MI.T. Laboratory for Computer Science . | ‘ 15 March 1976

Computer System$1Research'Diviéion o Request . for Comménts No. 109

]
!

THE QUOTA PROBLEM ON MULTICS
by Philippe Janson.

This short RFC attempts to describe the quota mechanism in NSS to
define the quota problem and to propose solutipns for it. -

¥

This is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author's permission, and it should not be referenced in other
publications. : - ‘

0. Definitions.

0.1. Quota cells.

‘A-data structure called a quota account is associated with every
directory of the file system. A qudta account could be defined by the

folloWing declaration:

dcl 1 quota_account,

2 master_dir_sw,

2 quota_cell (0:1),

3 received, /% R #/

3 quota, /e Q %/

‘3 used, /x U »/

-3 time_record_product, /% TRP =/

‘3 time_product_updated; /r TUP‘t/ |

1

As can be seen,.every quota account contains two quota cells (QQC).
QC(0) is used to account for directory pages. It 1svnot'mainta1ned in the
current implementation of N5S. I will further ignore it. The only QC I will
be talking about is QC(1), which is used to account for non-directory pages.
-~ 0. 2. Quota operations.

There exist four distinct quota operations:
-- change_used (CU), which affects the U, TRP and TUP fields of a chain of
‘hierarchically related QCs;
-- reset_usage (RU), which affects the TRP and TUP fields of one QC;
-- move_quota (MQ), which affects all f1e1ds (except the master_dir_sw) of two
QCs that must be parent and son;

-- set_quota (5Q), which affects all the fields (except the master_dir_sw) of

a chain of hierarchically related QCs.

figure 0: example of qubta hierarchy to be used in the following sections

udd (MD for default user logicai volume)

CompSys (MD for CSR logical volume)

listings QD)

nss (non-QD)

nss.archive

244 234
: ~—

222

—

0.3. Master directories.

Any directory for which the master_dir_sw is set is called a master
directory (MD). MDs are designed to control the uéage of resources on logical"
volumes. The registration data of every logical volume specifies what
‘directories are MDs for this logical volume and how much space can be used by
the segments below each MD. Only the MDs for a logical volume and non-MDs
below these caﬁ store their inferior segments in the logical volume. The R
field of the QC of a MD can never be subject to any operation. R is defined
once and for all by information stored in the régistration data of the logical
volume for which the directory is a MD. For a MD, R indicates the (fixed)
portion of the physical resources represented by the logical volume that can
be used by segments in the subtree rooted at the MD less all subtrees rooted
| at MDs -if any- below the MD under consideration. For instance, R(udd) is the
amount of physical resources that can be used by the segments in zone Z1.
Notice that every MD is a quota directory (and is treated as such) because...
0. 4. Quoté‘directories.

«..quotd directories _\(QD) are recognized‘by their R field being
non-null., For a QD, the R field indicates ve}y naturally the amount of
storage that can be used by segments in the subtree rooted at that QD less:
the subtrees rooted at MDs -if any- below the QD. For instance, R (Janson)
indicates the amount of storage availablevfbr segments in zone Z2, since there
is no MD below Janson. The Q field of a QD indicates the amount of resources
that can be used for segments in the subtree rooted at that QD less the
subtrees rooted at QDs -if any- below the QD under consideration. For
instance, Q(Janson) is the amount of storage available for segments in zone

Z3.

0.5. The éU operation,

‘The CU operation cannot be invoked directly by users. It is invoked
as a resuit of touching a null (empty) page or truncating a segment or
deactivating a segment containing allocated null pages (zero pages). In other
words, it is invoked when a user causes a segment to grow or to shrink. Let
us examine the case of growing a segment. The shrinking case is symmetric.
Assume segment nss.archive is to be grown in zone Z4 (figure 0). The CU
operation performs as follows: |
(1) walks up the hierafchy until finds a QD (1istings);

(2) authorizes growing only if U(listings) < Q(iistings);
TRP + (time - TUP) » U (integration)

(3) updates the QC of listings: TRP
| | TUP

time;
(4) adds one to the U field of every directory from the QD down to the parent
directory of the segment to be grown (listings and nss).

Thus, at any time and even for non-QDs, the U field represents a
running account of the storage used in the subtree rooted at that directory
less all .subtrees rooted at inferior QDs -if any. For a QD, the TRP is the
current value of the integral of the discrete plot of U versus time. Notice
that the U field of a non-QD is useless as far as accounting is éoncerned
since the associated TRP integral is not maintained but it is used by the MQ
and S5Q operation for effiéiency. Keep this fact in mind for later use.

0.6. The RU operation.

‘The RU operation is privileged and can be invoked only by system
administrators to collect accounting information and bill users periodically,.
For every QD, RU returns resources_used = TRP + (time - TUP) » U and then sets

TRP = 0 and TUP = tine.

0.7. The MQ operation.

The MQ operation can be invoked by users to move a (positive or
neggtive) amount of Q between a QD P and one of its sons T; which is regarded
as the target of the operation. The user requésting the operation must have
modify ac&ess to both directories to perform the operation. By moving Q from
Janson to listings, one does not change the amount of resources that can be
used by segments in zone 22. One only indicates the desire to partition the
amount R received by Janson into a portion Q(Janson) to be used in zone Z3 and
a portion Q(listings) to be used in zone Z4. Assuming the user has modify
permissioq to directories P and T, and P is a QD, the MQ function mﬁves a

quota Qo as follows (T need not be a QD):

if Q>0
then do; | | /* downward move »/
ﬁ QM =0 & UM <Qo) § (UME - UM < QP -.Qo)
then do; ‘ /* make T a QD (%) #/
TRP(P) = integral;
TUP(P) = time;
UM = U/ - UM;
TUP(T) = time;
go to move; |
end;
if (Q(f) >0 & (UM < Qo + Q(T{i § U@ < Q(P) ~ Qo)
then go to move;
return error;
. end;

if Qo < 0.
then do; ‘ , /* upward move =/
if QM + Qo =0) & QM = R(M)
tﬁen do; /* méke T a non-QD (») =/

integral; /% charges to be moved =/

TRP (T)

TRP (P) integral + TRP(T);

TUP (P) = time;
U = U + UM;
TUP(T), TRP(T) = 0;
go to move;
end;
if (Q(T) + Qo > U(M)
then gs to move;

return error;

end;

move: Q) = Q(P) - Qo; | {
Q(T) = QD) + Qo; |
R(T) = R(T) + Qo; return;

-0.8. The SQ operation.

The SQ operation is a privileged operation tpat is restricted to
system administréfors' use. It forces the Q of an arbitrary directory T to
become a given vdlue Qo. The SQ operation is always authorized and operates
as follows£ |
(1) 1f R(T) = 0 then walks up the hierarchy until findé a QD, subtract U(T)
| from the U field and update the TRP and TUP fields of every directory
encountered up to and including the QD. (This is necessary to be cpnsistent
with the definition of a QD.) |
(2) R(T) = R(T) - Q(T) + Qo. (This is necessary for subsequent MQs:on T to be
consistent.)

(3) QM = Qo. |

‘Notice that, unlike the MQ operation, the SQ operation exhibits two
peculiar fe&ture? (bugs?). First, it may forcé the tr&get QC in a state where
QT < UM, Seéond, it may cause a directory T to become a QD while its

parent is not a QD, whith is}impossible with the MQ operétion.

+

1. Problehs;
1.0. Implementation.
To understand what the quota problem is, it is necessary to
understand how the mechanism is implemented in:NSS and why it is that way.

‘The hiérarchy of QCs is the same as the directory hierarchy and is
~ therefore managed by directory control (DC); ‘This is because the
functionality of the Multics quota mechanism was‘defined as such. (Otherwise
a separate hierarchy could have been implemented.) Quota opérations involving
hierarchy considerations require knowledge that is embedded at DC level.

QCs are stored in directory vtoces, i.e. in segment control (SC)
level data bases. This is for efficiency reésons. A QC requires only a few
(say 8) words of storage. Therefore, implemen;ing it as a stand-alone segment

‘would be -unacceptably expensive. This is the typical small object problem.
The usual solution to the problem is to store the small object together with
other small objects in one segment, In the old Multics storage system, QCs
were stored in directories. In NSS, a QC is stored in the corresponding
directory vtoce. This is more efficient because accessing a QC only requires
‘that the directory be active and not that any of its pages be in core. As a
way to find the QC a segment must be charged to but mainly for efficiency
again, any directory of which one or more sons are active is kept active so as
to reduce the deléy that would be incured by the CU operation if it had to
address a QC by pathname and wait for it to be activatgd. '

Finaliy, ignoring hierarchy considerations,.individual QCs are
managed by page éontrol (PC). This is only because Multics does no%
distinguish ordimary page faults from page faults on null pages._ Ail faults
are handled by Pé. The CU operation is entirely implemented at the PC level.

As a consequence of the above implementation; PC depends on SC

becauée the data it manipulates to manage quota is stored at SC level, and it
depends on DC because it uses astes that are threaded after DC information
about the directéry hierarchy to implement thF-CU operation. SC dgpends on DC
because it must pay attention not to deactivate certain segments (namely
direcfories) based on directory hierarchy cohsiderations. Furthermore, it
explicitly calls DC to propagate quota usage information ub the hierarchy when
truncgting or deleting‘an inactive segment. |

1. 1. Cause 1: hardware misconception.

’ The first cause of the upward dependencies ié the result of a
misconception in the basic hardware and the suhporting,soffware for handling
the CU operation. PC should never be involved in quota management. QCs apply
to groups of pages and PC should not be aware of the g}ouping. p

It would be easy to patch the'hardware so that null pages would be
distinguished from other pages (different directed faults). Reading a null
page should simply return a word of zeroes. This would save resourées, save
work and avoid a read on a null page to cause é write on a QC, which causes
trouble with respect to. the AIM x-property. Writing a null page would cause a
quota fault. Coﬁtrol could then be transfered at an appropriate level but
certainly above PC. This eliminates thé upward dependénciés originating from
PC and due to quota management.

1,2, Cause 2: QC storage and functionality.

The 5C-DC dependency must still be eliminated. A detailed analysis
of this dependency reveals'that it occurs only because
(1) the queta hierarchy is coupled to the directory hierafchy

and

(2) a QC is stored in the SC level vtoce of the corresponding directory.

2. Solutions.

All following solutions to the SC-DC dependenéy are based on the
fact thét they eliminate one or both of the conditions that cause the
dependency.

2.0, Trivial but inefficient.

A first solution to the problem consists of removing QCs from the SC
level by storing them as they were originally, i.e. in directories, and to
reflect quota faults into DC. DC can store an uninterpreted entry pointer in
the kste of every initiated segment. Thus, on a quota fault, it can invoke
the address space manager to extract the entry pointer from the kste
corresponding to the faulting segment number. This first solution would
unfortunately be inefficient because a QC would in general be out of core and
inactive when it is needed to perform & CU operation, which is precisely what
the current NSS design avoids so nicely. In a@dition, this solution adds
complexity to the quota mechanism because the CU operation does not happen as
an atomic operation under the protection of the page tableg lock and ﬁust
expect cases in which the segment to be grown has already been grown or is
currently deactivated.

2.1. Individual quota management.

] This solution, which is due to Mike Schroeder, is based on'avoiding
causes (1) and (2) of the upward dependency. It consists of designing a
dedicated quota manager (QM). QCs are not stofed in directory vtoces or in
directories themselves. They are collected in the QM's internal data bases
that could be permanently active segments, for instance. (According to data
collected on Multics, this appears to be feasible.) They are not related by
the direcﬁory hierarchy. They are threaded together into their own hierarchy

(which may be parallel to the directory hierarchy and contain "indirect" QCs

to correspond to non-QDs). Even though the quota hierarchy may be the same as
the directory hierarchy, it must be maintained separately so that quota faults
do not require extracting hierarchy information form the DC level and the QM
can operate independantly from DC. Every time a directory is created, DC asks
QM to create a corresponding QC and stores the name of that QC in the
directory. Each time a segment is appended to a directory, DC calls SC to
store the name of the appropriate QC in the vtoce of the new segment, as
uninterpreted information. Quota faults are reflected into the QM. The QM
can tﬁus extract the identity of the QC to be charged ffom the vtoce of the
faulting segment by invoking SC. It can then operate on that and rélated QCs
as dictéted by the threads. |

This solution may be somewhat less efficient than the NSS°
implementation because of the posibility to take page faults on the QM data
bases. This minor problem could be avoided by using a cache (wired segment)
to contain the most recently used or the currently "active” QCs. Such a
design may save some space in the AST since QCs are not there any more and

parent directories need not be kept active.

2. 2. Canstrained hierarchy changes.

This final solution, which I have designed for my thesis, is based
on the elimination of cause (1) of the upward dependency. It may sound
unattractive because it implies a modification of the functionality of quota.
In fact, this modification has very minor effeéts because only a few (a dozen)
users are in a position to notice it, and these users might never notice it
anyway. |

The reason for this transparency is that the modification affects
only owners of QDs. And aside from project and user directories for which the
modification would never be felt anyway, only a dozen users (according to data
collected on Multics) have subdirectories that are QDs.

The modification stems from an observatidn that the CU operation
would never require any hierarchy consideration if it were not for the
parallel existence of MQ and SQ operations. If every.segment vtoce contained
a name directly identifying the QC of the QD the segment is to be charged to,
the CU and RU operations could still work and would not use any hierafchy.
Only 5Q and MQ require knowledge about the quota hierarchy.. Thus, CU could be
supported entirely within SC and cause no upward dependency. However, two
problems would have to be solved. First, when a MQ or a SQ operation would
cause a QD to become a non-QD or vice-versa, the QC identifiers stored in the
vtoce of every segment in the subtree rooted at the directory affected by the
change would have to be updated. Second, since the U fields of non-QDs are no
more maintained, it would be necessary to explore the whole the subtree to
compute its U field in the case where a non-QD becomes a QD. Not only would
these two procedures be unacceptably expensive but in order to preserve the
proper synchronization between SQ/MQ operations and CU operation, it would be

neceary to perfqrm these operation under the protection of a lock that would

Iy

prevent anybody from growing or shrinking a segment while a SQ/MQ operation is
in progress, and this may take a while. The lock is needed to guarantee that
a segment is not charged to the wrong QC or that that cell is not charged to
the right QC before that cell is properly initialized. (Think about this or
see me.) | |
To avoid these problems and yet be able to store into each segment

vtoce the identifier of the QC of the appropriate QD, I constrain the
variations of the quota hierarchy so that a directory can change from Q to
non-Q status or vice-versa only if it is empty (no branches), i.e. if there is
-no need to update any QC pointer. As mentioned éarlier, this change does not
affect most QDs, in particular project and user directories, because these are
made QDs while they are still empty and loose their status only when they are
deleted. |

- With this design, SC can be made independant of DC. Since the QC to
which a segment must be charged cannot change, SC can keep it active on the
basis of segment usage information and pot on the basis of any directory
hierarchy considefations.' QCs may still be stored in directory vtoces.
However, their active version does not have to be in the AST. It may be in an
AQT cache. In any case, this solution eliminates the upward dependency, saves
as much space in the AST as Mike Schroeder's solution and simplifies quite a

bit the quota mechanism.

