M. 1.T. Laboratory for Computer Science | 1 March 1976

Computer Systems Research Division : Request for Comments No. 108

Reflections and suggestions about storage systems design.

by Philippe Janson.

RFC 99, which was my thesis proposal, outlined some ideas about using
type extension to structure the virtual memory mechanism of a shared computer
utility. My present task consists of demonstrating the interest of this
method by applying it to the design of a real life storage system (SS). 1
have chosen to design a system that will have a functionality very similar to
that of the new Multics storage system (NSS). The first step towards this
goal consisted of performing an study of the functionality and the current
implementation (28.0) of NSS, a task to which I have devoted the past two
weeks. ’ .
'This RFC deals altogether with three objectives that are summarized here:
1. I report on features and details of NSS that I specifically do or do not
like from the point of view of modularity and structure;

2. Stepping back from the specifics of NSS, I discuss a few facts about the
design of a SS that seem to make it more or less understandable.

‘3. I occasionally mention some ideas about the redesign of NSS.

This note is an informal working paper of the M. I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author's permission, and it should not be referenced in other
publications.

0, Foreword.

Béfore I proceed to discuss and criticize NSS, I would like to express
here my enthusiastic and encouraging feelings to the NSS crowd in general and
to Andre Bensoussan and Bernie Greenberg in particular. Regardless of all the
"nasty" comments I may make in this report, I think NSS is a great system, a
major step forward in the achievement of a more modular and better structured
Multics. Most of the "bad" features about NSS are leftovers from the old SS
or dead ends the NSS gang was forced into by hardware constraints. Good
features about‘NSS are its structure and its reliability as compared to the
old 5S. While the structure is not yet flawless, much progress has been made:
in particular, the separafion between directory attributes and vtoc attributes
has removed the main reason why segment control depended on director} control.
This separation has also enhanced the reliability by making it possible to
back up and salvage one disk pack at a time.

1. Problem statement.

The problem I am trying to solve consists of making the tasks of
maintaining, verifying and in general understanding a SS much simpler than
they are today.

The solution consists of subdividing the system into several modules
implementing different abstractions so that understanding any of the
abstractions does not require understanding the whole system. This .
subdivision is effective only if:

1. the modules resulting from it are significantly simpler than the original
system (If they were not, very little would be gained by sﬁbdividing the
system.); '

2. the modules are easy fo identify and actually distinct (If their boundaries

were fuzzy or if their interactions were not'explicitly defined, it would

be hard to deal with any module without having to concern oneself with its
neighbors.);

3. the interactions between the modules suggest a structured organization
based on a partial ordering dependency relation that can be analyzed
systematically from the bottom up (If this were not the case, it would be
hard to decide where to start a complete and methodical analysis of the
whole system.). |

Thus, one must organize the SS into a set of modules in which each module
is sufficiently small and self-contained to be understood individually and the
-set of all modules is partially ordered to allow a global understanding of the
system to be derived systematically from the understandiﬁg of its parts.

2. _Causes of complexity.

A system may deviate from the ideal partially ordered organization both
in structure and in modularity.

Tpe most frequently mentioned deviations are violations of the system
structure by dependency loops or upward dependencies. Yet, in praﬁtice, I did
not find this to be the worst problem. There are not many instances of it in
NSS and most of these instances do not pose any major understanding problem.

On the other hand, NSS contains innumerable violations of modularity by
shared data bases or hidden modulevinteractions. Most of them indeed make
understanding the system much harder. Some of them result in upward
dependencies. ' However, the main disadvantage associated with these is not the
upward dependency as much as the violation of modularity.

As a guideline for the remainder of this RFC, I define a module to be a
collection of procedures and data bases that are related to one another in
that they implement together one specific abstraction, and that are isolated

from other procedures and data bases in that no procedure of the module

references any data base outside the module and no data base in the module is
ever referenced by any procedure outside the module. As an isolated
collection of procedures and data bases, a module realizes a protected
subsystem. This subsystem can be run in an isolated domain in every user
process or or in isolated domains of certain dedicated system processes.

Thus, interactions between modules in an ideal system should be limited

to inter-module (inter-domain) calls and inter-process communication (ipc)
messages.

With the above definition of modularity, a module depends on another
module only if it calls the other module or if it sends the other module an
ipc message and then goes blocked, waiting for an answer in a non-quiescent
state (e.g., with a lock set or with some data base in an inconsistent state).

Figure 1 represents the perfectly structured and modular organization
that I found to be closest.to the actual organization of NSS in the sense that
it points out the fewest violations of modularity and structure in NSS.

DC.(directory_control)
ASC (address space control)
VTOC)

t) SC (segment control)
AST) _ |
PC (page control: all storage devices)
TC (traffic control) . |

N.B.: volume management and backup control are not yet implemented in in the
system version that was examined (28.0).

figure 1

3. Upward dependencies.

a. 0ld problems:

NSS has not eliminated two major problems causing violations of the structure

of the Multics S5:
-- the TC-PC 10§p due to loading and unloading processes. Thanks to Dave
Reed, we now know how to solve this prbblem. The TC module has been split
into two modules: the higher level module depends on PC to load and unload
processes and PC depends on the lower level of TC to multiplex the processors.
This lower level TC module manages only ioaded processes and therefore never
calls upon PC (see REC 66). |
-- PC-SC-DC dependency due to the management of quota. When it createé a new
page, PC increases the number of used records in the appropriate quota cells.
However, these quota cells are kept'in the ASTEs of the superior directories
of the segment being grown. This creates a dependency on segment control.
Furthermore, SC manages information.about the directory hierarchy because it
is needed for the proper management of quota.

NSS also has failed to eliminate two minor problems of upward dependency
in the Multics SS:
-- the ASC-DC dependency due to the use by SC of the directory entry pointer
stored in the KSTE of every known segment to recalculate access information on
a seg_fault. However, these problems would be easy to fix by reflecting
seg_faults as high as DC.
-- the SC-ASC dependency due to disconnection of SDWs. This problem could be

fixed by regarding SDWs as objects belonging in SC (after all, they are

capabilities for segments) rather than in ASC. and managing them at SC level
rather than at ASC level as is currently done.

b. New problems:
-- While NSS has tried to remove the concept of the directory hierarchy from
the physical addressing and the backup of segments, it has not totally

succeeded with bhysical addressing. When a page fault is taken on a null page

and the page cannot bé created for lack of foom on the physipal volume (PV)
wpere the segment to be grown resides,_PC invokes ASC to disconnect the
faulting user's SDW, and restores the control unit. This causes SC to be
invoked to move the segment from one PV to another. SC must update the
appropriate DIRE to reflect the move because the pvid and vtocx are kept
there. For this purpose, it uses again the directpry entry pointér that is
stored in the KSTE describing the segment to be moved in the process on behalf
of which it is moved. This is called the "out of PV" (oopv) problém.
~- Unless the system programmers are careful as to how they use the
information stored in the directories and logical volume registration records,
they might introdupe a dependency loop between DC and logical volume (LV)
control when they implement the concept of a master directory. Directories
use LV information (1vids) to force their inferior segments to be grouped in
identical LVs. On the other hand LV control uses directory information
(pathnames) to restrict what difectories can store their inferior segments in
a given LV.

As a minor problem, NSS has not produced as clean a SC module as
possible: |
-- The boundary between AST management and VTOC management could and should
have been drawn more clearly. [believe a lot of clarity could be gained by
splitting SC into two modules of half the size.
-- The VTOC part of SC calls upon ASC and DC to walk its way up the hierarchy

when updating quota information as a result of truncating an inactive segment.

4., Violations of modularity.

NSS contains many violations of modularity. Since most of them are
benign and uninteresting, it would be of little use and otherwise impossible

to list them all here. Most of these violations may be easy to fix. However,

they make understanding the system a nén-trivial task. I will list here only
a few instances of such violations for illustrative purposes.

HaVing carefully studied NS5, I claim with confidence if not conviction
that the adoption of 4 systematic object based approach for the design of a SS
would help avoid most of the violations of modularity because they are more
often than not the result of using functional abstractions (FA) instead of
data abstractions (DA). FAs make accidental violations of modularity easy in
two different ways analysed below{

a. Hidden module interactions via shared data basés:

By coding programs as functional abstractions, one fails to look at data bases
as objects that should be managed by dedicated modules. As a result, hiddgn
module interactions violating modularity appear through the sharing of Such
data bases by progfams belonging in different functional modules. Hidden
module interactions are undesirable because they make the identification of
individuai modules and the understanding of the system more difficult.

-~ Example 1: several modules touch one data base:

A blatant example of this situation is the sharing of the AST by SC and PC.
Not only does the AST contain SC (ASTEs). and PC (page tables) information but
PC even references the SC information to provide SC with usage information for
segment deactivation purposes. Anotlier example of this situation is the
sharing of DIREs by DC and SC. DC programs and the segment_mover (oopv

: condition handler) are both concerned with the pvid and vtocx of a segment.
All these programs touch the directory where the information is kept.

-- Example 2: one module manages data bases that could really belong in
different modules:

PC manages the core map, the PD map and the FSDCT, which could really be

managed separately for clarity. Core blocks, PD records and secondary storage

should and can be regarded as distinct resources that mus£ be managed by
distinct modules.
-~ Example 3: some programs touch so many data bases that it is impossible to
decide which module they belong in:
The home of fs_get is as vaguely defined as the semantics of the English word
"to get". This programs "gets" almost anything from almost anywhere (e.g8., it
gets KST information given a segment number, directory information given a
pathname, segment numbers given reference names, etc...). Notice that it
cannot be regarded as a functional abstraction usable at various levels. It‘
has internal state information in the sense that all the functions it supports
know about the format of the data base they were designed to manipulate. The
program is really a cluster of functions any one of which is usable at only
one level. It should be split into several distinct progranms every one of
which belongs in a different level.

b. interactions over locks:
The concept of locking implies the éxistence of a data base shared by parallel
processes. According to the earlier definition of modularity, in all
processes that are synchronized by a given lock, the specific domains that
access the lock must be regarded as parts (instances) of the same module.
These domains do indeed share access to the lock, which is a special case data
base, and they interact with each other's course of execution. Such
interaction is not legal at module boundaries. It can happen only within a
module." |

Miraculously, NSS contains no instance of two modules interacting over a
lock. However, this miracle is not the result of a design aimed at respecting
modularity. It is a side effect of the overall locking strategy that is used

to avoid deadly embraces.

The Multics locking strategy is based on Bensoussan's algorithm. All the
locks a process may want to wait on at any time are ordered. The
implementation of the system must verify the deadlock prevention rule: a
process is allowed to wait on a lock x onlyrif the relation x<y holds where y
is the lowest of all the locks currently set by the process. In particular,
the locks used by NSS are ordered as follows:

user_dir_lsproj_dir_l>udd_l>AST_l>page_tables_l>traffic_control_l
" : ~J \ it v 7\ y -/

-y

DC ' - SC PC TC
As the reader may notice, the ordering of the locks is in parallel with the
ordering of the modules that manage them, as I suggested in figure 1. Thus,‘
it is not by accident and not for the sake of modularity that modules do not
interact over locks. It isbonly for the sake of the deadlock prevention rule.
If a module did interact with another over a lock, not only would modularity
be violated bﬁt the chances are high that Bensoussan's rule would be violated.
At the very least, it would be necessary and extremely difficult to verify
that it is not.

In fact, this fortunate accident about NSS points out an interesting
conclusion about the relation between type extension and locking stategy. In
Multics, the locking strategy has to be consciously respected and enforced by
every individual programmer. This requires the programmer of a given module
to know exactly what locks are set by modules calling his module and by
modules his module calls, a very undesirable requirement iqdeed. With type
extension, the whole problem goes away.. Since type extension implies
modularity, there can never be any lock shared by two modules. Furthermore,

since type extension guarantees a partially ordered dependency structure (1) ,

(1) Notice that a module A depends on a module B if A somehow transfers
control to B and expects control to return after a transaction or leaves a

it imposes a partial ordering on the locks that each module can wait on or
set. In other words, type extension guarantees an automatic enforcement of

Bensoussan's algorithm (1) at the level of the system. Of course, within an

'individual module (e.g., DC), it iS the responsibility of the designer of that
module to enforce Bensoussan's rulé among the locks used by that module (e.g.,
directory locks).

kUsing type'extension'also has side-effects on the use of locks. In NSS,
the paging function and a piece of the quota function are implemented by PC.
Thus, when taking a page_fault that requires accounting for quota, by locking
the page_tables_l, one automatically locks everybody out of PC and any SC
function that involves touching page tables. 1In a system based on type
extension, it may be tempting to regard quota cells as a separate type of
| objects. Under this conception, a "quota_fault"‘would be managed by the quota
manager. The quota manager would not have access to the page tables lock
maintained by PC and therefore, could not lock everybody - out of SC functions
that‘involve touching -- in particular deleting -- the page table of a
segment. Thus, the programmer of the quota module should expect to encounter
changes in the world between the moment it is asked to process a quota fault
and the moment it actually asks PC to create a new page. In fact, this is not
a real problem. Similar situations already exist in NSS. For instance, when
a boundfault is taken, SC must first verify that it still is a boundfault,

i.e. that someone has not already moved the‘segment page table or increased

lock set in A while control is in B, which is synonymous with expecting to
regain control later to unlock the lock.

(1) In fact, type extension even guarantees the enforcement of Haverty's
algorithm. This algorithm imposes a constraint on the locking strategy that
i1s stronger than that imposed by Bensoussan's algorithm: a process cannot
wait and cannot set a lock that is higher than the lowest lock it has
currently locked.

ité maximum length by the time the fault must be processed. Similarily, when
an oopv situation is handled, the segment_mover first verifies that there
still is an oopv situation, i.e. that nobody has released any reéord in the
meantime.

5. Use of parallel processes.

In NSS, all parallel instances of a module are subsystems in user
processes. All these instances implement the same task. However, this is hot
a rule. It only happens to be so for the moment. Andy Huber has proposed a
design of PC in which the page_removal algorithm is implemented in a dedicated
system process‘while every user process handles page faults for itself.
Applying Andy Huber's design of PC results in an implementation where most of
the parallel instances of PC are subsystems that handle page_fauits in user
processes and some distinguished instances are dedicated to implementing the
page removal algorithm éequentially in a system process.

In addition to serializing some tasks (e.g., page removalf, the use of
dedicated system processes to implement sﬁecial instances of some modules has
another advantage. It.makes possible the use of ipc messages between modules.
The advantage of ipc messages over inter-module calls resides in the
possibility for a low level module to take the initiative of a transaction
with a high level module., With the closed.call-retufn protocol of
inter-domain communication, this is impossible because a low level module can
never expect a high level module to return, so that calling it would violate
the dependency structure. However, if a low level module wants to transmit
information to a high level module and does nbt expect an answer, it can use
the bottom level ipc module to send a message to a system process dedicated to
running a parallel instance of the high level module. This mechanism is

similar to the use of upward transfers (open calls) by the transfer vector

-

that intercepts processor exceptions in Multics. In fact, upward transfers
exbecting no matching returns could be simulated in uéer processes.

For instance, in Dave Reed's implementation of TC, the low level module
can send messages'(interrupts) to the high level TC module whenever virtual
processors are stopped and can be unbound. In NS5, every instance of SC in a
user process will be able to send messages to the backup daemon whenever the
queue of segments to be backed up will have grown beyond some threshold. The
use of such a queue together with ipc messages is what allows NSS to eliminate
one upward dependency that existed in the old Multics SS, namely the fact that
SC depended on DC to propagate the date-time-modified of a file up the
directory hierarchy. To implement quota control at a level higher than Pc;
one could conceive having the PC module send messages to the quota control
module in a dedicated process, and then simply unlock the page_tables_l and go
blocked. It would then be up to the quota control module to make its'resource
allocation policy decision and eventﬁally call PC to actually allocate or free
pages. In general, messages can be used to signal low level events to high
level modules in user processes. |

6. Information levels.

An interesting question about the design of a SS is: can information
relevant to one level be stored at another level? Much of the informafion
treated in a SS is'mapping information. (e.g., pathnames, uids, segnos,
etc...). In general, a given plece of information is (or at least should be)
meaningful only to the one module that manages it. The question is: can the
piece of information be stored at a higher or a lower level?

The answer is yes, although there are certain rules to be respected to
preserve the structure of the system.

a. Storing information at a lower level. -

Any module that accepts requests from higher level modules to store
information into a data base or an objéct it maintains may never interpret or
depend in any way on this information. This would cause an upward dependency.
If this rule is obeyed, it is possible to safely store high level information
at a low level. In fact, this is wﬁat happens in a system supporting demand
paging. Users can safely store their information into pages because it can be
proved that PC does not depend on this information for its own operation.

(That PC deallocates null pages means that its operation is influenced by user
information, which is normal since PC provides a Service to store user
information. However, it does not mean>that its correct operation is
dependant on user information. PC regards a null page as an order to do
something but how it does it is not influenced by the content of the page.)
Similarily, in NSS, it is safe to store pathnames in VTOCEs because the
vtoc_man never uses these names. They are uninterpreted strings at that
level. They are stored there by DC for the sake of the directory salvager,
which, when implemented, will extract them to reconstruct the directory
hierarchy if it is damaged. They are used as "backwards bindings" for
reliability but they are not necessary in the normal course of operations.
b, Storing information at a higher level.

Any module that releases mapping information it interprets to higher
level modules must beé aware of the potential difficulty to reverse the binding
it so creates. When the SC module of NS5 releases the pvid and vtocx of a
segment to DC, it creates a hérd to reverse binding. The dependency between
SC and DC results only from the fact that the segment_mover reaches up in the
approprxate DIRE to reverse a binding it has created earlier. Mapping
information for low level objects may be released to high level modules only

if:

-- there exists a dependable mechanism for the low level interpreting the
information to invalidate (revoke) or catch (inhibit) an obsolete binding and
-- it 1s possible to reverse the binding without causing upward dependencies,
i.e. when the user of a binding is notified that the binding is obsolete, it
can cause it to be reversed by invoking the lower level module.

7. Mapping and "caching" function@

When analysing a SS, one reaches the conclusion that it performs two main
functions: mapping and "caching". The mapping function consists of
maintaining bindings between various levels of identifiers. What I have named
the caching functioﬁ consists of establishing in parallel to mapping bindings
equivalent bindings that permit faster.access to the object they denote. The

| word "caching" comes from the analogy with the hardware cache technique, which
binds the address of a word to a location in the memory and a location in the
cache.

Let us examine NSS td understand hqre about mapping and caching. 1In a

hypothetical quiescent state, NSS.establishes_the following mapping bindings:

ngthnamg -> uid -» pvid?vtgg§ ->lfile_map -> disk_record§

DIRE - 1to1l VTOCE

This séquence of mappings binds a file as denoted by its pathname to the set
of disk records that compose it. In an active state, NSS adds several cache
bindings in parallel to the above mapping bindings to speed up references to

the file by by-passing bindings that are kept in a hard to use format or on a

slow device:

pathname -> uid -> pvid, vtocx -> file_map -> disk_records

segnb H— \ » page_table 3> core_blocks
' KSTE SDW AST ASTE

figure 2

Thus, an ASTE appears as a cache for a VIOCE and an SDW is a cache for a KSTE,
which is itself a cache for a DIRE. In ordervnot to confuse the above figure,
I have omitted some more cache bindings like the SDWAM, the PTWAM, and the PVT
(cache for the disk_table).

The identification of each mapping and caching binding appears to be
fundamental to the modularization and the structure of a clean SS design as
will be seen in the next 'section.

8. Modularization and structuring of a SS.

The identification of every different kind of binding in a 5SS can be used
as a guldeline to modularize the system. In an object based system, every
binding is established by some kind of identifier that can be regarded as
denoting an abstract object. Identifiers of identical format and meaning
denote abstract objects‘of the same data type. This is not to say that one
must regard every different kind of binding as corrésponding to a different
data type. However, unlesé the management of some kind of binding is trivial,
I believe there is a good reason to want a different data type for every
different kind of binding so as to manage every binding separately.

The identification of bindings is even more important to structure a
system than it is to modularize it. I had reached this conclusion earlier but

it was confirmed by my study of NSS. Once it is decided what module is

responsible for what binding, a graph such as that of figure 2 provides an
excellent handle to organize the system into a partially ordéred structure,
i.e. to establish the dependency graph between the various type managers. The
graph of figure 2 suggests a partial ordering based on the binding relation of
the various identifiers manipulated by the system. This partial ordering is a
parallel of the partial ordefing, based on the dependency relation, that |
exists between the various modules of the system,

An interesting remark can be made about the relation between the manager
of & mapping binding and the manager of a parallel caching binding. Although
it is not a rule, one notices in practice that if a dependency relation exists
for some functional reason between the two managers, it is usually the mapping
binding manager that depends on the cache binding manager because, in general,
the mapping binding manager wants to take advantage of the cache function to
access its oWn data bases faster. In NSS, DC depends on ASC (because
directories themselves must be in the cache to be accessible). Similarily,
VTOC control depends on AST control (because VIOC control manages quota cells,
which are éccéssible only in their encached version, in the AST). One could
extend the cache analbgy to Dave Reed's implementation of TC. Virtual
processors can be regarded as caches for user processes to access (schedule
and run) them faster. Again, the process manager depends on the virtual
processor manager because it is itself implemented as a dedicated virtual
processor.

Yet, the cache analogy must be used with care and cannot be stretched too
far, What I have named "caching" is not strictly identical to the phenomenon
observed with hardware caches. |
-~ With hardware caches, the same address can be used to access both the slow

memory and the cache because one can afford to access the cache by association

%

on the slow memory address. With software caches, different identifiers are
used to access the slow memory and the cache because an associative cache

would be too expensive. For instance, the AST is accessed by ASTE pointer

~ while the VTOCs are accessed by‘VTOC index as it would be too expensive to

maintain a complete association between uids, and ASTE pointers and VTOC
indices. Directory entries are denoted by pathnames while known segments are
denoted by segment numbers as it would be too expensive to maintain é complete
association between segment numbers and pathnames.

-- With hardware caches, it is desirable to have a fast and simple algorithm
to decide what information can be stored or is worth storing in the cache.
Thus, the encacheability of a piece of information is decided globally on the
basis of the information container that contains it (e.g., the segment). With
software caches, one can afford more sophisticated algorithms to decide
whethe; some piece of information can and shoud be encached. The
encacheability can be decided selectively on the basis of the information : -
itself rathef than on the basis of whole information containers. For
instance, knowing that the time—record-product of a quota directory is
recomputed only once for each phase of activity of the directory, it would be
a waste to store it in the AST. Thus, it is made an "unenASTable" (due to B.

Greenberg) VTOC attribute.

