Y

M. I.T. Laboratory for Computer Science May 18, 1976
Computer Systems Research Division Request for Comments No. 113

i i w))
by Harold J. Goldberg |

This RFC .describes two problems found in the current Multics
signalling mechanism, with respect to consistent handling of inter-subsystem
signalling. A solution. is proposed that eliminates the need for ad hoc
solutions to one problem, and provide a needed solution for the other. I
would particulary 1like comments on the model I chose for my solution. I do
not have a model for the solution to the first problen I describe, but it fits

very well with the implementation for the second problemn.

The first problem deals with entering and exiting subsystems via the
signal mechanisa. Consider‘a subsystem <S> that provides some abstraction to
its wuser <U>. <S> attempts to provide a clean interface to <U> including the
shielding of <U> from errors that <S> can handle internally. There are times,
however, that <5> must let <U> know about an error that <S> cannot handle.
There are two categories of this type of error. They are 1) recoverable, and
2) non-recoverable. The error is broken down according to whether or not <S>

wants to continue after the error, assuming that something has been externally

fixed. Jerry Stern's "cleanup wall" provides a solution to the

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author's permission, and it should not be referenced in other
publications. .

non-recoverable kind of error [MIB 236]. Of interest in this paper 1is the

proper handling of the recoverable errors.

To demonstrate the problem, consider that <U> has called <S> which
called an internal subroutine <I> that discovered an error condition. <I>
will thgn signal this condition. This state of affairs is shown in figure 1.
The program <SIGNAL> implements the signalling mechanism in this model. By
the‘ usual means, <S5>'s condition handler is invoked, and is labeled <5'> in
figure 2. <S'> does not knov} how to handle the condition and therefore wishes
to continue the signalling of the condition. However, before this 1is done,
<S'> wants to fix up the global state of the process so that programs outside
of the subsystem <S> may run correctly. An example of this might be that <S>
- has put the terminal output stream (user_i/o) in raw output mode so that it
can produce graphic images. Should a program outside the <5> subsystem
attempt to print an error message in this mode, it would not be understood by
the reader. Thus, <S'> fixes up the output stream and then does what |is
necessary to continue the signalling. In this way, subsystem <S> has been

exited via the signal mechanism.

Now the next condition handler is invoked, and is shown in figure 3
as <U". <U'> fixes the exception and then returns. By returning to
<SIGNAL>, a "restart" operati'on is perforned. Thus, <I> continues {its
execution and hopefully will succeed now. However, by restarting in this way,
the subsystem <S> has been re-entered without <S»>'s knowledge. Thus, the
terminal output stream would not be reset to raw output mode again, and now

anything "graphic" that <S> will attempt will fail.

;’())&\ ﬂs//g’wq‘ g M&Q e ¢“j
P\V«\VQ o \ , { \,-)'” ;J e M\
v ~\? Z - ‘X’/ (e
One ad hoc solution used to solve this problem is pictured in
figures 4 and 5. <S'> wants to remain on the stack so that it can regain
control before <I> 1is restarted. However, <S'> also wants to continue the
signalling of the condition. }<S'> does this by first setting some internal
static indicator "ignore" and proceeds to signal the condition over again.
<S>'s handler gets re-invoked as <S''> ahd cheéks the ignore indicator. Since
it is on, <S''> just does what is necessary to continue the signal and
returns. Finally <U>'s handler, <U'>, gets invoked (see figure S). When <U'>
returns, <3'> will get control. <S'> will then reestablish the appropriate

environment for <S>, turn off the ignore indicator, and restart.

{

P

Since this set of operations might be necessary in many cases, it -

would be wise to define a specific method of perforning‘then. A subroutine
might be called to do this, for example. The solution that was chosen solves
both problems presented in this paper, and thus will be discussed after

explaining the second problen.

The second problem in the current Multics signalling mechanism deals
with the chain of stack frames that are searghed when looking for a condition
handler. By searching each frane sucqesji\.r/ély from the top of the stack, a
handler for a condition related to a spééific subsystem nmight be invoked
without knowing anything about the circumstance at hand. To make this point
clear, consider the éituation depicted in figure 5 again. Control has finally
passed to <U'> to‘ handle a condition internal to the subsystem <S>. How this

might happen has already been explained. However, if <U'>, or any program

JVV)

that <U'> calls, detects an error, by the current mechanism <5>'s handler will
be invoked once again. One could argue that <S>'s handler has turned 1its
ignore indicator on and would therefore pass the signal on, but then consider
what would happen if <I> has a handler for the new condition that <U'>
signalled. It is not <I>'s business to handle <U'>'s errors, but it would
none the less be invoked by the current mechanism. What would be desirable in

this case is for <I>'s handler to pass on the signal too.

Once a handler for a condition decides to pass the condition on, all
the stack frames that lie between‘the handler's ‘stack frame and the frame
where the handler was establ%g;h should become dormant with respect to
conditions that arise from the pa;sing of the condition. This dormant state
‘ should remain in effect until that handler is finally returned to. What this
means in terms of figure 2 is that after <S'> decides to continue the signal,
those frames between <S'> and <S> should be avoided when signalling future

conditions, until <S'> is returned to.
Implementation

The implementation that the author has conceived is derived from the
conceptual model that all subsystems are one large program containing all
necessary programs 4as internal subroutines. Condition handlers are likewise
considered internal subroutines (they are in fact implemented as such). If an
error occurs in an internal subroutine, the proper stack frames to 1look for

condition handlers in are the parents of the internal procedure. One should

not expect that an external subroutine, which does not know the internal

workings of the‘ module that took the fault, 1is able to handle an error
condition caused by a4 module, better than the module 1tse1f. The situation is
shown in fiéure 6, whefe <S> 1is the subsystem with <I> as an internal
procedure. <X> 1is some arbitrary procedure, which might in fact be part of
some other subsysten._ Once again, the chain that should be followed if a
condition 1is signalled by <I> or anything that <I> calls 13 as follows: First
<I> will be checked foi' a condition handler, and then <S> will be, whereas <X»>
will be bypassed. If one claims that <X> was the intended recipient of the

signal, then <I> should not have been an internal procedure to the module <S>.

To implement a mech&nlsn that solves the two problems described, the
notion of "logical parent pointer" is used. The logical parent pointer is an
extension to the physical parent pointer, or display pointer. It 1is assumed
that there exists such a pointer in every stack frame. In signalling, first
the real PL/I display pointer of a frame is used to find the next frame to
look at. This step insures that a physical parent is always the logical
parent. If there is no real display pointer, the frame's logical parent
pointer 1is examined. A zero or null logical parent poin_ter means that this
frame is not logically part of any subsyéten, and thus the proper place to
signalv is on the callers frame (the immediately preceeding frame). Since
' subsystels are not always compiled as one program, we aéii_!e that separately
compiled programs that are logically part of a subsystem must set their

logical parent pointer explicitly. (1)

(1) Neither the entry sequence of programs, nor the building of stack frames
need be changed, since a bit that is always made zero upon frame setup can be
used to indicate the validity of the logical parent pointer. This approach is
currently used to indicate the validity of a frame's condition 1ist.

~5-

- So far this does not ﬁxplain how the problems are solved. To solve
the problem of re-entering a subsystem without the knowledge of the subsysten,
we invent the procedure "<CONTINUE>"., <CONTINUE> is called by any handler who
has been invoked and wants to continue signalling. As an example consider
figure 7. By havinz <5'> call <CONTINUE>, <5'> is insured that its activation
record remains on the stack and is re-entered when and if the condition is
satisfied. The important stgp comes now. <CONTINUE> sets its logical parent
pointer to point to the logical parent of its callers's logical parent (i.e.
the logical parent of <S'>'s parent). It then signals the condition over
again. By setting its logical parent pointer in this way, any further signals
will not be noticed by all of those frames between <CONTINUE>'s frame and
<S'>'s parent inclusively. If <S'>'s parent was the outermost procedure of a
subsystem, the entire subsystem activation is removed from the signal chain
until <S'> is returned to. |

Any handler that gets invoked after this set of events will have a
real display pointer pointing to something equal to or even further down the
stack than <CONTINUE>'s logical parent pointer. 1In this way, increasingly
larger sections of the stack are sectioned off as they become dormant during

error handling.

A final observation is that the special signal "cleanup" could not use this
signalling mechanism, and is the only mechanism that‘should look for handlers
sequentially from the top of the stack downward. This is because the cleanup
signal was intended to inform all intevening stack frame owners that they will

no longer be returned to.

Acknovledgenent

I would, 1ike to thank Dave Reed for help in identifying the specific
problems and with developing the proposed solution.

5" V'Y
S\aN AL weva) ds\anad
<IS LI (I>
(> | BESX | 4SS
—{(s)'s handley "'ks)'s handley ["'_"{(53'5 handev
<UY | LU> <U>
"‘E’)'s Landler] &' handley AD's homly,
¢ 3

<s"> <y
L8\ NALS {L\GNAL)
<S'> <ShH
TSQLLLIM {G\GNAL)
(TS <I>
(S <S>
—1<9's handler <Y's handey
<UD <U>
&Y' \“'\“'LY' <’ handley
4 5

U

K56 NALY

5]

5

<Con'7mus)

<sSY
-

<I>

G TINY

<I>
73

<R

<S>

)

<'s handler

<U>

<ud's handley

