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Chapter 1
Introduction

In this paper, we present an alternative mode]lof synchronization. The most
common existing models of synchronization are based upon the principle of mutual
exclusion and shared data to achieve synchronization. We shall argue that both these
characteristics of the synchronization models (1) have undesirable effects upon
security properties of solutions realized in these models, (2) limit their
applicability to distributed systems, and (3) are dependent upon environment specific
properties of systems (1.é., representation of data, semantics of operations on data;

etc.) In addition, some simp1evsynchronization problems are quite hard to solve in

such models.

Our model of synchronization is an event oriented model of synchronizatioﬁ in
which processes coordinate their activities by signalling and observing occurrehces
of events via synchronization variables, called eventcounts and sequencers. Thus,
these synchronization variables become interfaces for all interaction among processes
and a process normally does not need to know the names or 1oqations df other
processes. This has a major simplifying influence on proving correctness of

synchronization programs.

There exists a very strong notion of explicit anp implicit information flow
paths between processes and synchronization variables in our model. This makes it
possible to solve some problems that could not be solved in existing models in a
manner consistent with their security requirements. The notion of information flow
is directly related to dependencies among processes in the system that affects their

recovery from failure., It is easier to study such issues in this model.
i
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The basic synchronization objects, eventcounts, do not require mutual exclusion
for their implementation. It makes it possible to éolve many synchronization
problems in which mutual exclusion is not an intrinsic requirement, without resorting
to mutual exclusion. Our model encompasses two of the most widely studied models of
synchronization - namely P-V [9] and block-wakeup [28]. Thus, while all programs
constructed for these two models can be directly realized in our mode1. it provides
some interesting new solutions, which are easier and have fewer dependencies among‘v

cooperating processes.

This model makes no assumptions about the environmental properties of systems
and therefore it is directly applicable to distributed systems, i;e. those systems in
which due to lack of a shared memory, all communication among processes must be via
communication channels involving unpredictable time delays. We have also found a
"robust" implementation in the distributed systems case where the communication

channels themselves may be unreliable.

We have been inspired in this work by many others working in the field of
synchronization, among whom are Brinch Hansen [1,2], Dijkstra [5,6,7,8,9], Lamport
[17], Johnson and Thomas [16], Saltzer [28], Rappaport [27] Easton [10], Greif [11],

Parnas [24], Lipton [21], and the ARPANET Host-Host Protocol Committee [22].

The overall organization of this paper is as follows. The second chapter
describes the eventcount model of synchronization. In that chapter, we also
demonstrate how to construct semaphores in this model. 1In the third chapter, we
discuss security aspects of our model and present a solution of the hithefto unsolved
problem in which a set of writers and readers sharing a data base must achieve all
synchronization without 1ntroducin§ information flow paths from the readers to the
writers. In the fourth and fifth chapters, we present solutions to some classical

and some new synchronization problems. The sixth chapter is devoted to a comparison
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of the new model with the existihg models of synchronization. In the seventh
chapter, we show how recoverable communication protocols between remote computers can
be realized within our model. 1In the eighth chapter, we describe methods of |
implementing the eventcount model in shared memory as well - as distributed systems.

In the ninth chapter, we give an axiomatic descrfption of the eventcount model and

apply it to verification of synchronizatfon conditions.
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Chapter 2
A New Model of Synchronization

Our model of synchronization is somewhat different from the most commonly
discussed model - namely Semaphores. In the semaphore model, the approach is to
maintain a complete description of the state of the system in a central store and
allow individual processes mutually exclusive access to it, so that processes can
obtain the state in a consistenf form. In our model, a synchronization_prob1em is
expressed in terms of timing constraints [11] on occurrences of events. Events are

divided into event classes and events of a given class are represented by an

associated synchronization variable of the type "aventcount". There exist primitive

operations that permit processes to signal and observe occurrences of events. The

timing constraints of a synchronization problem are realized using these primitives.

Some synchronization problems require a special kind of timing constraint that
can not be realized by eventcounts alone. These problems have the characteristic
that.the order of different activities is nof specified in advance, but rather the
synchrbnization system dynaﬁicai]y defines a total order among them. To realize this
type of constraint, we use synchronization variables called "sequencers". There 1is

only one primitive operation defined for a sequencer.:

Next, we discuss eventcounts and sequencers in greater detail. Then we show how

to realize semaphores (and associated opérations) in our model.
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2.1 Eventcounts

The main purpose of an eventcount is to keep a count of the number of events of
a particular class that have occurred in the past. An eventcount can be thought of
as an integer variable whose value never decreases (because events can not

un-happen).

We define an advance primitive to signal the ocurrence of events and three

primitives observe, await, and read to obtain values of eventcounts. As we shall see

shortly, the observe primitive is not'necessary unless some method of expressing busy

waiting 1s‘desired.

‘2.1.1 Signalling Events

We‘define a primitive operation advance(E) to signal the occurrence of an event
in the class associated with the eventcount E. The effect-of'this operation is to
increase the integer value of E by 1. A process with bermission to perform an
advance operation on an eventcount is.said to be a "signaller" or "manipu1atqr“ of
that eventcount. An advance operation takes a finite amount of time to execute.
While an advance is in progress, it is not specified as to when the integer value of
the eventcount changes; it is only necessary to ensure that it change sometime
before the operation is completed. The value of the eventcount equals the number of

advance operations performed on it (i.e. the initial value of an eventcount is zero).

2.1.2 Observation of Events

An observer of E can obtain its integer value by the primitive operation
observe(E). If "r" be the value returned, then the only information this primitive
provides is that at least "r" events have been signalied via E; one can not assume

that more have not been signalled. There may be an arbitrary delay between the time
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an advance completes and the time an observe returns the value incorporating the

”A\, effect of the advance. The reason for this is that we would 1ike to capture the
delay inherent in a distributed system. However, the effect of all advance
operations will eventually be communicated to all observers and the successive values
of observe(E) in the same process will be non-decreasing.

The single-producer, singlie-consumer system, in which a process, called the
producer, is transmitting messages to another process, called the consumer, via an
infinite length buffer buf[0:»] can be realized in terms of advance and observe by
utilizing a single eventcount IN (initial value zero) as follows:

producer:

in := 0;
do forever
begin
generate message;
buf{in] := message;
advance(IN);
in = in+l;
end

o~ ,

consumer:

out := 0;
do forever
begin
while observe(IN) < out do nothing;
message := buffout];
out := out +1;
end
2.1.3 Awaiting Occurrence of an Event

In the consumer program, we see a "busy form" of waiting, which is wasteful of
processor time. To eliminate it, we define an await primitive. If "v" be an integer
value, then await(k,v) returns in a finite time after observe(E) 2 v. Using await,
the while Tloop 1n the consumer can be replaced by:

await(IN, out+l);
/\
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The busy form of await(E,v) is equivalent to the following program:

while observe(E) < v do nothing;

It may be helpful to the reader to have a visual image of an eventcounﬁ and
interactions of various processes with it. An advance operation may be imagined to
consist of transmitting one message to each of the observers. The value of |
observe(E) is the number of messages received for E. This particular jmage provides
the intuitive reasons that suggest that the eventcount mechanism is appropriate ﬁo

distributed systems.1

2.1.4 Awaiting Occurrence of One of Several Possible Events

Often a process is interested in one, any one, of a number of events in the
system. One rather common example of this situation occurs when a process awaiting
termination of some i/0 activity has also set up a time out event. In a distributed-
system a receiver might want to wait for "arrival of a message or break down of the
sender". To permit realization bf such “re]qtionship;" between‘events.‘we generalize

the await primitive to the following:
await(Ey,vy, ..., Ens Vi)

where Ey, ..., En are eventcount names and Vis .., Vo are corresponding integer
values. This primitive returns in a finite time after one (or more) of the

eventcount values becomes greater than or equal to the corresponding integer value.?

1 Indeed, this is one method of implementing eventcounts in the distributed systems,
although not the recommended one. A better mechanism, which is robust with respect
to the loss of messages, is de;cribed in the implementation section of this paper.

2 Merlin and Farber {23] have shown that it is not possible to construct asynchronous

recoverable protocols if some knowledge of execution time of the events is not
provided. This directly relates to the notion of time-out and the generalized await
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Even though we have defined the observe primitive for eventcounts, in practice
1t 1s not necessary to use the gbserve primitive unless some method of expressing
busy waiting is required. Thus, we are left with only’two primitives: advance and

await.

2.1.5 QObtaining the Current Value of an Eventcount

The gbserve primitive is defined to return a value that is monotonically
increasing but not necessarily up-to-date. The reason for fhis'apparent1y relaxed
definitjon will become clear later. Meanwhile, there are synchronization situations
in which an eventcount may be used to represent the state of a shared resource or a
data base. In such a situation we would like to be able to Gbtain a current value of

an eventcount.

One method of using the current value of eventcounts follows. Consider é
process that has just finished an event A. If this process now obtains a‘curreﬁt
value r of an eventcount B, then it is certain that no more than r events of type B
had completed when A finished. Therefore, the prbcess can be certain that A preceded
the (r+l)th event of type B (indeed the (r+1)th event of type B may never occur).
When 1s such a relationship useful? Consider a data base being shared between a
reader and a writer. We wish that the writer be able to proceed any time it wishes
without having to wait for a read to complete. At the same time, we want ;he reader
to be able to determine if its read operation of the data base overlapped with any
~write operation so that it can determine whether the data base was in a consistent
state or not during the read operation. The prob]em can be solved as follows:
Before beginning to read the data base, the reader obtains a curent value (C) of an

eventcount that denotes the number of times write operations have completed. Then

primitive is one method of realizing such a protocol. 1In a later section of this
paper, we give an example of such a protocol.
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after it has finished reading the data base, the redder obtains the current value (S)

of an eventcount that denotes the number of times write operations were started. If -
S>C then it is possibie that a write operation was started during the read operation

and therefore the read operation might have obtained inconsistent results and must be

r‘epeated.1

For this reason, we define an additional primitive operation read(E) that

returns the cufrent value of an eventcount E. The essential difference between
observe and read can be explained by destribing the operations in terms of message
transmissions. As before, each advance operation transmits a message to each of the
observers. The observe operation simply counts the number of advance messages
received. Buﬁ the read operation waits until it has received all the messages that
were transmitted at or before the time af which the read was initiated, and then it
counts the number of advance messages received. Thus, there is an inherent delay in

the execution of read, caused by transmission delays in the communication channels.

Let tg and t. denote the tfmes at which a read operation starts and completes.
Let S(E,t) and C(E,t) denote the number of advance operations started and completed
at or before time t on eventcount E. Then the value "r" returned by the read(E) is
defined by the following:

C(E,tg) s r s S(E,t¢)

By using read, a process ensures that the effect of all advance operations that
were completed at or before the time at which read started, has been communicated to
it. However, the value returned by read méy also include the effect of those advance
operations that were initiated after the initiation of, but before completion of, the

read.

1 This technique is a variation of the version number technique of data base
synchronization [10]. A general version of this problem is discussed later on in the
section titled "Security". '
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Since there are no delays in the communication paths in shared memory systems,

read and observe for a shared memory, single word eventcount are identical. In

distributed systems, the distinction between gbserve and read is critical. Possible

implementation strategies for shared memory and distributed systems are described in

the implementations section of this paper.

2.1.6 Some Comments on Eventcounts
" Before proceeding further, we make the following comments regarding eventcounts:

~1-Most synchronization problems involve cooperation among cyclic processes. Thus an
eventcount whose value is increased by one in each cycle, is a natural method of
representing thg history, and therefore the state, of a cyclic process.

2-A primit1§e operation on the eventcount never interferes with other primitive
operations on the same eventcount. This makes it practical to implement
eventcounts in distributed systems.

3-One consequence of our definition of the gﬁgi& primitive is that upon return from
await(E,v) the following a;sertion remains true forever:

V(E) 2 v

where V(E) is the value of the eventcount E. This property of the gﬂgiﬁ primitive
has a major simplifying effect on verification of synchronization qroperties of
programs. This}aspgct of eventcounts is fully exp1pred in a later section of this
paper.

4-1t is possible to implement eventcounts such that the only information transfer
through an eventcount occurs from the signaller processes to the observer
processes. When such an implementation is used in conjunction with appropriate
protaection mechanisms, 1t is possible to cbntro] the flow of information through

eventcounts and thus provide solutions for problems that could not be solved within
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the existing models. One section of this paper, titled "security", is devoted to a

thorough discussion of the protection aspect of our model.

2.2 Sequencers

We define a new type of synchronization object, called a "sequencer", for which

there exists only one operation - namely ticket. The ticket operation returns an
integer value, called a "ticket". If a ticket operation does not overlap in time |
with other ticket operations on the same sequencer then its value equals the number
of ticket operations performed on the sequencer in the past. Furthermore, no two
ticket operations on the same clock ever return the same iicket. Essentially, a
sequencer is a natural number generator and returns the sequence 0,1,2,..., etc. A

ticket operation is guaranteed to terminate.

Obtgining_tickets from a sequehcer is similar to obtaining tickets frém
ticket-machines in large department stores. The ticket operation is a request for
service of a shared resource. Its result, a ticket, is an authorization for the use
of that shared resource. A ticket also contains information as to when ﬁhe
authorizatjon becomes effeétive. If several processes request authorization at
approximately the same time, the sequencer imposes an ordering on the authorizations

{
it grants.

The use of sequencers can be best illustrated bx an example. Let us introduce
multiple producers in our producer-consumer example. We want all deposit operations
to be mutually exclusive but are Unwilling to place an apriori sequence constraint on
the several producers. We use a sequencer called T, which is used by each producer
to obtain a "ticket" for depositing its message into the buffer. Having obtained a
ticket a process merely waits for completion of all events previously requgsted

through T. Each producer executes the following progfam:
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producer_i:
integer t;

do forever;

begin
generate messdge;
t:=ticket(T);
await(IN, t);
buf{t] := message;
advance(IN);

end

The consumer process executes the same program as before.

In terms of message transmissions, a "sequencer" may be viewed as a single
message containing the value of the sequencer and continuously circulating in a ring

through each process that might perform the ticket operation. A ticket operation

consists of stopping the message, reading its value, and incrementing it by one

before letting it proceed further.

Before proceeding further, we briefly summarize the machinery we have
constructed for synchronization. We have defined eventcounts with the four

operations: advance, observe, await, and read. Eventcounts are sufficient to

synchronize activities where order can be specified in advance. In practice, the
observe primitive may be eliminated unless it is necessary to express busy waiting.
We also defined a "sequencer" for which there is only one operation - namely ticket. -
Sequencers are required where the order of activities is determined dynamically;

that is, wherever mutual exclusion is called for.
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2.3 Constructing semaphores

Because a ticket operation is guaranteed to terminate, we can define both fair
and unfair semaphores1 as well as a wide variety of scheduling disciplines. Let's

examine a way to obtain a fair semaphore using these primitives.

A fair semaphore, s, will consist of a sequencer, s.T and an evéntcount. s.E.
The P and V operations can be defined as follows:
P(s): t := ticket(s.T);
await(s.E, t);

V(s): advancé(s.E);

Now if we enclose a critical section of'code with these P and V operations, we
can guarantee that a) at most one process can be executing the critical section at a
t1me,.and b) that any process that begins the ticket operation in P will eventually
enter the critical section =- in other words, the semaphore is fair. The difference

s.E-s.T corresponds to the value maintained by an ordinary semaphore impiementation.

By changing the initial values of the eventcounts that comprise the semaphore,

one can allow more than one process in the critical section. Thus, we really have

defined a general semaphore.

The following observations may help develop some intuitioh about the
relationship between semaphores énd eventcounts. The semaphore s has been split into
two parts, s.T and s.E. The part s.E is written into only by those processes that
perform the V operatiorn on s and s.T is written into only by those processes that
perform the P operation. P and V never write in the same part. It is this

separation that allows us to clearly identify and control the channels of information

1 A fair semaphore is one in which a P operation by a process cannot be prevented
forever from completing by the repeated execution of P operations in other
processes{assuming sufficient V operations are occurring, of course).
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flow. The ability to identify the intrinsic information flow paths of a
synchronization problem also helps its implementation in distributed systems.
Corresponding to the splitting of semaphore, the P operétion is also split into two

parts - the queueing operation and the waiting operation. Thus scheduling, which 1s

implicit in the semaphore model, has been made explicit in the eventcount model.

2.4 On Storing Eventcounts

If eventcounts are used to synchronize cyclic processes that never terminate,
one may be concerned that the value of the eventcount cannot be stored in a finite
amount of memory. In practice, however, one can always bound the values that will be

encountered, since no system can operate forever.

In this sense, eventcounts are a convenient abstraction, just as the datatype
integer is a convenient problem solving abstraction for Algol programmers. In
solving a problem by using eventcounts, one can first assume that eventcounts are
unbounded, and when the problem has been solved, one can determine practical bounds
for the values of the eventcounts and reserve enough storage for tﬁem. Proceeding in

this manner is exactly analogous to dealing with the limitations on Algol integers.
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Chapter 3

Security Properties

In order to discuss the properties of eventcount and seqdencer objects with
respect to the flow of information in the system, we must identify the ways in which
the primitive operatioﬁs of our model transmit information. First, we concentrate
our discussion on eventcounts. There are two important ways in which the eventcount
operations can transmit information from process to process. First of all, advance
operations may occur, changing the value of the eventcount, and this change may be
observed by some process. This we will call an expjicit information path, since thae
purpose of the operations on eventcounts requires that the value of an eventcount be
manipulated and observed. The other way in which an eventcount can transmit
information is through the timing of its operations. For example, if one has two
mutually exclusive operations that may be executed by two processes, those two
processes can detect whether they were excluded by observing the time that the
operation took to complete. We will call these paths implicit information paths,

since they are an incidental side effect of the definition of the operations.

We were careful to provide a definition of the eventcount operations that does
not require mutual exclusion of eventcount operations. In an implementation of
eventcounts tha does not use mutual exclusion there are no possible implicit
information channels, because any number of opefations on an eventcount may be in
progress simultaneously. At the level of abstraction at which we deal with a shared
memory system it is sufficient to 1Mp1ement each eventcount primitive as a single

hardware instruction relying on memory arbitrartion to achieve this security
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property, since the mutual excliusion implicit in the memory arbitration is
undetectable at that level. In the implementations chapter of this paper, we

describe some implementations that preserve the security properties of eventcounts.

As we have defined the operations observe, await, and read, they are pure

receivers of information. There is no way that any eventcount operation can detect

the fact that another observe, await, or read operation has occuréed, will occur, or

is occurring. However, these operations can detect the fact that advance operations

have occurred.

Similarly, ;he advance operation only transmits information. There is no way

that an advance operation can tell if any other eventcount operation has occurred.

By controlling the ability of a particular process to execute particular
operations on an eventcount, we can thus control its ability to use that eventcount
as an information channel from or to another process. We may do this be defining two
orthogonal access permissions that a process may have for an eventcount. The first
permission entitles a process to receive information transmitted through the
eventcoqnt, and will be called receive-permission, while the second entitles a

process to transmit information on the eventcount, and will be called

transmit-permission. The observe, read, and await operations can be performed only
if the process has receive-permission on the corresponding eventcount. Similarly,
advance can be performed only if the process has transmit permission on the

eventcount.

The ticket operation on a sequencer both receives and transmits information,

since it influences the values returned by future ticket operations in other
processes, and since its value is affected by ticket operations executed before it.
Thus, if we use the receive and transmit-permissions to control a process's ability

to use a sequencer, a process can perform a ticket operation only if it has both
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permissions for the corresponding sequencer.

These permission requirements are summarized in the following table:

Operations
Permissions | observe | |
Required | read | advance | ticket

| await | |

] | |

. | : | |
receive-permission | X | | X

| | !

transmit-permission | | X ]

In order to show the effectiveness of these security controls in dealing with

the confinement problem, we give the following example.

We wish to have several processes share a datavbase, of which therelis one copy
in the system. Any number of processes may read the déta base simu]taneoust, but
modifications to the data base must not interfere with each other, so processes that
make modifications to the data base must be mutually exclusive. The readers should
read a consistent version of the data base (that this requirement should be ’
explicitly mentioned is a clue that we shall develop a solution in which a writer may
proceed even while readers are reading). We wish it to be the case that there is no
way for readers to transmit any information to other readers, or to any w;iter. That

1s, we wish to guarantee the confinement of any information held by a reader process

within that process. We would particularly like to be able to accomplish this simply

by restricting the access permissions granted to reader processes, rather than by

proving the whole set of programs used by the reader process.

Assuming that actually reading and writing the data base only receive and
transmit information respectively, and that confined processes only have the ability
to read the shared data base, we can synchronize the processes, accessing the data

base without introducing any security problems in the following way. We use a
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sequencer S, which is inaccessible to readers, to synchronize writers. We use two
eventcounts Wg and W, to allow readers to discover that a writer has started, and
completed, respectively. We also ensure that the confined processes (i.e., readers)
only have receive permission on both eventcounts. Thus the eventcounts and the
sequencer can not be used to transmit information from the confined processes to any
other processes. Then, the confined processes may read the data base, and obtain
consistent values by executing the following code:
reader: repeat
w:=read(Wg);
await(We,w);
"read data base";
until read(Wg)sw;
While unconfined. processes can update the data base by this code:
writer: advance(Wq);
t:=ticket(S);
await(We,t);
"read and update data base";
advance(W;);
These algorithms are closely related to the ideas presented by Easton [10] for

eliminating long term interlocks. The eventcounts used here correspond to his

version numbers.

With this example, we have shown a way in which a confined proceés doing useful
work can synchronize itself with other processes. Further, it is clear by looking at

the synchronization primitives used by a particular process what infofmation paths

may be used by that process to transmit information to other processes.

We claim that it is impossible to solve this problem using mutual exciusion
among readers and writers, because mutual exclusion primitive will always provide a

potential channel by which readers can signal information to writers.

Another simb]e example of secure synchronization is provided by the earlier
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producer-consumer example (with infinite length buffer), in which it is easily seen
that, by appropriate use of receive- and transmit- permission, the consumer can be

confined from transmitting information to the broducer without affecting his ability

to receive information from the producer.
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- Chapter 4
Some Classic Synchronization Problems

In this chapter, we show how two of the commonly discussed synchronization
problems - resource allocation [6] and readers-writers [4] - can be solved in the

eventcount model.

4.1 Deadlock-Free Resource Allocation

Suppose we havé a large set of resources that may be used by a set of processes,
.but must be‘exclusive1y assigned to a particular process whi1e'1t is in use (we have
built in a kind of mutual exclusion here). Further supposé that processes
occasionally require the use of more than one resource simultaneously. If we allow a
process to ask for only one resource at a time, we introduce the possibility that
deadlock may occur. We would like to avoid deadlock, if poésib]e, and further we
would like to guarantee that once a process indicates its negd for a set of

resources, it will be guaranteed to eventually get them.

Dijkstra[6] discusses a solution to a simple case of this probliem as the "five
dining philosophers" problem.  His solution using semaphores requires major reworking
to make it work for different numbers of processes, which might require different
numbers of resources. In fact, it is not clear that his solution generalizes to the
case where the resource requirements of some processes using resources are unknown to

other processes using those resources.
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We have discovered an interesting solution to the general problem.that works
independently of the number of processes, and where each process needs no knowledge

of the resource requirements of other processes.

Let's consider the problem of deadlock. Deadlock can arise when process A
requests resource C, anc then requests D, while process B requests resource D and
then requests resource C. At this point, process B is waiting for A to finish, and
process A is waiting for B to finish, resulting in deadlock. If we were to seize all
resources simultaneously, in a critical section, there would be no problem. Solving
this problem with semaphores, where the set of resource-requesping processes is not .
known in advance, requires an extended semaphore primitive, P-multiple, which can

wait on several semaphores simultaneously.

Defining fair scheduling for a P-multiple operation is quite difficult, and in
particular should not be left implicit, since the timing behavior of the solution to
the problem depends crucially on the exact definition of scheduling in the P-multiple

operation. Our solution has each process awaiting one eventcount at a time, and can

be shown to be fair, in the sense that a process that-begins a request for resources

eventually gets them.

We do this by using the ticketing concept, first introduced by Lamport[l?].
Each resource will have a sequencer and an eventcount associated with it; one will be
used to provide tickets, and the other will be the grantor of resources. We then
need only have the process requiring a set of resources take a set of tickets for
those resources all at once, and then wait until its turn is reached. A program for
obtaining a set of resources, R, follows. The set R consists of the individual
resources A, B, C, etc. The sequencer associated with a particular resource, A, will
be indicated by subscripting: Tp; and the eventcount associated with A will be Gj.

There is a global semaphore, s, built out of a sequencer s.t and an eventcount s.e in
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the way we previously described.

use(R): t:=ticket(s.t) get tickets for R
await(s.e,t) in a critical section
ta:=ticket(Ty) get tickets for each resource

tB:=t’iCket(TB)
advance(s.a)
await(Gp,tp) wait turn for all resources
await(Gg,tpg) in any order

"use resources in R"

advance(Gp) grant resources to next users
advance(Gg) in any order

The process executing this code is guaranteed to get through the "getting
tickets" phase in finite time. Once it‘has gotten through the "getting tickets"
phase, it has established its relative position in the queues of processes waiting
for resources in R. Thus it will eventually get those resources, before processes
that request some overlapping set of resources after its request get any of the

resources in the overlapping set. Further, since it gets its tickets effectively

simultaneously, deadlock can never occur.

One can imagine the working of this program as follows. Imagine the requesting
processes as a group of people. Processes requiring resources line up in the order
in which they make their requests. As resources become free, we start with the head
of the queue, and ask each person whether they require that resource. The first
person in the line to require a resource will be given it, and'if he now has a

complete set of resources he may proceed to‘use’them.

The ticket values which a process gets are related to this image, since the
ticket value a process holds for a resource is equal to the number of processes which
have requested that resource before it. This value is just the sum of the number of

processes which already have used the resource and the number of processes which have
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requested the resource before this process but are in the queue ahead of this
process. Consequently, when all of those processes have used the resource, it will

be this process's turn.

It is our claim that this program is very easy to understand and prove. It is
not our intention to solve the general resource allocation problem, but just to show
the utility of the eventcount idea as a tool to describe and solve problems in that

area.

The solution we have presented is rather simple, and needs to be improved ff it
is to be used in gn operating system environment. In particular, we need not wait
till both resources are available to the process to begin using the first -- the
process can begin using resource A, for example, when resource A becomes available,
and need only wait for resource B to be freed when resource B is required.
Similarly, the process can do the advance operations at the end of the program as

soon as the resource is no longer needed.

This is not the only program that can be useq to fairiy schedule resources == in
particuiar, we may define other programs that allow resources to be allocated to
processes that request them in other than FIFO order, but are still fair. Such
programs may achieve better overall resource utilization, in the sense that if
another process reauires resource A while the pracess executing the program abovq

would be waiting for B, it may be allowed to proceed.
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4.2 A Readers - Writers Problem

Another short example that shows the power of the synchronization method we
describe is our version of Courtois, Heymans and Parnas'[4] second readers-writers
probiem. The problem is similar to our earlier problem of secure data-base
synchronization. The statement of the problem, however, makes it impossible to

confine the reader processes'from transmitting information.to the writers.

Briefly, the problem is this. There are a number of reader processes and a
number of writer processes sharing a data base. Any number of'rea&ers may be reading
the data base simultaneously, when there is no writer writing in the data base. Only
one writer may write in the data base at a time, and may not do sc until there are no
readers actually reading the data base. Now, the crux of the specification is that
writers have prior%ty; that is, if a process requests that it be aliowed to write, it

should be enabled to do so as soon as possible.

An important requirement is that if a write is in progress, and some reads are
waiting for that write to complete, and another write request comes along, it should
be promoted ahead of the wéiting reads. Furthermore, we add the requirement (not in
the original problem) that writes be fairly scheduled, so that any write request is
guaranteed to finish and not be Tocked out forever by reads or other writes. It is
clear from the statement of the problem that reads can be locked out forever by a

steady stream of writes.

Our solution uses a sequencer S to sequence write requests and four
eventcounts,which have the following intuitive meanings:

Rg =- reads started (including aborted attempts)
Rc == reads completed (including aborted attempts)
Wp == writes requested

‘We == writes completed
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The programs for reading and writing follow.

writer: advance(Wp);
t:=ticket(S);
if read(Wc)<t
then await(W.,t);
else repeat

Let the readers know about write

Obtain a ticket for this write

If a previous write has not completed
then await its completion;

otherwise make sure all reads are done.

r:=read(Rg);
await(Re,r);
until read(Rg)=r;

write; .
advance(VW.); Signal completion of write.
reader: greenlight := false;
while not greenlight do
begin ‘
await(W., read(W.)); Wait for writers to finish.
wisread(Weo); Get number of writes completed
if read(W.)=w If no pending writers ..
then beqi ' then attempt to read;
advance(Rg); Signal attempt to read.
if read(W.)=w If still no writers
then greenlight := true then it is 0K
else advance(R.) Otherwise abort attempt

:

[+ ]

read; ' Read the data base
advance(Rc); Signal completion of read.

In our solution, a writer advances the eventcount W. to let the readers know
about itself, and then it obtains a ticket for its‘turn to write. At this poinﬁ if a
previous write request has not yet completed then the writer only need wait its
completion without worrying abéut the behaviour of the reader processes. Otherwise
it must ensure that no reads are in progress. A reader process first examines if
there are any obstacles in its path (i.e., writes pending or in progress). If there
are none, then it signals its intention to begin the read.operation by advancing the
eventcount Rg. However, it can not quite begin the read because some writér might
have entered a request. Therefore, after signalling its intention to begin reading,
the reader proceeds to read only if no writer has announced its intention to write in

the meantime. This ensures that writers have priority over readers. If a reader
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encounters obs.tacles in its progress, it simply waits until those obstacles are

removed and then re-examines the situation.

The important thing to notice about these programs is their ciarity. We expect
that the reader will be able to understand how they work quickly, as opposed to the

solution of Courtois, Heymans and Parnas, which is quite complex.

The solution we present here is different fkom the solutions published by
Courtois, Heymans and Parnas using semaphores, and is also different from the
solution published by Hoare using monitors, in the fact that the reader processes
never execute a plece of code which excludes other readers, even for a brief period.
For this reason, a delay that affects a particular reader process can never affect

the progress of other readers (it may,.however, delay a writer).

Some comment should be made about the definition of the time when a writer makes
his request. It is never possible for the reader to tell if 5 writer has requested a
write before he began operation, since in any gystem there is some time delay between
the time the write is requested and any reader can know that the write was requested.
Thus, the best we can say is that there is some delay between the time the write is
requested and all other processes can know it was. This delay is built into the
definition of the advance operation in the first step of the writer in our solution.
Thus, 1in our solution, we can guarantee that no reads will be allowed to begin after

the advance operation in the writer has been executed.

Another difference of our solution from Hoare's monitor solution and Courtois,
Heymans and Parnas' solution is that the only communication between processes is done
through the eventcount and sequencer mechanism. In the other two solutions, mutual
exclusion is used to protect global variables which are shared among all processes.
This can only add complication to a distributed system implementation, since

mechanisms for sharing the values of global variables are quite complicated. Since
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our implementation does aot use shared global variables, the solution generalizes

directly to a distributed system, without adding any new mechanisms.
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. Chapter 5
Some New Synchronization Problems

In this section, we discuss some synchronization problems that have received
very little attention in the past, and show how to realize their solutions in the
eventcount model. First, we show how to incorporate a real-time clock and associated
time-out mechanisms into our model. Then we discuss a broad class of problems that
are collectively referred to as monitoring problems. Finally, we show how the

eventcount model can be used to construct self-stabilizing distributed systems.

5.1 A Real-Time Clock and Time-0ut Mechanisms

In our model, a real time clock can be considered to be an eventcount and
standard primitives (i.e., read and await) can. be used to obtain the clock values and
set up time-out mechanisms. We assume that there is a hardware process that is
advancing the clock at regular intervals; a single interval being the qnit of time
represented by the clock. If we let "time" be the eventcount representing a real
time clock, then read{time) obtains the time of the day. A process can use the
following program to suspend itself for an interval of "interval" time units by
executing the following program:

blocktill := read(time) + interval;
await{time, blocktill);

Similarly, a process awaiting occurrence of some event on an eventcount E
(await(E,v)), can set up a time out mechanism as follows:

alarm := read(time) + interval;
await(E, v, time, alarm);
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.In many computer systems, there exist programs for generating unique identifiers
from a real time clock for various purposes. The following program, which uses an
eventcount E and a sequencer S (both initialized to zero), generates such unique
identifiers from the clock "time" and uses only standard primitive operations of our
model:

procedure unique_id(id);

begin
t:=ticket(S); Get a ticket
await(E,t); Wait for turn
id:=read(time); obtain time value
while read(time)=id do nothing; make sure no one else gets the same
advance(E); ' Enable the next process to enter
end

5.2 Monitoring

Most of the examples in this paper require somé kind of'exc1usion. This 1is
because most "synchronization problems" to be found in the literature have some kind
of exclusion in their specification. We suspect that this bias toward thinking of
synchronization as being exclusion has left untouched an important class of
synchronization problems, where exclusion is not part of the specification of the
problem. In this section of the paper, we discuss a number of relatively simple
problems that do not require exclusion, but rather much simpler synchronization

specifications.

Our earlier example of the producer-consumer problem with unbounded buffer is
such a case. Here, each slot in the buffer starts out empty, then is filled by the
producer, and then is used by the consumer. The synchronization specification for
this problem is guite simple. The consumer must always access a slot after the
producer accesses it. The simplicity of this specification results in the fact that

we can solve the problem without the use of the ticket operation.
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There is a particularly important class of non-exclusive synchronization
problems which we cail monitoring. Suppose we have an object whose state changes
over time. An example of such an object might be a data base (where'the state
consists of its contents), a page of virtual memory (whose state might be either in
primary memory or out of primary memory), or some processor on a distributed
processor system (whose state might be down or up). If for some reason we arae
interested in observing the changes to the object as they progress, but cannot
interfere with the agent making the changes (as might be the case with the down or up
state of a processor which is unreliable), we cannot be sure of the state at any
particular time. We must be satisfied with the fact that any state observed by a
process may be out of date by the time we look at it. We can wait for the system to
change to a particular state, but by the tim; we complete the wait, the system may
have changed to another state. If a process is operating under these ground-rules,
but is observing qhanges to the state of some object, we will say it is monitoring

the object.

We can use the values of an eventcount to represent the state of a monitored

object, if we always change the eventcount with advance or update' whenever the

object's state is changed. An example of this concept can be found in the Multics
operating system file storage backup facility. Associated with a file is a variable
called "date/time modified", which holds the date and time of the last modification

to the file. The backup procedure wants to write a copy of the file to tape after it

. { :
1 Quite often, we need to use the following program construct for advancing single
manipulator eventcounts (i.e. eventcounts that are advanced by 'only one process):
while s > read(E) do advance(E);

Its effect is to change the eventcount value to "s" from "r"., For the sake of
clarity and brevity, we will use the following equvivalent operation:

update(E,s);
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has changed. It does not want to copy the file repeatedly when there are no changes.
Further, it is desirable that the backup procedure not interfere with the process
making the changes. What the backup procedure does, then, is wait until the
"date/time modified" of a segment exceeds the value it had when it previously was
copied. We can say that "date/time modified" is an eventcount. For each segment,
backup logically has a process which does the following:
i ,
while true do
begin
time:=read(segment.dtm)
"copy the segment"

await({segment.dtm,time+delta)
end

Another intercsting example 1s to be found in a network of éomputers such as
ARPA Network. In such a network, individual machines often go down either due to
system crashes or planned shutdown in such a manner that all logical communication
paths between machines and processes must be aborted and each cbmmunicating process
or machine be informed of the shutdown. If a machine comes up shortly after an
unplanned shutdown, 1£ is possible that it will receive messages directed towards its
earlier instance due to the possibility that information of it going down has not had
a chance to reach all the machines in the network. For proper operation, it is
essential that a machine be able to detect these "spurious" messages and discard
them. The solution presently adopted in the ARPA Network Host-to-Host protocol [22]
is that no communication between two machines is established until they have
exchangea a pair of.RESET messages. This technique normal]y work; except when a
machine goes down- and comes up several times in quick succession. Coupled with this
is the problem that a process faces when it tries to establish multiple logical
gonnections with a single instance of another machine. The problem is that when a

process attempts to establish several logical connections with another machine, it

has no method of determining whether all the connections were made with one instance
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of the remote machine or not. Suffice here to say that no straightforward solutions

have been proposed.

Rather simple and elegant solutions can be obtained using eventcounts. First of
all, how can we model the up/down status of a machine? Our model uses two
eventcounts per machine, one called upcount and the other called adowncount. ~When a
machine cbmes up, it increases it# upcount by one. When a machine goes down; its
downcount is increased by one by some other machine that has determined the fact of
the former machine going down. Now, processes can monitor thke state of another
machine merely by observing its eventcounts. If the downcount of a machine is
greater than or equal to the upcount then the machine has definitely gone down sincé

the time of obtaining the value of upcount.

Another useful feature of this representation of the system is that we can

associate with each logical communication path the values obtained by read{upcount)

of both machines. This enables a process to determine with certainty whether
multiple logical connections with another machine belong to the same instance of
other machine or not. And, it ‘also enables a machine to determine whether a Togical
connection path exists or not. Another useful feature of this model is that the
values of upcounts associated with each logical connection cén be put into messages
being transmitted over the logical connection. This allows each machine to determine
with certainty wheiher it is to discard a particular message or not, thus eliminating
the need for RESETs. It should be noticed that all this mechanism is based upon only
two eventcounts per machine and nowhere do we need any machinery other than that

provided by the basic eventcount implementation.

Maintaining the upcount requires that each machine have at least some
non-volatile memory in which to store its upcount value, which may not be possible

for some machines. However, we expect that each machine keeps track of the real time
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in some consistent form. The real time as measured in number of time units elapsed
since some fixed instaht in the past is really an eventcount and will suffice for our
purposes. Rather than maintain upcount and downcount, a machine maintains uptime and
downtime. When a machine comes up, i1t updates its uptime by the time of the day.
Notice that it is nut necessary that all machines use the same unit or reference for
their real time clock. The only requirement is that each machine use a cqnsistent
method of expressing}time as a monotonically. increasing number with reference to some

fixed instant in the past.

5.3 Self-stabilizing Systems with Distributed Control

In a system with distributed control, total state information is ditsributed in
variou# stores connected with individual processes comprising.the system. For the
sake of roﬁustness,.such a system canh be constructed such thét each process
communicates with other processes by fecording its state information in its store
which is accessible to other processes for observation only [17]; In such systems,
property of self-stabilization which states that if the system is in an illegitimate
state, it will return to a legitimate state in a fiﬁite number of moves - for a more
precise definition, see [8] - is quite useful. However, design of even simpie
systems with these properties is quite difficult. Let us consider a simple system
consisting of two processes interested in alternating the use of a common reSource.
Each process can indicate its state with respect to the use of shared resource by a
boolean variable indicating whether or not it is using the resource. We invite the
reader to atempt to construct a solution which will bring the system into a
legitimate state in a finite number of steps regardiess of the starting state. It is
difficult. Essentially, the problem is that while a process is taking some action to

bring the system into the legitimate state, other process can take some action which
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will counter-act first process's action, thus keeping the system in an illegitimate
state indefinitely. This is analogous to the critical race problem encountered in
switching circuits. We claim that it is easier to solve such problems using
eventcounts. Wé present the following solution to the above problem using one
eventcount for each process:

processo:
update(Cg, read(Cy));
if mod(Cg,2) = 0 then begin
use resource;
advance(Cq) .
end; v
else await(Cl.read(Co)+1);
goto process0; :

processl:

update(C,y, read(Cq));

if mod(C;,2) # 0 then begin
use resource;
advance(Cy)

end;

else await(co,read(cl)+1);

goto processl;

Processes, numbered 0 and 1, signal changes in their state via eventcounts Co
and C) respectively. Process number 0 is using the resource when mod(Cg,2)=0 and
process number 1 is using the resource when mod(C;,2)=1. The system will eventually
move into the legitimate state (only one process using the resource at one time) from
an illegitimate state (both processes using the resource simultaneously). In this
example, the critical race is avoided because when the system is in an illegitimate
state only one process can make the move. In general, it is easier to construct such
solutions with eventcounts because each possible state of the sysiem can be uniquely
1den§1fied. (Eventcount values never repeat). This makes it possiﬁ]e.to uniquely
identify the "next legitimate" state from each illegitimate state thus making it
possible for each process to determine its own move independent of other processes.
It is clear that any distributed self-stabilizing system con;isting of cyclic

processes can be constructed using eventcounts.
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Next, we present a solution for a somewhat more complicated self-stabilizing
system consisting c¢7 several machines arranged in a ring. Each machine communicates
only with its neighbors and in the stable state only one machine can be "enabled" at
any given time and control passes from a machine to its neighbor in the clockwise
direction. Each machine referes to its own eventcount as C and to that of its

anticlockwise neighbor as C'. One of the machines has the following program:

LOGP : await(C', read(C));
"enabled”";
update{C, read{C')+l);
goto LOOP;

and all other machines have the following program:
LOOPL:  await(C', read(C)+l);
"enabled";
update(C, read(C'));
goto LOOPL;

Dijkstra gave this problem and its solution for a "central daemon"l in [8]. Our
solution using eventcounts is applicable to truly concurrent machines. Only
assumption in the above programs is that updates to eventcounts do eventually get
communicated to their neighbors. 1In systems where this assumption does not hold, a

timeout facility can be introduced in each machine such that it will periodically

wakeup and examine its neighbor's state.

l with a central daemon, each machine can assume that while it examines the state of
other machines and makes a move, other machines may not be changing the state
information.
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Chapter 6
A Comparison with Some Existing Models

In this chabter we shall compare some common models of synchronization with the
eventcount model. In order to facilitate our discussion, we provide a list of
desirable and undesirable properties for a synchronization system. For the sake of
brevity, each property is labeled with a suitable name. A synchronization system

should have the following properties:

1-Distributed systems (Dg): As more and more distributed systews come into
existence, we must be able to deal with their synchronization problems. Issues
of reliability and error recovery become even more important in distributed
systems and any synchronization method should be able to deal with such issues.

2-Structuring of Solutions (S¢): Does a solution structure cabtqre the struétufing

of problenm.

We shall characterize synchronization systems in terms of the following

undesirable properties:

l-Dependency on environment specific properties (Ep): dependency on language
features, representation‘of data, or special protocols for accessing data are to
be avoided.

2-Unnecessary explicit information flow paths (Ig): Any synchkronization problem
has certain intrinsic information transfer among some processes. If however,
its realization in some synchronization system requires additional information
flow paths then it is possible that the original sedurity requirements would be

violated. In addition, these information flow paths introduce dependencies that
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are not intrinsic to the p;obfem and have an adverse effect on the robustness of
the solution.

3-Hidden information flow paths (Iy): Mutual exclusion coupled with access to a
real time clock can be shown to provide a two way communication channel between
processes [18]. Thus, if mutual exclusion is not an intrinsic requirement of
the problem, it should be avoided especially where security is of great concern.

4-Unnecessary sequentiality (Sq): If a synchronization system forces
sequentiality and prevents exploitation of paralielism of multi-processors and
distributed systems, then the system performance would be affected. This can

become serious if the number of processes involved is rather large.

6.1 Some existing models of synchronization

The two most ommon models of synchronization are: (1) the P-V model using
semaphores [9] and {2) block and wakeup model [28]. In the P-V model, the approach
to solving synchronization problems is to record the state of ﬁhe system in shared
data and allow each process mutually exclusive aécess to it. In the block-wakeup
model, a process can transmit a signal to another process,'which will awaken the
recipient if already blocked. When the receiving process returns from biock, i1t is
expected to examine somé shared data and determine the cause of the signal and other
relevant information. Mutual exclusion on shared data 1s not specified but it is
necessary for correct operation. To aveid a "critical race" between the traﬁsmitter
and receiver, a wakeup waiting switch, one per receiving proéess, is provided and it
is required that operations on the switch be mutually excluded in time. Thé mutual
exclusion of operations on the synchronization variables (i.e., semaphores and wakeup
waiting switch) is implicit in both models. Thus, shared data and mutual exclusion
of operations on shared data (as well as synchronization variables) are inescapable

consequences of both the models. A third consequence of the block and wakeup model
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is that the sulutions depend on identity of the processes involved. A wakeup must be
sent to some specific process. 1In a system of cooperating processes, if some process
is replaced by another process, its name must be made known to all other
communicating processes. The P-V model also introduces sihiiar process dependencies
but in a more subtle way. Even though a semaphore's existence is independent of
existence of processes, a signal transmitted through a semaphore (a V operation) can
be received by only one process. The solution to this problem is the "private
semaphore", i.e. a semaphore for each process on which no other process will ever
perform the P operation [9]. Thus a third consequence of both models is process
dependency. We mention this here only because it accentuates the need for shared

data (other than synchronization variables) for communicating process identities.

There exists a third model of process synchronization based upon message passing
[2]. A sender communicate§ 1nformétion to the receiver by deposiiing a message in
the receiver's queue from which receiver can read the message at its leisure. Since
the message queues ‘are the synchronization variables, this model eliminates the need
for shared data. Mutual exclusion in 6perations on synchronization variables is
required. One consequence of this model is that the structure of information being
communicated (i.e. contents of messages) is not defined and ﬁas problems similar to
those introduced by shared data. This model is also heavily dependent upon process
identities because each message queue is associated with some process. As pointed
out by Lauesen [19], in this model it is not possible to construct sehaphofes without

introducing an administrator process.

Tpere exist two other important models of synchronizaticn: (1) conditional
critical regions [1,15], and (2) monitors [2,14]. Both these models are based upon
the principal of mutual exclusion of critical regions and utilize shared data for
maintaining the state of the system. There exist several proposals to extend the

basic concept of semaphores [25,30,32], but all the resuiting models are based upon
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the principle of mutual exclusion and suffer from the adverse effects of mutual

exclusion.

Next, we discuss how the three consequences (shared data, mutual exclusion on
synchronization variables and shared data, and dependence on process identities)

affect the properties.

6.2 Effects of Shared Data

One of the impiications of using shared data (other than synchronization
variébles) for synchronization purposes is that synchronization depends upon some
agreed upon representation of data and semantics of operations on the shared data.
Thus, programs executing in two different languages may not be able to synchronize
their operations. This is especially true for processes located on different knids
of machines. Unless processes are given selective access to various parts of the
shared data, the svstem will have the undesirable property of unnecessary information
flow paths (I,). One assumption of the shared data apprdach is that it is possible
to give a complete desc~iption of the global state of the system at'a11 the times

[11].

In the eventcbunt model, there is no need for "shared data" since
synchronization variables themselves provide a convenient method of representing a
system's state. Thus, to synchronize their operations, all that two different
systems need to do is to provide a common implementation of our synchronization
model. Furthermore, operations on eventcounts and sequencers correspond to the
information flow paths that are intrinsic to the problem. Therefore, this model does
not introduce any unnecessary information flow paths. Thus, while use of shared data
has the undesirable properties Ep, Ia, (and indirectly) Ih, and Sq, iﬁ our model,

there is no need for shared data and conseqdently we can avoid these.
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6.3 Effects of Mutual Exclusion

It can be shown that mutual exclusion coupled with access to a real time clock
provides a hidden communication channel among processes [18]. Thus mutual exclusion
on shared data and synchronization variables introduces hidden information paths
where none might be necessary. This makes it impossible to construct systems 1in
which some processes must be totally confined. In distributéd systems, mutual
exclusion must be avoided whenever possible, since time taken to achieve a consensus
among processes may be rather long and therefore these models of synchronization can
not be applied to distributed systems (Dg). Furthermore, unnecessary mutual
exclusion implies unnecessary sequentiality (Sq). The block and wakeup model
provides no simple solution to mutual exclusion problems (Spe)» which can be easily

solved in the P~V model.

In our model, it is possible to avoid both kinds of mutuval exclusion unless it
is an intrinsic requirement of the problem. We have shown methods of implémenting
operations on eventcount without mutual exclusion. A sequencer is used only when it
is an.intrinsic requirement of the problem. Since it is not necessary to use shared
data other than the synchronization variables, we can also avoid nutual exclusion on
shared data. It is precisely because the eventcount model does not rely upon shared

data and mutual exclusion that it is applicable to distributed systems.
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6.4 Effects of process dependence

In the P-V model, a monitoring problem1 can be solved by using the so called
private semaphores 6]. The state of the shared resource is maintained in a shared
data base and each process is given mutually exclusive access to it. When in the
critical region, a process examines the state variables and determines whether it can
proceed or not. If it can proceed, then it performs a V operation on its private
sémaphore, otherwise it alters the state variables such that when the state, for
which it is waiting arrives; some other process will perform the V operatioﬁ on its
private semaphore. Upon exit from the critical section a process performs a P
operation on its private semaphore. We might consider this solution satisfactory if
the set of processes involved is fixed and small. Howe?er, unhder the dynamic
conditibns of time sharing systems where old processes must be removed and new ones
introduced, this soluticn becomes quite complex because of the necessity of

introducing the names of private semaphores and associated state information into the

shared data. Furthermore, as the number of processes in the system grows, -contention .

for access to shared data increases thus delaying the real time progress of
processes. This is perhaps not a serious problem for single processor systems, but
in multi-processor systems this can become a potential bottlieneck especially if the
number of processes is large. By and large, these remarks apply to the biock and

wakeup model also.

It is clear tbat solution of a sihp]e problem, which intrinsically requires
nothing more than pure, non-interfering observation of the activities of a system is
impossible in the existing models unless some means of communicating information from

observers to the system are introduced, thus making the system dependent upon the

1 As discussed elsewhere in this paper, a monitoring problem is one in which one or
more processes are interested in observing the changes in the state of some shared
entity. In principle, it should be possible to solve such a problem without
resorting to mutua’ excliusion.

Draft - 44 - 01/12/76

)



behavior of ouservers. This communication requires shared data and possibly mutual

exclusion and suffers from all the bad effects of the two distsse& above.

In the eventcount model, signals transmitted via eventcounts have a permanent
existence and are available to all observer processes because observation of events
does not alter eventcount values. This implies that from siagnaller's view point
signals are transmitfed to someiabstract entity which may consist of one, two, or any
number of processes. How these signals are utilized by the observers (i.e., one
signal per process or one signal to all processes) can be negotiated among the
observer processes themselves and is of'no concern to the signaller processes. This
eliminates the need for signalling processes to know tﬁe names of the observer

processes,

The independence of signaller processes from observers has profound influence on

. Structuring and proving correctness synchronization processes. It permits us to

examine each process's behaviour in relation with onily those eventcounts that it

interacts with without being concerned with the details of other processes.
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Chapter 7
A Message Communication Protocol

The producer-consumer problem discussed before, extends to the network
environment where the "producer" and "consumer" processes are located in remote
machines and communicate over message transmission channel rather than a shared
buffer [31, 22]. Since the communication channels are often unreliable, complex
protocols have been deve]obed to achieve reliable communication [5]. In this chapter
we shall demonstrate, by an examplie, that the problem of constructing such protocols
is really a synchronization problem no different in nature than those encountered in
shared memory systems and that it can be easily described ana solved using the

eventcount synchronization model.

7.1 A Communication Protocol for a Reliable Channel

Consider two remote processes: (1) a message generator iccated in the "sender"
machine and (2) a mesage consumer located in a "desf%nation" machine. Assuming that
there exists an unreliable comunication channel and a reliable eventcount
synchronization system between the two machines, we are interested in constructing a
re]iable message transmission path from the message generator precess to the mesage
consumer process. We are interested in two kinds of gnreliability introduced by the
message transmission chanhel: (1) some messages may get lost in the transmission path
and (2) messages may not arrive in the order of transﬁission. In addition, there
needs to be flow control mechanism that would prevent the sernder from overflooding

the buffer space allocated by the destination.
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For the sender machine, we define the following processes in addition to the
message generator: (a) a space allocator which allocates buffer space for use by the
message generator, (b) a transmitter which reads messages from the buffer space and
transmits them to the destihation machine, and. {(c) a space freer process which frees
the buffer space occupied by the messages that have already been transmitted.
Similarly for the receiver machine, there is a process to allocate buffer space, a
receiver process to receive messages from the sender and deposit them into the buffer
space, and a buffer freer process to free the buffer space occupied by messages that

have already been consumed by the mesage consumer.

Next, we define a few eventcounts to be used for synchronization among these
processes. Notice that each eventcount is manipulated by only one process whosé name
is given in parenthases following the description of each eventcount. These
aventcounts are as follows:

G: Each message in the potentially infinite message stream is assigned a
unique rumber (starting with 1). At any given time, its value
indicates the number of messages generated. (Message Generator)

T: number o messages transmitted to the destination. (transmitter)

Ag: total amount of buffer space allocated to the message generator in the
unit of messages. (Space Allocator in sender)

Fg: total amount of buffer space from which messages have been transmitted
and which has been freed. (Space Freer in sender)

C: number of messages consumed by the mesage consumer process. {Message
Consumer)

R: total number of messages received by the receiver process. -In the
message stream it points to the message received last. (Receiver)

Agq: total amount of buffer space allocated to the receiver. (Space
Allocator in destination)

Fg: total amount of buffer space from which messages have been consumed
and which has been freed. (Space Freer in destination)

For correct operation, the following conditions! must hold:

~Sender machine: Ag 2 G2T2Fg
Des%ination machine: A4 2 R 2 C 2 Fy
Transmission control: R<T<S Ay

1 perivation of these relationships is inspired by Pouzin's work [26].
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The above relationship for the sender machine states that the message generator
will never generate moré messages than the space allocated (A;%G),‘the transmitter
will never transmit more messages than generated (G2T), and the space freer will
never free the space occupied by the messages not yet transmitted (TZFS). Similarly,
the requirements for the destination machine are that the receiver will never receive
more messages than the space allocated for them (AdzR). the consumer will never
consume more messages than received (RxC), and the space freer will never free space
occupied by messages that have not been consumed (Cde). The first of these
requirements (AdzR) is enforced by the transmission control requirement that the
transmitter will never transmit more messages than the space allocated by the

destination (TsAd) and that the receiver will never receive more messages than

transmitted (R<T).

To build a system that satisfies above requirements is straightforward and
simple in the eventcount model. For the sender machine, message generator observes
Ag, transmitter observes G, and space freer observes T. We have an essentially
similar situation for the destination machine. The transmission control requirement,
TsA4, can be met by the transmitter observing the eventcount A4 and making sure that
it never transmits more than the allocated space. The requirement RST is imposed by
the physics of the situation, the receiver can not receive more'messages than
transmitted. In this system, each process works completely asynchronously and has a
minimum amount of interaction with other processes which is dictated by the

requirements of the system.

The overall structure of the system is depicted in figure 1. We show the
essential syhchronization relationship by putting each process's eventcount(s) next
to it. Arrows going out from an eventcount point to those processes that observe it.

The arrows going into eventcounts come from manipulator processes.
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Figure 1 - Communication Protocol for a religble channel

7.2 A Recoverable Protccol for an Unreliable Channel

The system works satisfactorily for a reliable transmission channel. Extension
to the unreliable rase is simple and straightforward. To enable the receiver to
detect loss of messages we need some method of identifying messages. This can be
readily accomplished by depositing the sequence number of each message in it. We

introduce a new process called "retransmitter" in the sender machine and the

following eventcounts:

Eq: It points to the rightedge of the retransmission window (assuming
that stream proceeds from left to right). (Receiver)

Eg: This clock indicates the right edge of the stream which has been
retrransmitted. (Retransmitter)

Whenever the receiver detects a hole in the message stream, it updates E4 to the
right edge of the hole. If however, the receiver does not have reassembly
capability, it can discard all messages past the hole and set E4 to the highest
sequence number encountered or to the value of T. The retransmitter observes

eventcount E4 and initiates retransmission whenever Eg>Eg. The retransmission,
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however, need not start at Es) rather it starts at R. Thus, retransmitter observes
two eventcounts. This method takes care of both kinds of unreliability in the
communication channel mentioned previously. To embellishlthings further, we can add
a timeout facility in the retransmitter that wfll cause it to retransmit, if messages
in a previous retransmission have not already been received successfully. It is now
essential that the buffer space occupied by the messages in sender be freed only
after the messages have been succesfully received (F4<R). This requirement can be
easily met by the sender's buffer freeing process, which now observes the eventcount
R rather than T. The overall structure of this system is depicted in figure 2. By
way of examples two possible programs for trahsmitter and retransmitter processes are

| | | | | |
ISpace Allocator I Ag Ag |Space Allocatur |

R _ / | | [
. /4

| I S |

|IData Generator | G Fq |Space Freer |

N
_\‘

| |
|Transmitter ] T ' C |Data Consumer |
|

I\
|Sphce Freer | Fg R |Receiver I
| I/E, | l

| |
|Retransmitter ] Eg Eg

I |
SENDER MACHINE ‘ DESTINATION MACHINE

Figure 2 - Communication Protocol for an unreliable channel

also provided.
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rocess transmitter;

integer length, t;'

t = 1;
while true do ’
begin '
await(G, t);
await(Ay, t);
send message(t);
advance(T);
t:=t+l
end
end

process: retransmitter;

comments "w" is meant to represent some very large value of the real time clock

not

expected to be reached during the life of this process. Similarly interval

is assigned some meaningful value in the units of the real time

clock

"time". G, T, Ag,» Eg, Eg, and R are eventcounts. "send message(s)” sends

the message with the sequence number s to the destination machine.;
integer leftedge, rightedge, length, alarm;

‘alarm := o]
interval := 50;

while true do beqin
await(Ey, read(Eg), time, alarm);
leftedge := read(R)+1;
rightedge := read(Eq);
if rightedge 2 leftedge

then begin 7
while leftedge < rightedge do

begin .
send message(leftedge);
xdvance(Eg);
leftedge := leftedge +1

end;

alarm := read(time) + interval

end
else alarm := o;
end
end
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7.3 Information Flow Paths and Security Issues

Figures 1 and 2 provide a graphic illustration of informatior transfer paths
introduced into the system by £he synchronization mechanism. Assuming that the
message transmission channel from the sender to the destination machine does not
provide a reverse communication path, the only information path. from the destination
machine to the sender machine is that between the space allocator (destination) and
the transmitter process via eventcount Ay. Under normal situatiﬁn, due to buffer
space limitations, there would exist in each machine a communicat;on path from space
freer process to the space allocator. This path completes an indirect information
transfer path from the mesage consumef process to the message generator process. If
the security requirements of the system were to demand so, this information path
could be eliminated by eliminating the path from Ag to the transmitter process. This
of course has the effect of eliminating all paths from the destination machine to the
sender machine. One implication of eliminating this path is that there must be some
predetermined buffer allocation strafegy that can be followed by “he transmitter
process. If a machine could guarantee to be able to supply buffer at a rate faster
than the maximum rate of message transmissions pérmitted by tiie channel, then one can
assume an effective allocation of infinity. Another method of eliminating this
information path would be to eliminate some.path within a machine; for example, the
path from eventcounﬁ C to the space freer in the destination machine. However, among
processes sharing resources (as they do if they are located on one machine) there
exist hidden or implicit information paths which are virtually impossible to
eliminate. [18]. If the security requirements of the system require that even
implicit paths be eliminated from the mesage consumer to the message generator then
nothing short of eliminating all information paths from destination to the sender
machine would satisfy the security needs. It is clear from figure 2 that a reliable

channel can not be constructed from an unreliable channel without some form of

§
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communication from the destination to the sender machine. The only alternative is
that for a given channel, reliability of transmission can be improved to some desired

degree by transmitting multiple copies of each message.

7.4 Some Comments

Besides illustrating to the reader ihat a complex network protoco] problem of a
distributed‘system is really a synchronization problem and that the eventcount mode]
can be used to solve it, we hope to have demonstrated the ease of.application of this
model. The power of the eventcount model results from the fact that it permits
decomposition of a complex system into asynchronously executing; more or less
independent components #hat need to know about the total system state no more than
absolute minimum required for their proper operation. Furhermore, the size .of each
component of the system can be kept small so that it can be easily understood and

proved to work correctly.
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Chapter 8
Implementation Issues

In this chapter we discuss a number of ways to implement eventcounts. We will
first consider how to do so in a system in which all of the processors share memory.
After this, we will discuss some of the issues in impiementing eventcoﬁnts on a
distributed system, where memory is not shared. In the course of our discussion, we
will present the idea of a "single-manipulator" eventcount, which will be somewhat
vsimb]er to implement than a fully general multiple-manipulator eventcount. We will
show how this "sing]é-manipu1ator“ eventcount can be used very elegantly in the

construction of a general eventcount.

For the distributed system (and shafed-memory, multi-word) 1mplementations of
eventcounts, it is useful to partition eventcounts into two classes: (1) eventcounts
on which no read operation will be performed and (2) eventcounts on which read
operation can be performed. The former are called asynchronous eventcounts and the
latter are called time-synchronized (or synchronous) eventcounts. As we will see

soon, asynchronous eventcounts are easier to implement than synchronous eventcounts.

Finally, we will discuss how to implement a sequencer in both the shared-memory

case, and the distributed system case.
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8.1 Shared Memory Eventcount Implementation

Let us assume that we have a number of processes sharing memory. Memory will be
composed of words which are long enough to hold any reasongb1e eventcount values (say
64 bits). The simplest possible implementation in this case requires that the
process be able to execute a machine instruction (aos) which adds one to the contents
of a storage location in one memory cycle. The arbitration ability of the memory

interface will prevent two simultaneous additions from causing incorrect results.

If this is the case, ihen we can implement the advance operation as an aos
instruction to the memory cell which holds the contents of the eventcount. The
observe operation can be implemented as load instruction from the memory cell which
holds the eventcount value. The read operation is identical to observe. Finally,
the await operation can be implemented as a loop which repeatedly obtains the observe

value of the eventcount, and compares that value with the desired value.

If we wish to avoid busy-waiting, we can modify the await operation $O thét if
the comparison fails the first time, the process executing the await is blocked. The
address of the evéntcount,'and the value waited for will be stored with the blocked
.process. The advance operation wi]] have to be modified to search the blocked
process queue for any processes waiting for the advanced eventcount's new value.
However, key to implementation of await operation .is the observe operation, whether

or not it is made available to the users. In the remainder of this chapter we will

not discuss implementation of await.

The implementation that we have just described is perhaps most likely to occur
‘in most systems. However, this implementation does not apply to machines which do
not have an "aos" instruction and neither does it apply to distributed systems.
Another problem in a computer system might be that a single memory word may not be

large enough to hold an eventcount. 1In the remainder of this section we discuss
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alternate metnods of implementing eventcounts for these situations. A reader not

interested in the details may skip it without loss of continuity.

8.1.1 Single- vs Muitiple-Manipulator Eventcounts

A rather surprising result of our definition of eventcounts, which we state here
without proof, is that the sum of several eventcounts is also an eventcdunt;
Therefore, we can construct a multiple-manipulator eventcount from the sum of several
single-manipulator eventcounts. This is a powerful result and key to implementation

of multi-word and/or distributed system eventcounts.

Let there be m manipulator processes Sl, S2, ..., Sm for an eventcount E. To
construct E, we associate a single-manipulator eventcount E[i] with each manipulator
Si. Now, the operation advance(E) for process Si, represented by advance;, can be

defined as follows:

procedure advance;(E);
begin

advance(E[1]);
end;

Operations observe(E) and read(E) can be constructed as follows:

procedure observe(E);
begi
return(observe(E[1])+observe(E[2])+ ...+observe(E[m]));

:

1l
jo 8

n

procedure read(E);

begin :
return(read(E[1])+read(E[2])+...+read(E[n]));
end;

The operation await(E,v) can be implemented using observe. To eliminate busy

waiting, it is necessary to use the generalized form of await waiting on each of the

component eventcounts simultaneously.
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The. above constrﬁcﬁion for a multiple-manipulator eventcount is independent of
any particular representation of single-manipulator eventcounts. It holds for shared
memory as well as distributed systems, and for single word as well as multiple wprd
eventcounts. it holds for asynchronous as well as synchronous eventcounts.
Furthermore, it preserves the information flow properties for eventcounts. As a

consequence, all we need do is show how to implement single-manipulator eventcounts.

In the remainder of this section we sha11 restrict our discussion to
implementation of single manipulator eventcounts only. First, we describe the
implementation of multiple-word asynchronous and synchronous eventcounts for shared

memory and then for the distributed systems.

8.1.2 Shared-memory, multi-word, asynchranous eventcount

If the memory word is not long enough to hold an eventcount, we can implement
this type of eventcount using several memory words. We provide a brief description
of the algorithm. A n+l word long eventcount En+11 can be constructed from an n word
tong eventcount E, and one word of memory M. The advance operation on Ep,) consists
of adding 1 to the contents of M, and then, if there is a carry over from the
addition to M, an advance operation on En. To perform the observe operation, each
process must now maintain the last observed value of Ep,q, called E,. Notice that E,
is unique to each observer process. To obtain the value of observe(Ey41), @ process
first obtains observe(E,) (called x) and then reads the content of M (called y). The
value of observe(E,41) is given by the following:

max( (x*x2'+y), Eg)

where 1 is the length of M in number of bits.

1 Remember that we.are dealing only with shared-memory, asynchronous,
single-manipulator eventcounts.
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Even though we have defined the eventcount recursively, in practice it need not
be so. An n word long eventcount can be implemented as a sequence of n words, where
the advance bperation is performed from the right to the left (i.e., least
significant word to the most significant word) and the observe operation is done from
left to right (i.e., most significant word to the least significant word). We remind
the reader that we are talking about asynchronous eventcounts only, that is the read

operation is not defined.

8.1.3 Shared-memory, multi-word, synchronous eventcounts

We use the same technique as used above to describe fhe multi-word eventcount of

this type, i.e., we shall define advance, observe, and read operations recursively.

A n+l word long synchronous, single manipulator, shared memory eventcount can be
constructed from two n word long eventcounts E, and E,' of similar type and two
mémory words M and M'. The operation advance(En+1) consists of first adding 1 to M,
and then if there is a carry.over, advancing E,. This procedure is repeated with
Ep' and M'. The operaﬁion read(En,1) can be best described by the following

algorithm:

procedure read(En4p);

begin
ad(En );

( nts
>y
en

sre
= M
srea

|—‘-§3‘<

ot X

h return(xx2y)
1se return(y*2l+m);

D

nd;

The reason why this Eead operation gives correct result is as follows: if the
man1pu1ator is advancing the pair (E,', M') when the reader is obtaining y and m,
then the manipulator must have already advanced the pair (E,, M). If x is not
greater than y then this advance operation could not have caused an overflow on M (or

M'), hence (Ep', Mn') returns correct value. If on the other hand x > y then the
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eventcount value (En+1)'must have ecrossed the value x*27 since read was initiated and
hence this is the corﬁect value. The observe operation can be performed on any of

the pair (E,,M) or (E,', M') and is similar to that for the asynchronous eventcount.

A 64 bit long synchronous eventcount on a 16 bit word machine will require 22

words of shared memory.

8.2 Eventcounts in Distributed Systems

8.2.1 Asynchronous Eventcounts on Distributed Systems

WQ are now ready to discuss the implementation of eventcounts on a distributed
system. The basic problem here is that changes to an eventcount (via advance) take
time to propagate down communication lines to other systems. We have two options --
we can implement all eventcounts on one system, and require that other systems
request that system to do operations, or we can distribute the eventcount values, so

that each system maintains a local copy. We have chosen the latter alternative.

We have already shown how to add together single-manipulator eventcounts to
obtain multi-manipulator eventcounts, so we will concentrate on single-manipulator
eventcounts. First, let's see how to construct a Sing1e-manipu1ator asynchronous

eventcount.

This is rather simply done, by using two shared-memory single-manipulator
evéntcounts, one local to the manipulator system, and the other local to the observer
system. In addition, we require two processes, one on each system. These things are
connected as in figure 3. Manipulations to the eventcount are accomplished by

manipulating E,. Process My waits for changes to E, using await, and then reads the

current value and transmits it over the communications line. Process O, waits for
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messages over the communications line, and then updates the cbserver systems local
copy, Eg, to the received value, v, using the following loop:

while read(Ey) < v do advance(E,) '
Processes on the observer system can then use the eventcount Eo in await and observe
operations as if it were the real eventcount. Eo has the required property that it

follows closely behind the eventcount En-

A feature of this 1mp1emehtation is that it will work even if the messages on
the communications 1ine are received in a different order than they were transmitted.
In fact, if we make process Mi transmit extra messages at fixed time intervals, we
can make the eventcount more robust with respect to loss of messages. This is a
rather useful result, which will be true also of the single-manipulator synchronous
eventcount. We can achieve this robustness because of the non-decreasing nature of

the eventcount value.
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8.2.2 Synchronous Eventcounts in Distributed Systems

In order to implement a synchronous eventcount, we need only the capability té

do a read operation on the distribu

implement the read operation is to guar

doing

when the read was started.
sent by thg brocess My, there will be
the value of Ep.
E.. from the transmitted value and its time stamp, respectively.

on the observer system does a read,

ted eventcount just described.

what we must do to

antee that the proCess on the observer system

the read does not get a value from Eo which is less than the value of Ep was

read was begun.

that the “"time" obtained on the observer system when it starts

We can do this by a time-stamp.

Along with every message
a value which represents the time when Me read
Process Op will be changed to update E, and then a new eventcount,
Then when a process

1t will wait until Ep exceeds the time when the

In order to make the time-stamps work correctly, it is necessary to make sure

a read never lags

behind the "time" obtained by the process Mg when it transmits a message. This can

be ensured by 1mp1ement1ng the "time" as an asynchronous single- -manipulator
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eventcount. The portion of the figure below the dotted line creates timestamps, and

the portion above transmits values with timestamps.

In order to guarantee that a read will complete, we change My to transmit a
message whenever either Ep or Ep are changed. A read 6peration is just the following
sequence. :
t::read(Et)+1
advance(Ey)

await(E., t)
vizread(E,)

8.3 Implementation of Sequencers

In a shared memory system, a sequencer can be implemented as a single word in

shared memory and ticket operation consists of reading the value of the word and

increasing it by one, all in.an}indivisib]e operation mutually excluded from other
operations on the same word. If the "aos" instruction used previously were
augmented to save the value of the memory word before increasing it, then this single
instruction can implement shared memory, single word eventcounts as well as

sequencers.

If, however, there is no such instruction or if a single word is not large
enough to hold all possible values, then some form of mutual exclusion is necessary
to perform the ticket operation. The implicit communication channel provided by
mutual exclusion cén not, however, cause security violations since there exist

explicit communication channel in the ticket operation.

In distributed systems, implementation of sequencers is more difficult. One
method would be to associate a process with each sequencer whose job is to receive

requests for ticket operations from all the processes and send them the ticket

values. The requests for ticket operation and replies can be accomplished much in
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the same way as rcad operation for synchronized eventcounts.

Another method of implenting séquencars is ta circulate a message among all
processors, such that two processors never have possession of the message
simultaneously. Then, whenever a processor has the message, it can execute a ticket
operation, and then pass the message along. This is not particularly robust. since
if the message is lost, the fact is not detected, and can result in ticket operations

never terminating.

while we have not found a perfectly robust solution te this problem, the problem

is analogous to Dijkstra's problem of Self-Stabilizing Systems [8] discussed earlier.

Draft - 64 - 01/12/76



Chapter 9
Axioms and Verification Techniques

In this chapter we present an axiomatic description of eventcounts and
sequencers and demonstrate how to apply these axioms to verify synchronization

properties of solutions realized in the eventcount model by way of an example.

9.1 An Axiomatic Description of the Eventcount Model

We would like to be able to define the effect of primitive operations in our
model precisely, in order to be able to make and prove statements about the correct
operation of our programs. In particular, we would like our model to be able to

' i

define the effect of eventcount primitives executed on the same eventcount

concurrently in time.

In order to do this we introduce a notion of time into the model. This time is
purely a forma) variéble, which serves to specify the relative timings of operations
executed in a set of concurrent processes. Any program operation A will have a
starting time, tg(A), and a completion time, tc.(A), such that te{te. We can then say
that two primitiye operations A and B may execute simultaneously if it is possible
that ts(A)sts(B)<tc(A) or ts(B)sts(A)<tc(B). In 5 sequential process, operations are

ordered so that if A is followed by B, t.(A)<tg(B).

We would like to be able to show the interaction of any possible timings of a
set of processes, and to constrain the possible timings. We will do this by means of

a technique using hidden functions of time, by which we mean a set of functions whose

values vary'over time, but which cannot be directly observed by programs in the
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system. By this technique, we'may hope to describe timing properties which cannot be
dealt with by traditional program-proving techniques involving only the state of the
whole sy;tem as observable by a program. In particular, in a distributed system, or
one in which certain security restrictions are enforced, programs cannot in general
observe the state of the whole system at a particular time. Also, programs cannot
observe the state of the whole system while they are executing a synchronization
primitive, so traditional program-proving techniques cannot make a statement about
the behavior of the system while synchronization primitives are executing. However,
we may nonetheless care about the performance of the system as seén from an
omniscient external viewpoint, in order to be able to discuss such ideas as "fair
scheduling" and so forth.l Time is also an important system value when the system
has its boundaries outside the computer system itself, as is the case in most ’

procéss-contro] systems or air-traffic-control systems, for example.

8.1.1 Axioms for Eventcounts

For an eventcount i, we define two hidden funcfions S(E,t) and C(E,t) such‘that
at time t, S(E,t) and C(E,t) equal the number of advance operations started and
completed on E at or before time t. They are both non-decreasing functions of time
(see fig. 5). Finally, We define the function O(E,p,t) to be the maximum value v

returned by observe or read operations or input to await operations on E in process P

whose t. is less than or equal to t. We use this function to guarantee that actually
observed values of eventcounts are non-decreasing from the point of view of a

particular process.

1 It should be noted that not all possible external behaviors can be generated by
programs using our synchronization primitives, but that was not our intention. We do
however want to be able to discuss the limitations of our primitives from this
viewpoint.
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We will now give the defining constraints for the values returned by observe and

read as well as the effect of executing await, by the fol]owing six axioms. In these
axioms, we say that B(E,p,tl.tz) is the value that would be returned by an observe
operation X executed in process p, such that tg(X)=t; and tc(x)=t2. Similarly,
R(E,p,tl,tz) is the value that would be returned by a read operation X in process P,
such that tg(X)st] and te(X)sty. The axioms are as follows:

1. A1l operations except await are guaranteed to terminate in finite time.
[termination]

2. For an operation await(E,v), if there is a t such that vsS(E,t), then the await
operation will terminate at some te such that vsS(E,t.). [termination of await]

3. For all t,p (3t1)(Vt22t1) C(E,t)sB(E,p.tl,tz). By this statement, we formalize
the idea that eventually the effect of advance operations will be observed by
observe operations in other processes. [eventual propagation of changes to
observe]

4. OSB(E,p.tl,tz)sS(E.té). [bounds on observe]
5. C(E.tl)sR(E,p,tl,tz)sS(E,tz). [bounds on read]

6. O(E,p,t)sR(E,p,t,t'),
O(E,p,t)<B(E,p,t,t').
These statements just mean that the observed values of the eventcount in a process
don't decrease, that is, a read operation followed by an observe operation in the
same process will return values in a non-decreasing order. [consistent
observation]

Fig. 6 shows how axiom 5 defines the result of a read operation, which starts at
time t; and ends at time ty. If we consider the read operation to have happened at

some time between these two times, the value returned must be in the shaded region.
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We guarantee no more than this; therefore, C(E,tl)sR(E,p.tl.tZ)sS(E,tz), which is

Just axiom 4. The other axioms result from similar reasoning.

9.1.2 Axioms for Sequencers

For a sequencer S, we define two hidden functions Sy(S,t) and Cy(S,t) such that
at time t their values equal to the number of ticket operations started and
completed, respectively, on S at or before time t. Also let T(S,p,tl, tz) be the

value returned by ticket operation on the sequencer S in process p, which started at

‘time t; and completed at time tp. The two axioms for the sequencers are as follows:

1. Cy(S,t)sT(S,p,t],t2)<C(S,t2). [bounds on ticket values]

2. Let X(S,p,t) be the set of values returned by ticket operations in process p on S
which have completed on or before t. Then for all p,q such that pw=q,
X(S,p,t)nX(S,q,t) = ¢. [ticket uniqueness]
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9.2 Verification of synchronization processes

In this section, we show how the axioms related to our model can be used to
verify whether or not certain required synchronization conditions hold for a given
system of parallel programs. Techniques for proving correctness of parallel programs
are still in their infancy and it is not our intention to present a formal

methodology for proving correctness of programs using eventcounts.

Typically verification of assertions would proceed as follows. The assertions
for a problem are stated as relationships between problem variables that must hold
for the duration of some activity. Each activity corresponds to exécution of some
sequence of code in some program. Typically, problem variables are counts of
occurrences of events; for example, number of writes. A problem variable could also
be the numbervof processes engaged in a particular activity at any given time. Some
of these relations could be invariant over the life of the system under
consideration. The first step in our verification method is to establish
correspondence between the problem variables and synchronizgtion variables of the
program which, in general, are eventcounts and sequencers. This would enable us to
restate relations in terms of program variables. To accomplish this, we examine the
program structure and derive C and S functions for each eventcount in terms of
execution sequences of activities associated with each event. This provides us with
relationships between problemvvariables and synchronization variables. The next step
is to chose some relationship and attempt to verify it by examiniﬁg execution of the

program containing the code sequence associated with the assertion.

f

One of the most important properties of an eventcount is that its value (or its
C and S functions) never decreases in time. Thus, if we place an assertion of the
type S(E,t) > x, or S(E,t) 2 x, at ‘'some time in the execution of some program, where

X is an integer value, then the truth of this assertion can not be altered by
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execution of.any other program. If x is a local variable, then the assertion holds
until the program changes value of x, but parallel execution of other programs still
can not cause this assertion not to hold. This result has considerable impact on
simplifying verification of assertions. If values of k are related to values of some
other eventcount then we can derive a relationship between the eventcounts merely by

eliminating x.

Since proofs of correctness for even short, sequential programs can be rather
long, we chose a rather simple and short problem, which is already fami!iar to us;
namely the producer, consumer prbblem, as our test case. It has the additional
advantage that its synchronization conditions have already been discbssed in the
literature [12]. Let us consider a single-producer, single-consumer system

communicating through a finite length buffer buf[0:N-1]. We presént the following

solution for this problem:

procedure deposit(d);
hegin
Dl: in:=read(IN);
D2: await(OUT, in-N+l1l);
D3: buf[mod(in,N)]:=d;
D4: advance(IN)
end

procedure accept(r);
hegin
Al: out:=read(OUT);
A2: await(IN, out+l);
A3: r:=buf[mod(out,N)]; )
Ad: advance(OUT)
end

A synchronization condition for this system is that the following relation must be
true at all times:

(1) 0 s Ng(t) - N(E) s N

where N4(t) and Ne(t) are the number of messages deposited ahd received respectively.

The left inequality of this relation states that the number of messages received can
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not exceed the number of messages deposited and the right inequality states that
number of messages in the buffer (= number deposited - number received) can not

exceed the length of the buffer.

The first step in our verification method is to establish correspondence between
the variables describing the relationship (1) and the synchronization vafiables of
the programs (i.e. eventcounts IN and OUT). Since we are assuming that there is only
one producer process, executions of procedure deposit can never overlap with each
other and we can treat it as a sequential program. A similar argument applies to ’
procedure receive. It is easy to see from the above programs that the eventcount IN
1; advanced by 1 each time a message is deposited and OUT is advancgd by 1 each time
a message is removed. Therefore, at any time t, the following holds:

C(IN,t) s Ng(t) = S(IN,t) and C(OUT,t) s Ne(t) = S(OUT,t)

and (1) can be restated as follows:

(2) 0 < S(IN,t) - S(OUT,t) s N

Next, we shall prove the left inequality of this relation:

(3) 0 < S(IN,t) - S(OUT,t) or S(IN,t) > S(OUT,t) for t > 0

We shall use the following notation in the remainder of this segtion: An; refers to
the ith execution of the statement An. tg(An;) is éhe time at which ith execution of
statement Ap begins and tc(Ang) is the time of completion of that statement. We
focus our attention on the procedure "accept". Let us assume that at the time
"accept" is invoked for the ith time, the relation (3) holds. That is:

(4) S(IN,t) 2 S(OUT,t) at t = tg(Aly)

Since Al and A2 do not alter the value of OUT, it follows that:

(5)  S(IN,t) 2 S(OUT,t) for tg(Al;) s tc(A24)
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From the definition of S and C functions and the sequential nature of successive
executions of "accept", we can deduce the following:

(6) C{OUT,t) = S(OUT,t) = OUT4 for tc(A41) >t 2 ts(Ali)

(7) S(OUT,t) = OUT; + 1 for ts(A4i) stsg tc(Ali)

where OUT; denotes S(OUT, tg(Aly)). From statement Al and the axiom relating to

read, we have:

C(OUT, t4(Al;)) s out s S(OUT,tc(Al4))

which when combined with {6) reduces to:

(8) out = OUT;

From A2 and the axiom relating to await:

S(IN,t.(A2;)) 2 out+l

or S(IN,tc(Azi)) > aut
or S{IN,t-(A24)) > OUT; from (8)
or S(IN, t) > OUT4 for t 2 t.(AZy)

When combined with (0) and (7), this yields:
(9) SCIN,t) > S(OUT,t) for t.(A2;) s t < tg
(10) S(IN,t) 2 S(OUT,t) for tg(Ad;) < t < t(
Combining (5), (9) and (10) will yield:

(11)  S(IN,t) 2 S(OUT,t) for tg(Al{) < t s te(Adp)!

This shows that assertion S(IN,t) 2z S{OUT,t) is invariant under execution of
"accept". Since it is initially true, we conclude that (3) holds. Proof of the
right hand inequality of relation (2) follows almost identically. Notice the
symmetry between the procedures "deposit" and "accept". The only difference is in

the await statement where -N+1 is added to the integer value instead of 1.

It can be easily shown that the system will not dead lock. A dead lock occurs

1 Note that A > B implies A 2 B.

Draft | -72 - 01/12/76



if at any time t both producer and consumer have started execution of awaits which
shall never terminate. From (6), (8), and axioms relating to await, we can easily
show that deadlock at time t implies:

(12) S(IN,t) s S(OUT,t)

and similarly for the producer deadlock implies:

(13) S(OUT,t) < S(IN,t)-N

Inequalities (12) and (13) reduce to:

S(IN,t) < S(IN,t) = N or 0 < -N

which leads to a contradiction for positive values of N. Therefore for buffer
lengths greater than zero, there can be no deadlock. It is to be expected that if

there is no communication buffer (N=0), the system will be deadlocked.
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