in Flgure VIII.

Hunt Page 35 12/20/75

b NIQ !
__ type_ !
B ACL__ !
i__ REP !

Figure VIII

These ETO entries are essentially the same as level=2 H-homes
{whlch we also augment to contaln a type fleld) except that the
rep tleld is the UID of some other oblecty Instead c¢f a 1ist of
B=homes., (1) Any reference to an ET0 entry In tre mao would
also update the associatlve memory of the map laver.

To tie some of these ideas together, wWwe present an exarmple
of a user referencing an extended type objJect. Suppose that
Smith wishes to perform an enqgueue operation on 3 particular
obJect of type messaje guaue, namely “Mﬁ_26“. The orinclipal

“Smith" would invoke the message queue manager (MQ_mgr) 3s shown.
call MQ_mgr (enqueue, MQ_Z26, message, Smith)

We assume that MQ_mgr, the ETM for message qgueues, has already
created the rep of M)_z26y, which is the segment SEG_1u4. The ACL
of MQ_26 1Is represented by the segment SEG_372. Note that
“sSmlith'y "MQ_mgr*, "MQ_26", SEG_14", and "SEG_32" are for the

convenlence of explanation only, and that In fact alt of these

e e e e i o S A o

(1) As an optimizatlon, ETO entries need not be real leat nodes
of the B-tree. Ratner, they could be stored In the 3-tree nodes
immedlately above the leaf NOodeEsSy whilch shculd improve
utltlzation of secondary storajge and reduce sezrch time, In
tacty, this same strateay can be usea for seaments as well, excepnt
that the "“REP"™ field would designate 3 level~-2 B-hore,

Hunt Page 3E& 12/720/75

names are UIDls. The map entrles for the oblects in this exarple

uio | M@R-26
tpe | MQ_ mgr L7 TN
RcL] SEG- 32 | 7 Uw|SEG-14
rep SEG- 147’ +ype| seament
ACL| MR—wmar
rep [level-R B-home

VID|SEG_3R
+“,e segment
AcL ACL ~layer
rep |level2 B-home

F}gur e IX

are shown in Flgure IX. The ETM MQ_mgr, havlng been lnvoked 3s

shown above, flrst checks; the type of MQ_26!

call ETO_layer (cet_type, MQ_26, type),

where "“tyoe"™ Is an output argument returned by the ETND layer. In
the case of the "get_type™ operatlon, the ET0 layer merely makes
a "get_type"™ call with the s&me arguments to the mao layer, The
map layer finds the type field assocliated with the object MQ_26
and returns it. It Is tne responsibillty of the MQ_mgr to abort
the operatlion [t MQ_26 Is not the correct type.

Nexty the MQ_mygr checks to see [If Smlith has "enqueue' cccess

to MQ_26!

call ETO_lavyer (search_ACLsy MQ_26s MQ_magr, Smithy,

enqueuey, boolean).

Hunt Paye 37 12720775

The name of the ETM is lIncliuded an an untorgeable [nput
darameter, since only the correct type manager can request tnat
the ACL be searched. The boolean argument [s an output argqurent
which ls true only [f Smith does have the proper access. The ETO
layer checks to make sure that MQ_mgr Is the ETM tor MQ_26, and
lt soy passes the raquest to search the ACL on to the ACL layer,
The ACL layer calls the *get_ACL" entry of the rap layer to
obtaln SEG_32. the UID ot the ACL. It then searcres the ACL and
returns the boolean value to the ETO layer, whlch returns |t to
the ETM.

Nexts the MQ_myr obtalns the representatlion of MQ_26 1
call ETO_layer (get_rep, MQ_26, MQ_mgry rep).

As betfore, the name of the ETM Is an unforgeable Input parameter,
and ‘''rep" ls an output parameter which is to confain the UID of
the REP of MQG_26. Agaln the ETO layer checks to see that MQ_mgr
Is the ETM for MQ_26,y and then calls the "get_rep'" entry of the
map layer. The map layer finds the rep fleld assoclatec wilth
MQ_26 and returns it. (1)

Once the MQ_myr has the narme of the repy le.e. SEG_14, |t
Wwill reference SEG_14 to effect the *“enqueue" operation. While
referencling the rep of any of Its own objects, an ETM assumes tre
role of a consumer, Since It Is a property of tris tyoe

extenslon facility that type managers can be cascaded, and since

- — f— - e o - — — o — . ——— —— s — o —— - —

(1) The map layer actually has a little knowl edge of types, since
It distingulshes objects of type segment from other objJects. It
will not return the rep of a segment oblect.

Hunt Page 38 12/72¢/75

the rep is a segment In thls case, we could imagine the MQ_mgr
calling an ETM which manages segment objJectss That ETM, In turn,
would perform the *get_type™, 'search_ACL", and “"get_rep"

operatlons. Althou3jh there Is no ETM for segmert objectss the

ACL_layer, in effect, presents the same Inter face as a ‘“segment

manager®” would slince all operations on seaments are mediateo by
the ACL layer. The ‘'get_type"™ &nd “get_rep"™ functlons for
segments are carrleu out by the sej)ment lavyer, and the
“search_ACL" function is carriea out Jointly by the ACL and

segment layerse.

This example 3also [llustrates the two varlieties of access
control lists. The first varlety. or standard ACL, has already
been described. It Is inplemented [n terms of a segment object.
The secona varliety of ACL Is called a degenerate ACL, since it
always contains Just one principal. In this example, SEG_14 hzs
3 degenerate ACL whlch contains the oprinclpal "MQ_mgr*, and
SEG_32 has a degenerate ACL containing the principal "ACL_layer",
The reason for havlng only one orincipal Is evlident: [f an
oblJect is part of the rep of some ETO, then only the
corresponding ETM should have access to It. Note that the only
oblects which do not have cegenerate ACLS are objects which are

not part of the rep of some other object. (1)

- - — - -— T et e st S e e e ety S Ao et e o

(1) ACLs are a special case and are described In the npext
section.,

Hunt Page 39 12723775
VLewlng (Dynamic) ACLs as Extenced Tybe Objects

Having sketched how type extension Ils oprovideds we now
describe how ACLS may be consldered to be ETOs. (1) Our model
for adminlsfra(}ve control of access Includes speclal subsystems,
calleda offices {reft. Rotenbercly, which implement the
adminlstrative policy. It 1s assumed that every object [n the
system Is subordlnate to some officey In the sense that tre
pollcy embodjed In . the offlce wultimately <controls whilch
principals may access the object, and In what manner they may
3ccess Ite The offtice [s deslgned to allow a selected subset of
principals to have some lnflﬁence over office policy. (2) For
exampley In a system with non-discretjonary controls, the set of
princlipals which can Influence offlce policy 1is only one
princlpalt the system securlty aaministrator,

If we Jook upon {(non~-degenerate) ACLs as actual objects,
then the natural canrdldate to be the ETM for an ACL [s the
offlce. Since ln a computer utlllty there would typically De
more than one offjlce,y, there would be more than one type of ACL,
glven that the UID of an ETM lirnclcates the type of an oblecf.

However, one reason why ACLS are not genulhe FT0s 1Is that trere

(1) The degenerate ACLs described in the previous section are not
Intenged to be chanyed, and therefore will not be viewed as
extended type objects.

{2) In order to avold certaln anomalless, 3uch as tre sltuation In
whlich all principals authorlized to Influence office pollcy
suddenly vanlsh, manual overrjaes mrust exist. The adminjistrator
who overrjides offlce policy may do so only In an overt, auaitable
manner) e. g« he may do so only at the system acministrator®s
console In the computer rocm.

Hunt Page 4§ 12/20/75

ls only one type of ACL oblect. The representation of an ACL s
not accessible to any offlce, but rather to the ACL layer orly.

If some user wishes to Inspect or modlfy the ACL of an
obJecty, he must call the offlce which serves as the ETM for that
ACL. To flnd the rijht offficey, it must be possible to obtaln the
offlce of an objecty given its UID. We assume that the UID of

the office of an object Is contained In the ACL cf the object,

and s avallable to any princlpal which calls the “get_offlice"”
entry of the ACL layer, (The offilce UID of an object can never
be changed,) The user would then cafl the offlcet

call office (ob)ject_uUlD, operation, area, consumer_UIOD).

The operation would be to inspect tre ACLy or to modlfy it in
some wWay. It the operation is to inspect the ACL, the ACL cata
Is returned In "area". The consumer UID is an unforgeable LInput
argument, In orger to validate requests of [ts callers, an
offlce may lnterrogate its own data bases as well as lnspect the
ACL itselft,

Gftices réquire two special entrles to trhe ACL layer to

per form their role. The flrst one |is

call ACL_tayer (copy, ob)Ject_UID, offlce_UIN, arez)

In which the office UID is unforgeable. The ACL layer gets the
ACL of *obJect_UID"y and if "office_UID"™ is the office In that
ACLy It will return a copy of the ACL in "area™ (crobably in an

"unpacked", easy-to-manipulate form).

Hunt . Page 41 12720/75
The second speclal entry to the ACL l3vyer [s
call ACL_layer (update, oblect_UID, office_UIU, arez)

In whlch *area™ Is now an lnput argument. In this cases 1If the
oftlce is the rlgnt one, the ACL layer will validate the data in
*area"™, convert {t to Its lﬁternal torm, and store It In the ACL,
uslng the *“set_ACL" entry of the segment tlayer. These two
entries to the ACL layer aliow offlces to carry out any user
requests to Iinspect or modify ACLse. Although any principal can
invoke the ACL tayer, the ACL layer makes sure that only the
correct offlce can perform an operation on an ACL by comparing
the UID of the requesting office wlth the offlce UID [n the ACL.
In additiony the ACL layer wil) not perform a “copy" or "update"
operation on a dejenarate ACL, since degenerate ACLs are not to
be changed,

The dlvislon of responsibllity between offices and the ACL
fayer corresponds to the separation of policy and mechanism. The
office Is the only principal allowed to (dlrectly) Inspect or

provide uUpdates for the ACLy whiie the ACL layer is responsible

for the format of an ACL and for sezrching it.

Summary

The primary goal of thls report s to show that [t Is
feasible to structure the supervisor of a sophisticateaqg,
extenslible system without sacrificlng economy of mechanlsn.

Since the description of the supervisor whlch has been given in

Hunt , Page 42 , 12720775

this report s superficlal, this goal ls only partially achieved
at present,

Two technlgues descrlibed here for attalning thls goal are
(1) allowing a lower layer to maintain uninterpretec cata for a
hlgher tayer (the pligyback princlplel), and (2) 3pplying the same
procedures to “almost identical™ data structures, 2s in the block
and large block layers, The author [s lInvestlgating other
generally-appllcable technlaues.

The advantages ot structuring an operatlng system according

to a layered, obJect-orlented discipline Ircluce (1) a3
progressively nicer set of programmling environments, (2} the
likelihood that the imolementation of any glven laver wil) be

relatively straightforward, {3) the apility to change the
Implementatlon of an abstractlion without affecting other programs

whlch use |t, and (4) rendering the system more amenable to

correctness proofss Any system which must serve a general
programming community in the real ‘marketplace cannot be
fustified, bhowever, unless (it s efficlent enough to be
competitive wlth existent alternative designs. The results

presented here should oprovide some Insiyght Into constructing
systems which are Jayered and oblject-oriented as well as

efflclent.

