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ABSTRACT

Solutions to the duplicate database problem are considered,
and a new formal validation technicue using the theory of L
systems is developed &and applied to the problem. The paper is
not so much concerned with any particular solution as it is with
general properties of the problem, convenient representational
technigues, and formal proof procedures which are general enough
to apply to this and to a number of‘oﬁhér problems in parallel

processing and synchronization.



1. INTRODUCTION

This paper considers the problem of maintenance of multiple
copies of & database within a computer network. After an
explanation of the significance of this problem, and a review of
the literature concerning it, the problem is stated precisely and
several solutions are presented.

This report also details experiences gained by the author
through trial-and-error solutions which seemed for all intents
and purposes to be correct but which contained flaws. Finally,
attempts were mace to generalize and relate this problem to
classes of problems which arise in the operating systems area,
and to utilize the most expedient and appropriate theories and
models which have been developed within other spheres of computer

science. Toward this end, the notation of Evaluation Nets (16)

is used to descrike solutions, because it proved to be a very
understandable but efficient medium. Similarly, experience
showed that it is extremely desirable to verify, in a rigorous
manner if possible, the correctness of proposed solutions.
Toward this end, the theory and formal techniques of L systems
(19) were employed in a manner which seems to offer maﬁy, still
unexplored, possibilities of application of existing theorems and
derivaticn of new theorems for correctness proofs. 1In general,
the validation of systems with parallel processing has proved to
‘be a difficult problem. The technique presented herein to prove
the correctness or incorrectness of the interaction of
asynchronous parallel systems is qguite general, and presents a
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new application of L systems. The proof procedure using L
systems is effective, and thus can be mechanically carfied out on
a computer. The last part of the paper describes a set of
computer programs written in SNOBOL which automatically verifies
the «correctness of interaction of parallel processes. The paper
shhows the result of applying these programs to a proposed

solution to the duplicate database problem.



2. THE PROBLEM

A computer network may be centralized, implying that all
databases are keprt at one <central location, or distributed,
implying that dsta and control reside at various locations
throughout the network. If the distributed approach is used, it
may be desirable to store nultiple identical copies of the same
database at many nodes of the network. This is very useful for a
system which expects many gqueries to the deatabase from many
nodes. Gueries may then be satisfied without requiring
information transfer from no&e to node by simply exemining the
local copy of the database. The process‘of updating the database
is made more complicated because information must be transferred
to all nodes containing copies, and the update must be performed
on all databases to keep them identical. Furthermore, update
requests may occur in rapid succession or at the same tige at
cifterent nodes which may cause problems such as nonidentical
databases at the various nodes. Une thus needs to carefully
construct a controller or database manager process at each node
to insure that the database update process is performed correctly
and efficiently. The construction of this controller (7) is the

probler addressed by this paper. The problem is formally stated

below.




Duplicate Database Problem

Problem:

Given an arbitrary computer network, N.

Given a database D which exists in multiple copies at k of
the nodes of N.

Show and prove the correctness of a distributed
gynchronization algorithm which allows and controls the
updating of D in such a way that all copies remain
consistent (i.e. identical except for transient update

times).

Properties of a "good" solution:

(1) Consistency-==--- After the system quiesces, all copies of
D look the same.

(2) Speed Independence~=---- Solution should be independent of
how long (but < « ) transmission operations take.

(3) Functionality~---~ Allows arbitrary function to be
transmitted and applied to all copies of D.

(4) Deadlock Free--~-- One or more nodes cannot get into a
permanently blocked state waiting for other nodes, or
waiting for a message which will never érrive.

(5) No Critical Blocking-=---- Each node's updaééifééﬁéstrﬁiilri
eventually be fulfilled. Thus, there does not exist a
sequence of timings such that two or more nodes can
continually attempt to synchronize and fail.

(6) Homogeneous=--=-- All nodes have essentially identical

control programs.



Notice that without loss of generality, it can be assumed that

all updates to the database D are initiated by a node holding a
copy of D, and updates require locking or synchronizing all of

all copies of D. The term database used throughout this paper

may refer to a data set or other unit of information. For
example, in IMS* the term database might be replaced by the IMS
segment. Thus, it is not necessary that application of solution
techniques here presented imply that all of a database must be
locked. If a solution of simply performing an update function on
the local database and then transmitting the function to all
other nodes is adopted, then the property (1) of consistency may
be violated as indicated by the following example.

Suppose two copies of a database containing a positive
number in record 1 and a negative number in record 2 are
simultaneously updated by functions f. at node A and f_, at node

1 2
B. f_ sets record 1 to the sign (positive or negative) of record

1
2; f2 sets record 2 to the sign of record 1. After setting the
records at node A to negative values and the records at B to
positive, both nodes will transmit their functions to the
opposite node and perform them. When this is completed, the

negative values of records 1 and 2 at node A will be inconsistent

with the positive values at node B. This illustrates that the
type of problem with which we are concerned falls within the

realm of parallel processing and synchronization. Verification

* IMS (21) stands for Information Management System, an IBM
program product used by many businesses.
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of correctness of these systems tends to be more difficult than
verification of strictly sequential programs because of added
complexity due to timing considerations, and irreproducibility of
errors when they occur. The problem exposed within this example
would be avoided if both nodes transmitted the value obtained by
their function, and the receiving node simply stored a value into
a record. Johnson and Thomas have investigated the duplicate
database problem making this value-transmission assumption.

Notice that if the above example is modified so that f, and £

1 2
store their result in the same record, say record 3, then the
value-transmission scheme leads to inconsistency. In a recent
working paper (1l1), Johnson and Thomas have briefly discussed the
general problem, and then outlined in some detail a solution for

a particular type of duplicate database 1in which only the

operations of gquery, assignment, creation, and deletion are

allowed. There are obvious particular instances in which either

,\A“{value-transmission or function~transmission is untenable. Thus,

property (3), functionality, regquires that solutions to the
problem be general in the sense that they allow arbitrary
functions (or values) to be transmitted and applied to all copies
of the database. The problems shown in the above example only
appear when several updates occur in very close time proximity.
The properties of speed independence, deadlock freedom, and no
critical blocking are all concerned with correct operation under
various time sequences of events. The final property (6) of

homogeneity is one which may be discarded in an actual network

\
A



implementation. The notation of essentially identical control
programs means that the flowcharts of the global database access
control programs at each node look alike (i.e. their algorithms
are the same), although the nodes may have entirely different
computer systems. This property lends a bit of symmetry and
elegance to solutions, allows verification to proceed by viewing
the control program of a single node, and leads to possibilities
of formal proof of correctness of arbitrarily large networks by

induction on the number of nodes in the network.



3. THE SOLUTION

There are several solutions to the duplicate database
problem present in the literature (11,13,22). However, there
seems to be no coverage of the problem which is provably correct
and which successfully fulfills all of the generality of the
requirements listed in the previous section. This section
presents and discusses several solutions using a uniform
graphical presentation mediunm. Then Section 4 explains the
automated verification of correctness technigue applicable to
these solutions.

One solution to the problem consists of the formation of a
supervisor at one of the nodes to allocate updating privileges to
all nodes. When a given node wishes to update the database, it
requests permission from the supervisor, and if no other node is
updating, permission is granted. When the given node has
finished updating (at all concerned nodes), it must signal
completion to the supervisor so that other nodes will then be
allowed to update. The evaluation net describing the control
program at the given node for this solution is shown in Figure 1.

Evaluation nets (17) are a modified form of Petri nets
(10,18). They are good for explanation of solutions to our
problem because they are graphical, unambiguous, and application

oriented. Transition schema allow token flow via fork, join, and
select transitions, ambng others. 1In Figure 1, a token on the

location (i.e. circle) called IDLE means that the node is not
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servicing any update request. An internel updaﬁe request
occurring from a local process is denoted by a token arriving on
location A. If there are tokens on both locations A and IDLE,
then the transition Tl can 'fire', removing tokens from its input
locations and delivering tokens to its output locations. One of
the outputs is external to Figure 1 and delivers a request token
to the supervisor node. A token on the WAIT SUPERV node
indicates that the local controller is waiting for a message from
the supervisor node saying YES (=l1) you can update, or NO (=0)
you cannot update. This message is delivered by placing a 1 or 0
token onto the hexagonal node called a resolution location.
Transition T3 fires when tokens are on both of its input
locations. These tokens are removed and a token is placed on one
or the other of the output locations depending upon the value of
the token on the resolution location. In this example, if the
supervisor sends a No message, then a token will be placed on
IDLE meaning that the local update request was rejected and must
be attempted again at a later time. The controller is thus
readied for receiving other external reguests. A YES message
implies that it 1is allowed to make the local update and other
nodes containing copies of the database will not interfere, The
transitions following the UPDATE location illustrate a fork
transition to send out the updating function or data, and a 3join
transition to receive update done replies from all nodes. After
this, the local controller signals completion to the supervisor

so that others can access the database, and the controller then
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returns to the IDLE state. It can be ébserved from this example
that tokens on locations may represent states of the controller
and transitions represent indivisible actions which the
controller performs. Occasionally, the semantics of the.actions
will be written as comments beside the appropriate transition.
See Figure 1. More information on evaluation nets, along with a
formal definition, can be found in Nutt (16) . A careful
implementation of the control strategy of Figure 1 (plus a
supervisor) yields a correct solution. However, this solution is
not distributed, and thus fails criterion 6. The success of the
whole system in this solution is critically dependent upon the
supervisory node. Mullery (14) shows that this critical
dependence can be avoided in distributed systems. We, thus, seek
a better solution by distributing control. A straightforward
approach which minimizes the amount of parallel activity requires
that a controller which wants to update must signal to all
involved nodes in a sequential one~by-one fashion and receive a
YES reply from each before updating. This distributed solution
is shown in Figure 2. This basic solution has a problem of

critical blocking, in which the time sequence may be such that

several nodes all attempt simultaneously to update, and all fail.

Then they all wait and two or more again try at (close to) the

same time, thus continually failing so that the database never

' gets updated. Oﬁe solution to this is to assign unequal

priorities to the nodes and let the highest priority node be the

winner of any tie. This raises the possibility that a lower
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priority node may be locked out, and never perform its update.
The solution shown in Figure 3 uses timestamps to solve this
dilemma. A clock (not necessarily identical time) is placed at
each node, and is used to be sure that an earlier reguest is not
delayed until after a later request. It is still possible that
two or more requests originate at the same time so some priority
is still necessary to break ties. Are priorities necessary in
all solutions? No, a numbering of nodes can be implemented which
is changed each time an update is performed. Are clocks and
timestamps necessary? No, the function of ordering carried out
by a timestamp can be performed by integer counters which simply
count how long in terms of updates a node has waited since its
last turn. Experience with concocting and verifying solutions
indicates that flaws in solutions are not easy to find.
Solutions should be speed independent, so one should consider the
consequences of a node sending two messages and the second
arriving before the first. This consideration may invalidate
what looks 1like a good solution. Similarly, it is freguently
dangerous if a node can send out messages and wait for answers in
some cases but not wait for them in other situations. This
_occurs vwhen a node requests permission to update from all nodes,

receives a NO from some node, and then doesn't wait for further

replies which may not return until the next update transaction
much later. Properties of minimal message transfer, clarity and

elegance of solution, maximal parallelism, practicality, and

generality often conflict with each other. An obvious direction
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to pursue in improving the primitive solution of Figure 2 is to
attempt parallelism by sending update requests in parallel. The
solution of Figure 4 does this and attempts to avoid critical
blocking by forming a queue of all requests which occur near the
same time. This solution fails because of the subtle problem
that the various nodes may not have consistent copies of the
queue. Thus, the original problem has not been solved but recast
as the maintenance of multiple copies of the queue. This method
offers a decrease in the amount of protocol transmission becaﬁse
one locking allows a whole queue of updates to take place.
Finally, Figure 5 shows a solution which 1is very elegant,
requires few transmissions, but is not built upon the premise of
maximal parallelism. It has the advantage that a node need not
know how many nodes, N, are in the network. It has the
disadvantage of serial propagation through the network. A
controller only sends messages to the next higher numbered node
modulo N, and receives from the next lower node. A reguest to
update propagates around this ring structure and is accepted when
it returns to its sender. The (update + completion
acknowledgement) is then done in a similar manner. Simultaneous
fequests are handled by storing the lower number in the higher

numbered node, and every node is guaranteed to receive a turn.
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4., THE PROOF

The following discussion will briefly introduce the
formalism of L systems using the notation of Rozenberg (20). It
will then be shown that the question of whether a set of programs
fulfills the <criteria of consistency, speed independence,
deadlock, and critical blocking 1is equivalent to certain
decidable questions concerning the emptiness of particular sets
of strings and sequences., A simple partial solution to the
duplicate database problem will be used for illustrative
purposes. A SNOBOL program which computes answers to these
guestions will be described in the Appendix.

Intuitively, L systems are similar to phrase structure
grammars with the following significant alterations:

(1) Elimination of the distinction between terminal and

nonterminal symbols so that all symbols in the vocabulary

are assumed to be both terminal and nonterminal, and

(2) Simultaneous replacement of all symbols in a string at

each derivation step.

The latter feature creates a very natural model of parallelism,

and thereby motivates use of L systems for the study of

asynchronous cooperating processes. The following are a few of

the definitions of Ehrenfeucht and Rozenberg (19), presented in

slightly simplified form.

Definition 1: An L system with tables and with interactions
(abbreviated TIL system) is a construct

G =<E,P,g,w>, where r is a finite nonempty set

20



called the alphabet of G, g is a symbol not in z
used as an end marker,. w is a word over the
alphabet I called the axiom or initial string, and

P is a finite nonempty set, such that each element

peP (called a table of G) is a finite nonempty

relation satisfying the following:

PgU

%Ijlml
1+] =
mtn =

, . ®
>0 {gl} £ x 1z x Zm{gn} x I

n -
k
2
where keN and g2eN. (N = set of natural numbers.)
and for every <<r,a,B> in U {gl} 3 x 1 x Zm{gn}
i,jmn > 0
i+j =

n
k
m+n 1)

there exists a y in £* such that <<r,a,8,y> eP.

Each element of P is called a production and is usually written
in the form <;,a,€> > Y , or if the rule is context-free, it is
written a-=y denoting‘<ﬁra:§>+Yr where A means the empty string.
In specifying productions in a table of a TIL system, one may
omit those which cannot be used in any rewriting process which

starts with the axiom of the system. This rewriting proceeds via

derivations is explained next.

<Z,P.g,W> be a TIL system.

Definition 2: Let G
Let x = aiaz...anez* and y+I* . We say that x

directly derives y in G (written x —>y) if

21




Y = YyYgeeeY, for some Yl,yz,...,ynez* such that
there exists a table P in I and for every i in
{1,2,...,n} , P contains a production of the form
<mi'ai’Bi>'+Yi where =, is the last k symbols of

k . . ‘
gaj...a; 5 and Bi is the first & symbols of

a ...angz . The transitive and reflexive closure

i+l *
of the relation x==)y is denoted x=)y, then we
say that x derives zcii_p_ G. ’
Definition 3: Define the language*generated by a TIL system G to
be L(G) = {xeI*|w==>x}. A language generated by
a ‘TIL system is Gcalled an L language, or more
specifically, a TIL language.

As an example, consider a network consisting of two nodes,
each of which contéins a copy of the duplicated database D. When
a request to update is presented to node 1 from an applications
process (AP), its database management procéss (DBMP) will perform
the update and transmit the update to node 2. Before doing this,
it will check whether node 2 is free (denoted by T, = 0) and if
so, it will 1lock 1its own copy by setting T, = 1. After the

~update, it will set T, = 0 again. Note that the DBMP only

#

. changes T; which is its local variable (not durliczted at node

" 2). In order to test the nonlocal variable T2, it must send a

;message to node 2 and wait for a reply. The exact protocol
(which must also be performed by node 2 when it wants to update)

v

is specified by Al through F2. &

22



Al.
A2,

A3.

A4,

Bl.

Cl.

cea.

C3.

Dbl,

El.

E2.

Fl.

F2.

The

Node i Protocol (i=1,2;j=1,2;i#j)

send a message to node j requesting update status
wait for node j status reply
if node j status reply is locked-for-update (Tj=1), then

return to Al

if node j status reply is unlocked (Tj=0), then proceed

to Bl

change own status from unlocked to locked-for-update (set
Ti=l)

perform update on local copy of database

transmit update to node j

wait for update completed reply from node j

change own status from locked to unlocked (set Ti=0)
perform any non-update functions

accept another update request from a local applications
process, then return to Al

whenever a status request message arrives from another
DBMP, interrupt current processing, send reply indicating
current value of T then resume previous processing

whenever an update arrives from another DBMP, interrupt

'éﬁfrén£4'ptaéé55iﬁ§," péfféfﬁ' ﬁp&éteﬁrén local copy of

database, send update completed reply, then resume

previous processing.

essence of the algorithms implied by the above protocol

can be represented by flowcharts or graphs where each node is

23



given a label, a‘through é{_gg}iéépondihg to the lébeidéftachéé‘
to statements within the protocol (Figure 6). Since we are not
interested in the details of exactly what operations are
performed within an update, the entire section of the protocol Cl
through C3 is abstracted to a single flowchart box 1labelled c,
which denotes an update on all copies of the database, instigated
by node i. See Figure 6. Similarly, all code to perform
non-update functions (protocol El) plus the GO TO Al statement
(protocol E2) are represented by flowchart box ey and its out

arce.
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The state of the total system at any particular instant of time

can then be captured by a string SlTISZ 2

values from the set Zi = {ai’bi'ci'di’ei} denoting which box of

T, where si takes on

the flowchart is currently being executed by process i. T, takes
on a value of 1 meaning that process i is locking the database
for its own exclusive use, or 0 implying that process i is not
currently accessing the database (unlocked). The elements of
these value sets will form the alphabet of the L system model.
Z=ZlU22U{0,l} . Note that by subscripting the node labels we can
model asymmetric solutions involving an arbitrary number of nodes
although symmetrical solutions are suggested within our problem
criteria. Elsewhere in this paper we will employ the notation
si(y) to mean the»value taken on by si within string Y. Thus,
within our example if y = a10c21, then Sl(Y) = a, and Sz(y) =C,-
Given some instantaneous description, there are a finite number
of possible 'next configurations' of the system which may be
attained by some action by node 1, by node 2, or by both. This
leads to the idea of ‘'rules of change' of the system which can be
specified by productions within tables of the L system. Finally,
the axiom w of the system specifies the flowchart box at which
each node should start along with the initial values of
variables. 1In our example,w = a10a2an_The"£ormal specification

of our system G includes

26



(a)
(b)
(c)
(d)

#,

a10a20

= {al,bl,cl,dl,el,a2,b2,cz,d2,e2,0,1},

Table 1 Table 2
1 al - al
2 <A,al,660>' > by Same as
' Table 1
3 <A,al,66£> > ay
4 <A,bl,0> > ¢y
5 b, » b, <bl,0,A> > 1
6 {n/by, Iy > by
7 €17 €1
8 S dl Same as
- Table 1
9 &1 7 &
10 €1 7 2 |
11 <ﬁ,dl,i> > el
12 4, + 4, a1, + o0
13 (riag, 0y » a;
14 0+ 0 <al|cl|dllel,0,1\> > 0
15 1 -+ 1 + 1

27
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The tables only give productions denoting the progress of node 1.
Further productions would need to be specified to incorporate
node 2. A computer program given graphs of any protocols for
database access could construct the tables. It is also asserted
“that the program can check for correctness with respect to
defined properties of a proposed solution to the duplicate
database problem or any of a number of other synchronization
problems. The basic technique for doing this is explained in the
remainder of this paper. First, further interpretation of the
tables is needed. Considef the case in which node 1 is in node
state ay, (i.e. flowchart box al) testing to see if it can update
the database (Sl = al) , node 2 is within its non-update section
(52 = ez), and T1 = 0, T2 = 0. This total state is represented by
Yy = a10e20. To obtain one possible next total state, we must
select a table((let's choose Table 1) and apply one production
from this table to each symbol in y. Thus, if node 1 receives a
status=unlocked reply from node 2, T, = 0, it proceeds to step Bl
(depicted by production 2, (ﬁ,a1,66§>+bl) and node 2 leaves 1its

non-update section (e2+a2) , then the corresponding derivation is

alOeZO_______->b10a20. This 1is due to the fact that the only choice
ot productions for 0 is 0-0. Note that <ﬁ,al,66q>+b1 means
that a, can be replaced by bl if it is preceded by anything (left
context is empty string :A)a and followed by any two symbols
followed by a 0 (6 implies a ‘don't care' symbol). This
derivation step shows an example of the simultaneous occurrence

of two asynchronous events. Our assumption of speed independence
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implies that a slow process should be able to rémain in one node
state for an arbitrary but finite qumber of transitions before
moving to the next node state. Thus, for each symbol «e3, there
must be a production o+« If in fhe above example, the
transmission of message and reply takes a longer time to execute,
then node 1 would not yet complete execution of flowchart box a .
This situation can be depicted by utilizing production 1 of Table
1, a;»a,, to produce the derivation a10e2;:f>a10a20 . Table 2 is
provided to guarantee that the action of leaving bl is coupled
with the action of changing Tl from 0 to 1 (see productions 4 and
5). Incorrect behavior would occur if one of these actions could
take place without the other. Similarly, this table would be
selected when it is time to change T1 back from 1 to 0 when
leaving dl (see productions 11 and 12).

Given this L system G as a model of the asynchronous
programs of Figure 6, the question "Is it impossible for both
programs to simultaneously perform (different) updates, thereby
causing inconsistency?" can be cast as the following question
concerning set emptiness within the model. Criterion 1: Is the

set ¢ empty? Cy ={Y€L(G)I(Ci€Y) A (cjey) for some

1
i,jeN, i # j). In the example just developed, this means that we

consider the set of strings v containing both of the symbols cy

and Cye and inquire if any of the strings can be derived from
w=a10a20 (i.e. is vyeL(G)). Since C; means that node i is

updating the database, a string such as y=cllc21 within L(G)

means that cl is non-empty. Thus, by a sequence of legal actions
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specified . by w-———~>7, " it is possible for both nodes to
=

simultaneously update causing inconsistency. Similarly, 1t can
pe  argued that an answer of 'yes' to the set inclusion guestion
implies that there is no way to drive the system to a state such
that both nodes are performing (different) updates. Thus, the
protocol must be consistent. In the example, there is &

legitimate derivation

w = a10a20:==$>b10b20;==£7c11b20 ;pllczl.

This L system fails to meet criterion 1, so the protocol (Figure
6) must fail to guarantee consistency. To insure consistency, we
alter our protocol by putting step Bl before Al. This is
depicted by the graph in Figure 7. If the L system modelling
this protocol were examined, it would be found that the adult
language [10, section 2.4] of G, denoted A(G), is non-empty.
This is precisely the necessary and sufficient condition for
(total) deadlock. Thus, we can state Criterion 2: 1Is the set
A(G) empty? and the answer is 'yes' (i.e., criterion 2 is
satisfied) if and only if the protocol is deadlock free. The
related criterion of no critical blocking is satisfied if and
only if the following guestion can be answered affirmatively.
Criterion 3: Is the,,set,c3 empty? C3WCQnSisIst£.the set aof.
infinite derivations, w=Y0==7"1==§“2==D"' such that

1. (3) @v §n>N,cify,) and

2. 0) ((8;(y)) = =)2@e>K3:b; by, )7=)

The set C3 consists of infinite derivations because it 1is

necessary to capture the states of the system after an

30



31

lock T1 b2: lock T2
T T .
est 2 Toorsd a2' Test T1
dafqbase ‘ Cyt database
upddte’ update
\l/ V4
d,: :
unlock Tl 2 unlock T2
\
non-update . non-update
functions ez. functions

Figure 7 Altered 2 Node Network Solution

locked



";rbitrarily long initial period ofnﬁime during which a node may
loop within its control statements before entering its critical
section. Part 1 of the specification of the set Cy
[G;) @N) &n>N,c £y )] states. that criterion 3 will fail if
there is any derivation such that after some initial period of
time (depicted by Yo through YN):the symbol ciez (for some i)
never appears. This means that the update section is never again
entered by process i although it attempts to wupdate. This 1is
exactly the conditién of critical blocking. Part 2 of tthe
specification of C3[(vi)((si(yk) = ¢)5(32k38i(Y2') # «)] is
appended to rule out the possibility that some process might take
an infinitely 1long time to perform some operation. Recall that
the productions <=+= were added to allow speed independence, and
that operations were allowed t6 take arbitrary but finite amounts
of time. Thus, we must only consider sequences which for each
node state Si do not consist only of applications of the
production «-»«, This is indicated by the formal statement: if
Si takes on value « in the k-th string of a derivation
(Si(yk) = «) , then Si must take on another value at some later
time (31>kasi(yz) #F o«), Finally,‘ the «criterion of partial
operability (criterion 4) can be examined by sgimcly applying the

previous three set emptiness questions to the following subsets
of L(G): For each y 'eL(G) containing less than n (but more than
zero) symbols of the form e, where n = number of processes, apply
all of the above emptiness tests to L(G') where G' = (:z',P',#,vy")

where I' is the set of all symbols in I except those symbols in
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zi—ei for each eiey' . P' is the restriction of p to z'. Thus,
only productions which generate valid strings of symbols over &'
can be wused. This means that €;>e; must always be employed.

Thus, in considering blocking and deadlock, the nodes which are

effectively stopped should not be considered.

For any L system G formed from any finite set of nodes plus
their protocols, the set emptiness gquestions are decidable, and
SO0 the four conditions can be mechanically verified to prove or
disprove the correctness of & solution. A brief sketch of the
argument verifying that criterion 3 is decidable will be given
here. This condition is selected because it involves infinite
sequences and thus is one of the least obviously decidable
conditions.,

Proposition: The question "Is C3 empty?" can be answered after
a finite number of test steps.

Justification:

a. In considering infinite sequeﬁces of strings YorYprYore.. @S

possible members of C3; it is sufficient to only consider those

sequences such that Yi+l#Yi' This is true because given any

sequence, it 1is 1in c3 if and only if its underlying real-time

subsequence is in C3. This subsequence is obtained by collapsing

Yi’Yi+1""'Yg to i for each case of
= = = = i 1 ] u o
Y3-17Yi5Y5477 - Y17 #Y 01 in the original sequence
The real-time subsequence is valid because
» . = i . The
Yi-l ==Yy =Vo==p7V441 implies v, ;___ oy, S5Vl
real-time subsequence is infinite because repetitions
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specification of C3. Notice that deadlocked sequences are not in

are guaranteed to be finite by part 2 of the

the set C, because they do not fulfill the criterion for critical
blocking. They are instead detected by criterion 2.

b. In considéring infinite real-time sequences (i'e'Yi+1 7 Vg )
as possible members of C3, it is sufficient to only consider
finite sequenceg of length |L(G) + 1. We inquire if there is
any sequence of this length beginning with any yeL(G) which does
not contain one or more cjele If so, then since L(G) only

contains a finite number of strings, there must be a (nontrivial)
*

‘loop' in which <come ' ‘7yi. This loop can be repeated

indefinitely to obtain an infinite sequence excluding Ci'
- Finally, since YieL(G), w £ 7&=;?yi,'Thus, a sequence beginning
with Y, ¢can be constructed. Conversely, if there 1is some
real-time sequence in c3, then some yieL(G) must be repeated in
this sequence within |[L(G)| + 1 derivation steps and there must
be some cy not contained in any of the strings within these
derivation steps. This situation will then be detected by simply
looking at finite strings of length |L(G)| + 1.

This completes the justification of the decidability of

criterion 3. One crucial factor was the finite fixed size of
L(G). However, current systems allow dynamic requests for
resources and dynamic creation of processes and subprocesses by
any existing process. This implies that strings of L(G) would
not all be of the same length. The area of dynamic systems

presents some even more tantalizing problems than the one
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investigated here. These dynamic systems problers further
justify use of L systems. 1In presenting the above verification
techniques, the duplicate détabase problem was wused as an
example. These techniques can be similarly applied to the
solution verification of other problems in synchronization anag
control of asynchronous systems. A SiKOBOL program which rerforns
the verification of criteria 1 through 4 is described in tre
Appendix. The output of this program is shown whenr an L system
modeling the proposed solution of Figure 7 is nresented os ingut.

IQ summary, the very interesting duplicate databasc prokblem
has been explored; some solutions and a verification technique
have been presented; and a new tool (L systems) for network
operating systems analysis has been briefly explored. Areas of
future study are apparent in the further application of theorenms
of L systems to this problem and others. The comprlexity and
cost-effectiveness (in terms of number of transmissions, etc.) of
solutions also warrant more study. Finally, the solutions to the
auplicate database problem presented need to be €exranded and
refined to include such features as time-outs, and error hendling

and recovery.
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APPENDIX

The prograim listed in this appendix accepts a set of L
system tables plus an initislizing axiom as inputs, and performs
tests of deadlock, consistency and «critical blocking on the
modelled system. The lprogram uses a depth first recursive
descent technique to test the set inclusion questions presentead
in section 4, and prints as output a list of tests which faileg
along with the strings associated with each failure. The proaranm
is written in the SNOBOL language, consists of 161 source
statements, and utilizes 256k bytes of memory. The vrogram when
running a typical modelled system (32 symbols, 4 tables of 26
productions each) on the IBM 360/91 requires approximately two
minutes of execution time.

To wuse the program, data specifying . the L system must be
inserted immediately zfter the END statement. All data begins in
column 1 and contains no intermediate blanks. The first card
specifies the number of productions; the second card specifies an
upper bound on the size of an internal stack (typically 12§ is
sufficient), the thirg specifies an axiom, and the fourth
specifies the inconsistency conditioﬁs ceparated by commas. The
cards following this contain the productions, cne per card. In
order to specify which productions are in which table, each group
of production caras is preceded by & takle card telling the
number of the table for that group. The table card has the

following format where XX denotes & two digit table number
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(ceginning with 0l), YY denotes the number of productions in the
.group, and b denotes a blank:

TABLEbXXbYY

A production card has the following format starting in column one
with no interspersed blanks:

lc,aa,rc=wl W2 ... WN

as denotes the symbol to be replaced; each Wi denotes a string of
symuols which is a possible replacement of aa. 1lc and rc denote
strings of symbols which are the left context and right context
of aa, respectively. Under the <current implementation, each

symbol of the alphabet r, such as aa above, must be represented

by three characters (e.q. All1,B03,XK5, are three legitimate
symbols). 1lc and/or rc may be the empty string but the commas
(and no blanks) are still required. The program may halt
printihg an error message if incorrectly formatted data is
entered. Other error messages may result from a bad L system in
which there are no replacement productions for a symbol occurring
in a string. Intermediate output and diagnostic trace
informaticn can be obtained by changing the first statement of
the program from FPRNTSWITCH = 0 to PRNTSWITCH = 2. A lesser
arount of intermediate output can be obtained by setting
PRNTSWITCH = 1. These outputs may be used in conjunction with
the flowchart which follows plus the commentéd rrogram to
undgerstand more details about the actions of the program upon a

particular input data set.
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#* 0 H ¥ N ¥ R 3 H # #

LSYS PROGRMM

THIS PROGRAM VALIDATES CONDITIONS OF PARALLEL SYSTEHS
THE TICHNIQUE USED TNVOLVES TNPUTTING A SET OF TABLES
THZ TABLES PPOVIDE A FORMAL SPECIFICATION OF THE SYSTEM MODELLED
T"HEOEEMS OF 1L SYSTEMS CAN BE APPLTED TO TEST THE MODEBLLED SYSTEHY
THE PROGRAM TESTS FOR DEADLOCK, CONSISTENCY, AND CRITYCAL BLOCKINS
FURTHE? TESTS (2.G. PARTIAL -JPERABILITY). MAY BE INCORPORATED LITER

PINTSWITCH = 0
MAXPNTR = 2

'SZT ADPARAM TO # LOOP TIMES. - 1
APAFAM = 0

FUNCTIONS

DIPTNE ("TREER() ')

DEFINZ ("COHPAR () *)

DEFINE ("PRINTSTK({}.') . ~

DETINE (*MUTEX() ")

DETTNE (*DEADL () ')

DEFINE ("CRBLOCK () ')
DETINE (*NXTABLE (B) ')
DITINE (*NXSTRING (B) ')
DEFINE (*NXCHAR (A,B) ')

OUTPUT = ' BESUN °

KEYWORDS
£§STLIMIT = 500000
ETRIN 1
EDUMP B
&TRACE = 500
LT (PRNTSWITCH, ) :S (NOPRNT)
EFTEACE = 500

(I}

NOPERNT1

LT (PRNTSWITCH, 1) +S (NOPRNT?)
TRACE('CURRENT') = _ .
TRACF {'PNTR?Y)

NOPRNTZ

*
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* INITTAL INDPUTS
MAINR PRODSIZE = TINPUT
PROD = TABLE (PRODSIZZ)
STKSIZFE = INPOT
* DBEWARE STK SIZL ESTIMATE TOO SMALL

STK = ARRAY [STXSIZE)
TABLNSTK = ERRAY (STKSIZE)
AXIOM = INPUT
OUTPUT = :
QUTPUT = "AXTIOM IS ' AYTIOM

* INPUT INCONSISTENCY CONDITIONS
BADS = ARRAY (R)
INCON = INPUT
INCO = INCON

OUTRUT = "INCONSIS TFNCY CONDITTONS ARE ' INCD
oyToLnT =
I =1
CONSTIS INCON BREAK (*,') , BADSCI> *,' REM , TINCON tF{CONSTIS2)
I =1+ : (CONSIS)
CONSTS2 BADS<I> = TNCON
NUMOFCONDS = T
OUTEUT = 1 TRBLES?
FRST RDIN = INPUT TP (NXT)

RDIN *TABLE ' LEN(2) , TABLEN ' * LEN(2) , TA23LESIZE PE{NXT)
QUTPUT = *TABLE ' TABLEN ' SIZE ' TABLESIZE

T =

- MORE . __RDIN = INPUT N e

OUTPUT = RDIN

RDIN BREAK(',') . LEFTZONTEXT *,' BRZAK{',') « SZINERATRIX

’
+ RTAB (0) . REST : F(ERR 1)
G = TABLEN S3ENERATRIX
IDENT (PRODLGD) : ® (APPEND)
; . PRODKG> = LEFTCONTEXI REST e
CONT I = LT({I,TABLESIZE) I + 1 :S(MOR3Z) F (FRST)

APPEND  PRODKG> = PRODLG> '+' LEFTCONTEXT REST :{CONT)
NXT OUTFJT = RDIN
TABLEMAY = TABLEN
LT (PRNTSWITCH, 2) 5 (00N)
LOUTPUT = * PRODUCTIONS *
A = CONVERT (PPOD, "ARRAY"')

0o

I 1
NEXTPROD OUTPUT = A<I,1> ' YIELDS ' A<I,2> :F (500N)
I =1+ : (NEYTPROD)
ERR1 OJTPUT = *PROD CARD IN WRONG FORMAT=' RDIN : (END)

* CALL PRIMARY SUBROUTINE TO TRAVERSE TRAE
GOON OUTPUT = TREER ()

I =1
Lop OUTPUT = 'STACK({* I ')=' STK<II>
I = LT(I,MAYPNTRY I + 1 $S{LOM
OUTPUT = * AXTIOM IS ' AXIOM
OUTPUIT = ' TINCONSISTENCIES ARE ' INCO :
APARAM = NE(APARAM,0) APAPAM - 1 :5S(MAINR)F(END)
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* FUNCTION BODTES

MUTEY I = 1
MUTEXLOOD TDENT (CURRENT, BADSCID) + S (MUTEXOUT)
I = LT(I,NUMOPCONDS) I+ 1 . _ :S({MUTEXLOOPR) F (RETN2RN) N

MUTEXOUT ONTPUT = ' + + + THIS SOLUTION FAILS ¢ + +¢
PRINTSTK () . ,
OUTPUT = ' VIOLATION OF DATABASE CONSISTENCY VIA STRTNG *
+ CURRENT : (END)
DEADL DEADLOCK = EQ(B,0) 'NO? : F(DEAD2)
DEADLOCK = IDENT {CURRENT,STK<PNTR>) 'YES' :(RETURN)
DEAD2 DRADLOCK = DIPFER(CURRENT,STK<PNTR>) 'NO' : (RETURN)
DEADOUT DEADLOCK = IDENT (DEADLOCK,'YES') *'NO' :F(POPUP)
QUTPOT = ' + + + THIS SOLUTION PATLS + ¢ +°
PRINTSTK ()
O9TPUT = 'VIOLATION OF DEADLOCK CRITERION VIA STRING * CURRENT : (EFD)
CRBLOCK @ (RETURN) . .. . .. . -
* COMPARISON FUNCITON BODY
COMPAR I = PNTR

Hoa i

~OMPLOOP IDENT (STK<I>,CURRENT) + S (RETIIRN)
I = NE(Z,1) T -1 : F(PRETTIRN) S {COMPLOOD)
* DPDINT STACK STUBROINTINE
PRINTSTK I = GE(PRNTSWITCH,2) 1 . sF{RETURN) ..
PRLOOP OUTPUT = I ' ! STKCI> ' ' TABLNSTK<LI>
I = LT(I,PNTRY I + 1 _ :S{PRLOOP) F (RETURN)
%
*
E
* o o R
% PRIMARY SUBROUTINE BODY
TREER CURBENT = AXIOM , .
PNTR = 0

* PRONT TRACK GOES DOWN TPREZ
FRONTT PNTR = PNTP + 1
STK<KPNTR> = CURRENT
MAXPNTR = LT (MAXPNTR,PKTR) PNTR
TABLNSTK<PNTR> = TABLEN

TABLEN = 1
B =20
CURRENT = NXTABLE('0') : F (ERR3)
* CORRECTNESS. TESITS. , S
T1 MITEX ()
T2 DEADL ()
T3 CRBLOCK {)
% COMPARE CDRRENT TO ALL IN STACK
COMPAR() < ® (*RONTT)
x BACKTRACK BEVER3ES UP TREE e
BACKT B = 1
CURRENT = NXTABLE('1') :5{T1)
STCT = S§STLIMIT - 10000
GT (§STCOUNT,STCT) : F (STGOON)
ESTIIMIT = &STLIMTT + 10000
STG0O0N e
LT(PRNTSWITCH, 1) : S {NOPRNT3)
PRINT STK {)
NOPRNT3 N

: (DEADOUT)
POPUP TREER = EQ(PNTR,1) ' FINTSHED °* :S (RETURN)
CURRENT = STK<PNTR> L
TABLEN = TABLNSTK<PNTR>
PNTR = PNTR - 1 : (BACKT)
ERR3 OUTPUT = ' BAD GRAMMAR ' STK<KPNIR> : (END)



#* % *
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SECONDARY SUBROUTINES TO SEZARCH TABLES
NXTABLE TABLEN = EQ (B,0) 1

TBLOOP NXTABLE = NXSTRING (B) :S{RETURN)
TABLEN = LT (TABLEN,TABLEMAX) TABLEN ¢ 1 :®(FRETURN)
B = 0. . : o : (TBLOOP)
NXSTRING FSTRING =
POINT = 3
LSTRING NE(B,0) CORRENT :S{50BBLE)

[T

NXS1 NXSTRING = NXSTRING NXCHAR(POINT,'0') :% (FRETURN)
POINT = LT (POINT,SIZE{AXIOM)) POINT + 3 :S(NXS1) F(RETTRN)
GOBBLE LSTRING TAR{3) REM ., LSTRING ,
NXSTRING = FSTRING NXCHAR (POINT,'1¢) LSTRING :5(RETIRN)
FSTRING = FSTRING NXCHAR(POINT,'0') :F{ER1)
POINT = LT{(POINT,SIZE(CURRENT)) POINT + 3 :S(GOBBLE) ®(FRETURN)
ER1  OUTPUT = 'NO MATCH FOR ' STXKPNTR> * AT POINTER ' POTNT : (END)
NXCHAR J = A - 3 f
. STK<PNTR> TAB3(J) . LEFT TAB(A) . ID BEM . RIGHT
CURRENT TAB (J) TAB{(A) . DI ’
ID = TABLEN ID
ID = LT(SIZE(TD),5) *0' TD
RESTART WORK = PROD<ID>
TST WORK BREAK(',') . TRY !',' BREAK('=') , TRYY *'=' RFY , YOPK :F (ERR5)
LFT. = LEFT
RGHT = RIGHT ,
* TEST A PROLCUCTIONS CONTEXT
*  LEFT
TSTL TRY RTAB(3) . TRY RTAB(C) . TRY3 :F(TSTR)
LFT RTAB(3) . LFT RTAB(0) . LFT3 :F(SKIP)

IDENT {TRY 3, "*%k%kt) :S{TSTL)
IDENT (TRY3,LFTR) :S(TSTL) 7 {SKIP)
*  RIGHT
TSTR TRYY TAB(3) . TRY3 REM ., TRYY : F (OKC)
RGHT TAB(3) . RGHT3 REM ., RGHT  :F({(SKIP)
IDINT (TRY3, **%*1) :S(TSTR)
IDENT (TRY3, RGHT3) :S(TSTR)F (SKID)
OKC  EO(B) :F(PT?)
PT1  WORK TAB(3) . NXCHAR :S(RETURN) P (ERRY)

PT2  RORK = WORK
RORK BREAK ('+') , RORK

RORK ANY DI EM . RORK : ¥ (SKIDP)

B = IDENT (RORK) Q0 .. . . ... .:S(SKID) .

BORK 'J' LEN(3) . NXCHAR :S{RETIRN) F{ERRY)
* KREP ON LOOKING FOR REPLACEMENT !

SKIP WORK BREAK('+') *'+' REM , WORK :S{TST) P{FRETURNY

ERR4 OUTPUT = ! INVALID PRODUCTION POR ' A ! ' CUORRENT : (END)

ERRS OUTPUT ‘= * NO MATCH FOR ZORRENT ' A ' ¢ CURRENT ' ' WORK : (END)
. END

NO ERPORS DETECTED IN SOURCE PROGRAMN
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BEGUN

AXIOM IS BI11T10B22T20
INCONSIS TENCY CONDITIONS ARE C117T11222721,C11T710222T20

TABLES
TABLE 01 SIZE 40
JD1T, REEAEED20=C 11 . o
JAT1,=A1
,B11,=B13
,B22,=B23
313,710,=T13
823,720,=723
,B13,713=a11 R
,B823,T23=A22
313,T13,=T11
B23,T23,=T21
,B13,T10=813
,B23,T20=Db23
,B13,T11=B13 , . L
,B23,T721=B23
,811,=3811
,B22,=R22
,C11,=D11|C11
JE11,=A111E11
,D11,=D14
,D22,=D2U
D14, T11,=T14
D24,T21,=T24
,D14,T14=E11
,D24,T24=E22
D14, T14,=T10
D24,T24,=T20
,D14,T10=D14
,D24,T20=D24
,D14, T11=D14
,D24,T21=D24
,D11,=D11 , L o
,D22,=D22
,T10,=T10
,T11,=T11
T10,A22,=C22
LA22,=A22
¢ C22,=D221C22
,E22,=A22|E22
,T20,=T20
,T21,=T21
END OF TABLES
+ + 4+ THIS SOLYTION PAILS + + +
VIOLATION OF. DEADLOCK CRITERION .VIA _STRING AI1T11A22T721
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