M. I.T. Laboratory for Computer Science May 4, 1976
Computer Systems Research Division » Request for Comments No. 111

Protecting User Environments

Harold Jeff Goldberg

Attached is my recently accepted thesis proposal.

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced

without the author's permission, and it should not be referenced in other
publications.







Massachusetts Institute of Technology
 Project MAC
Computer Systems Research Division

Cambridge, Massachusetts

Proposal for Thesis Research in Partial Fulfillment
of the Requirements for the Degree of '

Master of Science

Title: Protecting User Environments

Submjtted by: Harold J. Goldberg )
60 Wadsworth Street Apt. 2SE Signature of Author

Cambridge, Massachusetts 02142
Date of Submission: April 29, 1976
Expected Date of Completion: October 1976
Statement of the Problem:

Faulty programs have been known to destroy the environment in which
they are run, causing those and other programs to malfunction. Although much
system design effort has gone into protecting users from each other, not much
attention has been paid to protecting users from their own programs. A method
is proposed to solve some of the problems faced, using the concept of rings of
protection. The proposed solution has the added advantages of not adding
complexity to the supervisor of the system, nor increasing the amount of code
that is concerned with the interaction between different users.

supervision Asreement:

The program outlined in this proposal‘is adequate for a Master of Science
thesis. The supplies and facilities required are available, and I am willing
to supervise the research and evaluate the thesis report, -

David D. Clark,
Research Associate in Electrical BEngineering
and Computer Science




I. Introduction

In today's comp\iter systems, programs are usually run 1in an
execution environment (EE). The EE is an abstract machine based on the actual
hardware, enhanced by system and user software. The EE contains those support
routines that implement objects needed, but not created by the programnmer,
such as [/0 packages, floating point support, stack management, among many
others. A problenm érises when programs have direct access to the EE, since
they then have the ability to damage or destroy it. This is undesirable for
several reasons. There is usually some overhead in etablishing the user
environment such as the creation of a job or process, and the linking and/or
lbading of program modules. Therefore one does not always wish to consider
the EE readily diéposable. Furthermore, there may be state information
maintained in the EE (such as open file information) whose loss might either
destroy, or cause inconsistencies in important data. Then simple programming
errors might unintentionally de'stroy this state information, causing the
destruction of unrelated data bases. Debugging programs becomes harder
because unnoticed errors may show up much later in the form of malfunctioning
"tested and debugged" programs. To prevent these kinds of problems, some form
of error detection and "clean abort" mechanism is desirable so that errors may

be caught as soon as they occur and allow analysis of the situation.

It 1is now clear why protection of the execution environment is
desirable. In this paper a solution to some of the problems faced |is
proposed. A method for the protection of the execution environment is

suggested and is extended to encapsulate a control and command environment as



well. This proposal is compared to other methods in use today. A scheme for
how this proposal could be implemented on Multics is discussed and is followed

by a proposal for actually implementing key ideas as a test case.



A

L9

Gt

F

s

I1. Protection of the Execution Environment

As pointed out in the 1ntroduct16n; a method of achieving the goal
of ianll@‘ability of the EE and ease in debugging faulty programs would be to
protect‘ tﬁe EE from the executing programs. This means that the program and
its environment must be separated by one of the protection means available at
the present. Methods of separation/protection considered here are processes,

supervisor implantation, and rings.

Processes are a good means of implementing separation and
protection, and have the useful property of parallel execution which may
result in increased speed. However, interprocess communication tqchniques are
inherently slow and/or expensive since they require process scheduling or
"busy waiting". Theoretically processes may be an excellent means of
separation, but for real systems they incur too much overhead for the high

bandwidth connection needed between a program and its environment.

i Code for the EE can be placed in the supervisor of a system to

\

M,J brotect it as the system code is protected from users. But this is a poor

fidea for protecting an execution environment for at least three reasons. By

blacing code in the supervisor, it becomes much harder to fix any programming
errors that arise in the EE because each time one is found a new system must
be installed. Furthermore, if a particular choice of options or
implementation of the EE is not liked by some, they must either be
dissatisfied and suffer, or some additional complex machinery must be added to

the original code. Placing code in the supervisor usually annoints that code



with special powers to reference and/or modify data that the prograh is not .
concerhed with. This allows every program that is brought into the supervisor
to 'inadvertantly cause unauthorized release of modification of information of
users or protected parts of the system. Then each program would have to be
carefully checked to be suré that it did not reference unrelated objects.
Allowing programs to have more power than they need to do their job is the
complete opposite of a desired feature of programs, which is to follow the
"principle of least privilege". Moreover, supervisor implantation increases
the size and complexity of the supervisor. Interestingly enough, it is all
the problems with supervisor implantation that current research is trying to
eliminate ([Schroeder 75]. However, code in the supervisor is easily called by
user programs and does have the adv7&age of direct memory access to user
areas. Thus high bandwidth commuﬁication between user programs and the

supervisor is possible.

‘Since the direct calling and' memory refefencing are desirable
features of supervisor implantation (besides the obvious protection feature),
perhaps a method should be chosen that has the advantages but not the
drawbacks of such an approach. The concept of rings of protection, or simply
rings, 1is what 1is desired here. Rings are just an extension to the
user/supervisor modes with any number of levels of protection. A ring of
level j has unlimited access to rings of levels j + 1 through the maximum ring
number, but only controlled access (such as call or no access) to rings of
levels 0 through j - 1. Using this concept the supervisor can be encapsulated

in the lowest rings and have usei programs and their environments in the

higher rings. Then the EE may be encapsulated in the lowest of user rings



with programs running in rings higher than that. In this way they EE is not
part of the supervisor but is protected from the user programs in ‘the same way
that the supervisor is. Thus, it is possible to stop immediately upon the
detection of a bad reference to the EE in the same way that bad references to
the supervisor are detected in other systems. Thus a clean abort can be
obtained, and analysis of the situation -as it occured- is possible. One
should now see that the concept of rings is ideal for the protection of the

EE.



ITI. Extension of Protection to Control and Command Environments

The command environment is the environment the user is in
communication with immediately after having been assigned a process. The user
instructs the command environment to run certain programs or perform tasks,

via some command language which may have been tailored to that wuser's needs.

The control environment enables a user to stop and/or destroy é
computation. The practical reason for letting a user have this power 1s.
simply economics; a looping program must be stopped, or it will use up
limitless amounts of chargeable resources. It is also logically wunsound to
continue a useless computation. Destroying a process is really an extreme
measure and is not what is qéa ly wanted. Users would rather want to stop and
examine a process and then possibly debug then continue them (dynamic

debugging).

‘The interest that this research has in the control environment is to
determine how, and at what level this process stopping should be 1mp1emented.
‘Clearly, with perfect, functioning user code the stopping could be implemented
directly in the user program environment. However, the point is that there is
never perfect code at all times. Thus, the control environment, responsible
for stopping a process, must be protected from'damage by user progranms.

Hence, a choice of how to protect the control environment must be made.

Before protection is discussed, it would be wise to consider how one

would like to use the control environment. Clearly some signal is sent from



the user to the program which causes the process to stop. But then the user
must communicate with some environment to tell it what the process should do
next. A user might ask to ehter "debug" mode, allowing memory dumping and
patching. The user may then say ncontinue" or "re-initialize". More
important, for this discussion, the user might also wish to first run some
other system command or user written program. In this way the user could
request help from a friend by sending a message, or determine 1f the stopped
program has been functioning propérly to that point by use of a calculator
program. The way that the user requests these thing to happen is by issuing
commands to the control environment. However, presumably the user already has
a different way of issuing general commands -the command environment- which,
in general, 1is tailored to that user's needs. For instance, the command
environment may contain a list of abbreviations the user 1likes. The point
here is that since the user already has a command environhent, why complicate
the user interface by making two -one for control environment commandé, and

the other for "regular" commands.

Since the .control environment will be considered merged with the
command environment, the command interpreter must identify control commands as
well. The command environment may present an entirely different interface to
the system than other users see. To accomplish this, the command environnment
must be extensible, in some sense, to accomodate each user's requirements. In
general it should be user replaceable. These requirements are most easily
satisfied by placing the command environment in the user program environment.
Unfortunately, this once again allows users to harm themselves because their

programs can damage the command environment. So once again protection is



required for something that is primarily a user program.

The preceding idea of protecting a programs'; execution environment
is applicable to both batch oriented and timesharing systems alike, but the
concept of control and command environments is generally restricted to
timesharing systems. In batch systems the only type of control allowed might
be specified in terms of maximum resource usage to allow to a given job. The
command language might allow testing of return codes to deteimine execution
paths, but is limited to waiting for the termination of each of the tasks to
detemine the value of the return code. Although the remainder of this paper
will be concerned with the environments found mainly on timesharing systems, a
definite anlogy can be made between the command environment that will be
discussed and the "JCL" interpreter found on batch systems. Thus, one might

apply these suggestions, in a limited way, to batch systems too.

Because it is desirable to protect both the coﬁtrol and command
environments, and the control environment essentially depends on the command
environment, this research will consider the two environments as one unified
control/command environment (UCCE). Hence the following discussion on

protection considers the UCCE as a whole.

Inmediately one should see that supervisor implantation is
1napropr1gte for protecting the UCCE since that results in non-modifiable
code.-(i;; the hopes of haVing‘the versatility described is 1lost. Even so,
TENEX ([Bobrow] wuses this approach to protect its command environment.

However, users of TENEX clearly see the differences between command that they



write, and system commands, in things such as 1) passing arguments to programs
by typing them on the same line as the command only works for system commands,

and 2) having reserved names for all system commands.

Now here 1is a good opportunity to utilize processes for protection
since high bandwidth is not important. Placing the UCCE in a separate process
from the running user program also helps debugging by causing less disturbance
in the user program environment. Parallel execution 1is also desirable,
allowing wuser to UCCE communications to go on independent of, and
simultaneously with user program execution. This feature facilitates
moniioring of execution. There are drawbacks to using proceses, however.
Depending on what system is being used, one process may not always be able to
directly refefence‘ the address space of another. Then dynamic debugging is
hard, if not impossible. Similarly, there may be no means for 1loading a
program into the other process. If interprocess communication is used, in any
fofm, then that part of the communication path which lies on the receiving
side (the user program side) becomes vulnerable to user program destruction,

~ and nothing has been solved.

Even 1if the described problems with processes are not problems in
the system in question, it is still not necessary to use processes for this
protection. Eponomy of mechanism may be achieved by reusing a mechanism that
has been made available previously. Furthermore, current technology has not
yet reached a point'where processes are cheap enough to use in all situations

where they are conceptually elegant.

-10-



It has already been shown how one may protect what may be considered
user code, from usérs. The solution chosen was to use rings. That solution
may also be applied here and thus no new mechanism need be introduced to the
total solution. The structure proposed is to simply encapsulate the UCCE in a
- user ring which is lower than the ring in which user's programs execute. Once
again, the code is protected from the user but 1is still not part of the
supervisor. Dynamic debugging is easy since the UCCE in the lower ring can
directly reference and/or modify the user programs in the higher ring. More
important, however, is the fact that the user then‘has an environment which is
known to always be functioning even when all of the user's programs may have
been destroyed. In this way the user can maintain absolute control of a

process.

The reader should notice that protecting the UCCE is indeed distinct
from protecting the EE since in either case the other was not mentioned. On
the other hand, each environment might benefit by protecting the other from
it. For example, the UCCE is made up of programs which require some
environment to run in. Thus protecting the UCCE's EE might uncover some
unknown problems and prevent catastrophic errors due to a misprogrammed UCCE.
In the other direction, debugging the EE can only be accomplished by providing
an environment from which to debug it in. Because of the possible infinite
recursion that may occur here, this research intends to encapsulate both the
UCCE and the EE in one ring for simplicity. However, the code is hoped to be
designed 1in such a fashion as to be independent of what ring it executeé in.
Theﬁ a cautious user may, in that user's own process, contruct any number of

layers of EEs and UCCEs.

-11-



IV. Initial Thoughts on Implementation

Implementation of this proposal on the Multics system would provide
an excellent opportunity to demonstrate the feasibility of the proposed
design. This 1is true because Multics 1) is a process oriented timesharing
system, 2) has rings implemented in hardware [Schroeder 71}, 3) suffers from
the problem of both UCCE and EE vulnerability, and 4) is a readily available
system to the author. In this section initial thoughts on implementation on
Multics will be presented. These should not be considered final design
decisions by any means. They are simply thoughts on how this research may
proceec.l.. The reader 1is cautioned that some Multics specific terms and
concepts are included which may decrease the'readability of .this section to

the uninitiated.
The UCCE is discussed first.

The modules containing thé command processor can easily be isolated
but one must be warned that any "abbrev" processors and ready message prograns
are part of the command environment. The command processor will have to be
modified to call programs in a higher ring. The user's terminal will have to
be attached in the ring of the command processor (or in a lower ring, but it
would serve no special purpose there), requiring that a special cross-ring 1/0
module be written for use by all user programs. The methods of entry into the
UCCE will be fourfold: 1)via a call during initial process startup, 2) by
user programs returning to their caller after completion, 3) by any abnormal

conditions detected in the user environment, and 4) via the "quit" mechanism.

-12-



The last of these will alllow process stopping at any point by the user when

the "attention" or "break" key on the control terminal is pressed.

In the remainder of this section a few of the common mechanisms in the user
environment will be discussed, along with a description of how they may be

protected, if at all.

The stack 1is one major common mechanism desiring protection. The
protection of stack threads and return pointers would b_e useful, as would the -
limiting of dccess only to frames that a procedure should know about (display
pointers). Such features are found on Burroughs [Organick] computers, and are
implemented in hardware. Since Multics lacks this hardware, a recompilation
of every program in the system would be required so that all programs would
make use of some new software that would accomplish the same thing. Then each
stack frame could exist in a separate segment, and have access to the frame
set accordingly. This is obviously not a practical solution both for actual

execution time and for conversion overhead.

On Multics, the stack is a repository for other distinct objects
such as the condition chain, wused for setting up condition handlers, the
Linkage Offset Table (LOT), used for finding pointers to programs 1linkage
sections, and the Internal Static Offset Table (ISOT), used for finding
pointers to internal static sections ("own" variables) of programs. The "base
of the stack" has many special pointers that degine the user enﬂronment, such
as pointers to the LOT, ISOT,' signalling procedure, and special operator

pointers (call/return). Again, it would be desirable to protect all of these



objects, but most would require enormous system-wide conversions. The
exceptions are the LOT and ISOT which could easily be protected by placing

them in an inner ring and having them only readable from the user ring.

Dynamic linking on Multics currently incorporates many features that
are conceptually not part of the linking process. Phillipe Janson describes
this in his thesis [Janson 74] and a more specific paper [Janson 75]. The
protection of the linker, once it is removed from the supervisor, is possible,
and deslrabie, by using an inner ring to house it. It is c;ear that this can
be done since it originally ran in a ring which was lower than the object
ring. However, ring 0 must be made aware of the fact that the 1linker exists
in a ring different from the ring where the linkage fault to be handled
occurs. A major implication of having the linker in an inner ring is that it
makes use of the reference name facility, which must therefore reside in the
same ring as the linker or in a lower ring. Protection of the reference name
facility, one it is removed from the supervisor, is also desirable, and so is

conpatible with this requirement.

Linkage sections are those parts of programs that contain impure
data (modified during execution). Currentlty, linkage sections contain both
linkage information as well as internal static (own) variables. Protection of
internal static variables is not cohsidered, since programs must be able to
write as well as read then. However, the protection of linkage data is
possible, and a reasonable goal. To accomplish this protection of 1linkage
information, it must be separated from the internal static variables and

protected. This separation is in fact being introduced as a result of work on

-14-



the Multics pre-linking project, where large subsystems are to be pre-linked
for faster execution. Once linkage and internal - static sections are
separated, the protection 1is easily accomplished by placing the 1linkage
sections in an inner ring where the linker can write them, but where user
programs can only read or transfer through them. Although it was mentioned
that internal static variables could not be protected, the management of the

~ area where they exist could be.

The connection of I/0 streams is a feature that should be protected,
but due to the current structuring of the 1/0 subsystem on Multics, it would
be 1impossible. Currently, the attachments are placed in 1/0 control blocks
(I0CBs) which must be directly writeable by I/0 modules. A future subsystem
might restrict this and only allow modification to the IOCBs by calling
subroutines. Then the protection of the I/0 data should be reconsidered. It
is important to point out that although I/0 streams will not be protected, the
attachment of the user's terminal will be in the UCCE. Thus the connection to

the UCCE cannot be broken by faulty progranms.

-15-




V..Proposed Work

The f£irst step in achieving the desired protected environment will
be to set up a protected quit handler/command environment with an 170
attachment to the user's terminal. The cross-ring 1/0 scheme will have to be
developed. The test implementation will have the user's environment in ring
5, with the protected environment in ring 4. As mentioned earlier, the
independence of what actual rings are used is desired, and the implementation

will be programmed accordingly.

Once the protected command environment is functioning, the major
portion of work for this thesis will begin. Modules will be brought into the
protected environment in an orderly fashion, hopefully one function at a time.
The exact order in which the work will proceed has not been finalized; nor has
the total amount of time and effort to be spent on implementation been

decided.

The procedure that is expected to be followed will be to identify a
function or feature of the user environment that would benefit from
protection. Then the protection of that feature, using‘the proposed design,
will be considered. If it is obvious that the feature cannot easily be
protected, as in the casd of the stack menfioned earlier, a discussion of what
other method may be used, or what modifications would be necessary for
protection will be presented in the thesis. If the protection of that feature
is considered trivial and not necesary for a working implementation, then it

will only be implemetated if time permits. Similarly, 1if protection of a



feature 1is possible but would require an z:jg}nous amount of work, then
perhaps only a fraction of that feature (the basic or important ideas) will be

implemented, but a full discussion will be 1nc1uded in the thesis.

Although specific items have been pointed out in this paper, not all
features of the user environment have been discussed. Other items that are
candidates for protection are IPC data bases, timer management data bases, and

& possible multi-tasking environment.

-17-




VI. Conclusion

Although protecting the execution environment solves sone
self-protection problems, others could be solved by setting up appropriate
conventions for programmers to follow. One such convention might be that
editors should give themselves write permission to a file only while they are

actually writing it, as the Multics debuggers and compilers do.

One important point discovered by this work 1is the difference
between .the protection of the control, command and execution environments.
The interesting conclusion is that all three can be protected by the wuse of
rings. This approach provides the protection desired, and in addition, does
not add complexity to the supervisor. Since their are not shared data bases
between users, the code need not be certified for inter-user protection

violations.

In éonclusion, this work not only presents a solution to the "self
protection" problem, it shows that rings are indeed useful for protection of
code other than the supervisor, and thus should be available to users. This
research also intends to determine, 6nce and for all, the correct methods of
handling multi-ring stacks and the proper approach tq view multi-ring
signalling.

-18-



References

(Bobrow] Bobrow, D. G., et al., TENEX, a Paged Time Sharing System for the
PDP-10, CACM 15, 3 (March 1972), pp. 135 - 143.

[Janson 74] Janson, P. A., Removing the Dynamic Linker from the Security
Kernel of a Computing Utility, M.I.T. Project MAC Technical Report
TR-132, Cambridge, Mass., June 1974,

(Janson 75] Janson, P. A., Dynamic Linking and Environment Initialization in a
Multi-Domain Computation,‘ ACM 5th Symp. on Operating Sys.
Principles, Austin, Texas, November 1975, pp. 43-50.

[Organick] Organick, B. 1., Computer System Organization: The BS5700/B6700

7

Series, Academic Press, New York, 1973. |

(Schroeder 71) Schroeder, M. D., and Saltzer, J. H., A Hardware Architecture
for Implementing Protection Rings, CACM 15, 3 (March 1972), pp.
157-170.

(Schroeder 75] Schroeder, M. D., Engineering a Security Kernel for Multics,

ACM 5th Symp. on Operating Sys. Principles, Austin, Texas, November
1975’ pp. 25-320

-19-





