Py N

M.I.T. Laboratory for Computer Science 27 May 1976
Computer Systems Research Division Request for Comments No. 115

Validating the protection mechanism of a computer system
by Philippe Janson

The attached paper is a summary of the presentation I will give next month at
the IRIA Workshop on Protection and Secur1t¥ in Data Networks. Even though

a copy of this paper has alreadg been sent Tor the groceedlngs of the,worﬁshop,
comments are still welcome as they may help me for the oral presentation.

This note is an informal paper of the M.I.T. Laboratory for Computer Science,
Comguter Systems Research Divisjon. It should not be reproduced without the
author's permission and it should not be referenced in o her publications.

Validating the protection mechanism of a computer system
by
Philippe Janson == |
uter Systems Research Division

Com
Lagoratory for Computer Science
Massachusetts Institute of Technology

1. Introduction.

The first objective of this presentation is to emphasize the importance
of validating the hardware and the software of a computer system (network or
individual system) to guarantee that the information stored in that system is
adequately protected against unauthorized release or modification. The second
goal of the presentation is to report the developments of a research project
that is being carried out by the Computer Systems Research Division of the
Laboratory for Computer Science of the Massachusetts Institute of Technology
and is aimed at designing computer systems that are amenable to validation.

Throughout the presentation, we will assume the familiarity of the reader
with general concepts about the architecture of computers and computer
networks as well as with basic concepts related to information protection and
security. Background knowledge on this latter topic ‘can be found in a
tutorial paper by Saltzer and Schroeder [Saltzer75].

we propose to treat our topic in four steps. First, we will relate the
problem of validating the protection mechanisms in a computer network to that
of validating the protection mechanisms in an individual computer. We will
show that the two problems are analogous and justify our interest in the
latter to study the former. Second, we will explain what is meant by
validating a system. The concepts of correctness, security and certification
will be reviewed. Third, we will describe the research project undertaken at

M.I.T. to produce a system that is organized in such a way that in could be
accredited secure after adequate validation. 1In particular, we will justify

the approach to system validation that was taken at M.I.T. Finally, we will
briefly report on some of the most recent. progress that has been made within

Research regorted here was performed by the Computer Systems Research Division
of the M.1.T. Laboratory for Computer Science. It was sponsored in part by
Honeywell Information ~ Systems, Inc, and in t by the Air Force Information
Systems Technolog Agpllcatlons Office (IST OS and the Advanced HKesearch
Projects Agency of the Department of Defense (AHPA& undeﬁ ARPA order No. 2641,
which was monitored by ISTAO under contract No. F19623-74-C-0193.

the framework of the research project towards designing a system that could be
validated.

We will conclude the paper by enumerating the main problems that remain
to be solved in the area of system validation.

2. Network validation.

The history of the development of protection mechanisms for computer
systems comprises two stages. In a first stage, people have been concerned
with inventing mechanisms for protecting the information stored in their
computers. As more numerous and more sophisticated mechanisms were proposed,
people soon realized that building protection mechanisms into their systems
was not sufficient to guarantee the security of the stored information.
Indeed, the protection mechanism of a system is subject to so complex
interactions with so many other mechanisms in the system that it is extremely
nard to implement it correctly, i.e. so that it effectively protects the
stored information. Consequently, in a second stage, people have been
concerned with building not just any protection mechanism but correct
protection mechanisms, and with organizing their systems so as to keep a tight
control on the interactions between the protection mechanism and other
mechanisms.

Today, the development of protection mechanisms for individual systems is
well into the second stage of its history. At the same time, the development
of protection mechanisms for computer networks has just entered the first
stage of its history and is barely starting to acquire momentum. Yet, we are
convinced that it will go through the same stages as the development of
protection mechanisms for individual systems. Therefore, it is reasonable to
consider the validation of networks as an issue that will have to be faced in
the near future. ”

In view of the upcoming problem of validating networks, it is justified
to devote our attention here to the validation of individual systems because
protecting and validating networks will undoubtedly include and depend on
protecting and validating individual systems. If we cannot protect the
individual hosts and the packet or message switching nodes of a network, we
will not be able to protect the network. On the other hand, experience with
the validation of individual hosts and nodes will carry us a long way towards
validating networks composed of such systems. Thus, validating single systems
is a prerequisite to validating networks. Therefore, it is recommended to
study the former problem first and it is relevant to discuss it here before

attacking the latter problem.

3. System validation.
In order to guarantee the security of the information stored in a system,

it is not sufficient to provide the system with some protection mechanism. It
is necessary to provide it with a protection mechanism that is validated, i.e.
accredited to "adequately" protect the information in the system.

Verifying that a protection mechanism is "adequate" consists of showing
that it contains no flaws. This may be very hard because it is essentially a
negative kind of property: a single flaw is capable of defeating the whole
protection mechanism.

The following method has been proposed to help validate a system. From
the security standards that are perceived as desirable and informally defined
by the community of users served by the system, one must derive a formal
security model. This security model [see for instance Bell73] must be
embodied in the formal specifications of the system. Aﬁd those formal
specifications must be enforced by the implementation of the system. The
protection mechanism may then be declared "adequate" if it passes the
following three tests:

-- verification of correctness, i.e. a verification that the actual
implementation matches the formal specifications;

-- verification of security, i.e. a verification that the formal
specifications do indeed embody the desired security model;

-~ certification, i.e. an evaluation of the adequacy of the formal security
model in representing the informal security standards set by the community of
users.

The technically hardest part of the validation process is the
verification of correctnes. Such a verification cannot be carried out on
existing systems because they are too large and too complex. To simplify the
task of validating a system, it is necessary to isolate the subset of
procedures and data bases that are critical to security. This subset is
called the security kernel. If the security kernel is properly isolated from
the rest of the system code, it is sufficient to verify the correctness of
only that security kernel to validate the whole system since any program

outside the security kernel is, by definition, not critical to security.

4. A security kernel project.

The advent of general purpose, time-shared computer systems and
distributed computer networks has fostered the need for operating systems that

can be validated. In response to this need, the Electronic Systems Division
of the United States Air Force has launched a security program aimed at
producing an operating system that can be certified secure according to the
U.S. military security standards.

The wultimate objective of the USAF security program is to produce a
certified secure version of the Multics system. The Multics system was chosen
partly because it already has substantial protection mechanisms built into its
hardware. Therefore, Honeywell Information Systems, Inc. (HISI), which
markets Multics, has been charged with the task of upgrading the Multics
security kernel.

While HISI will provide the actual manpower to produce the new Multics
system, it has charged our division at M.I.T., which initially developed
Multics, with the task of exploring pragmatically and informally the content
and the organization of a prototype security kernel for Multics. Our goal is
not to produce the ultimate certifiably secure system. This will be HISI's
task. Instead, we are studying what would constitute a suitable security
kernel for Multics and how it should be structured to make it easier to
understand and to audit informally [Schroeder75]. This pragmatic attitude is
based on the axiom that anything we can do to make the Multics security kernel
easier for us to understand and audit informally will make it easier for HISI
to specify and to verify formally.

Our approach consists of evolving the existing Multics system rather. than
designing a new system from scratch. There are three reasons for this choice.
First, to test a single concept, it is easier and faster to evolve an existing
system, by modifying a piece at a time and trying the new piece right away,
than it is to wait for the complete design of a new system. Second, by
evolving a real system, with all the hardware, performance and functionality
constraints, we avoid the pitfall of producing an entirely new but potentially
unrealistic, awkward to use and oversimplified toy system. Third, our
objective 1is to engineer a well-organized security kernel for a real system
rather than to design a system that has a well-organized security kernel, i.e.
we are interested not only in the conceptual aspects of designing
well-organized systems in general but also in the engineering aspects of
organizing well a given real system.

The task of evolving the existing system is simplified by the fact that
Multics was designed to be evolved in the first place and is easy to modify.

In evolving the Multics system, our effort has been directed first at
identifying the components of the security kernel, and then at reorganizing

these components to make the security kernel easier to understand and to
audit. Research towards the organization of the security kernel has been
carried out at two levels. At the higher level, two doctoral theses are under
way to explore the impact of various techniques for organizing a security
kernel. At the lower level (master's theses), various case studies and
experiments are being performed to test particular organizational techniques
on specific areas of the system.

2. Achievements.

a. Organizational techniques.

The purpose of any organizational technique is to divide a system into a
structured set of programs modules so that the modules are small enough to be
understood and verified individually and the structure of the system makes it
possible to infer a systematic (e.g., bottom-up) verification of the system
from the verification of its individual modules. A first doctoral thesis
[Feiertag76] has explored a structuring relation called the dependency
relation. A module A depends on a module B if it assumes anything about the
operation of B, i.e. if verifying the correctness of A requires verifying the
correctness of B or in other words, if some (unexpected) action of B can cause
A not to operate according to its formal specifications. Using the dependency
relation to organize a security kernel in general leads to a partial ordering
of the set of modules. The thesis demonstrates the advantages of a partial
ordering. It also explains that most dependencies in the security kernel are
explicit and easy to identify but some dependencies due to passing arguments
between modules that operate in different execution enviromments are implicit
and may be hard to identify.

A second doctoral thesis [Janson76] has explored an organizational
technique based on the concept of type extension. This concept has been used
thoroughly in the programming language area and in system design areas outside
the security kernel, where it depends on the existence of virtual information
containers that are always addressable, uniform and "growable". The thesis
explores the problems of using type extension in the enviromment of the
security kernel where such information containers cannot be utilized because
they do not exist.

Two more techniques are envisioned to organize a system: partitioning and
the use of parallel processes. However, they have not yet been explored
thoroughly and need further reseach. Partitioning consists of enforcing the
modularity of the security kernel by encapsulating each module in a protection

domain. It has been proposed to use dedicated parallel processes to handle
such asynchronous events as interrupts. Such a design captures t rue
parallelism as opposed to the current Multics design where interrupts can be
handled by any user process, thereby exhibiting a parallelism that does not
necessarily correspond to the intrinsic parallelism of interrupt handling.

b. Kernel identification.

The major result of the kernel identification task has been the removal
from the kernel environment of certain functions that are not critical to
security. The dynamic linking function [Janson7l4, Janson75] and the name
space management function [Bratt75], which are part of the top level of the
file system, have been removed from the security kernel environment. In a
first effort, they have been installed in the user enviromment. A project is
currently under way to install them in an environment that does not contain
the privileges of the security kernel but is nonetheless protected from the
user. The linking and name space functions may operate in the user
environment because that data they manage is private to each user. However,
they are vulnerable to user mistakes. In a separate enviromment, their
robustness will be enhanced. The use of a protected enviromment is also being
considered for such operating system functions as the command processor.

c. Kernel reorganization.

Four areas of the Multics system have been reorganized: the system
initialization mechanism, the process initialization mechanism, the multilevel
memory management mechanism and the processor control mechanism.

In the system initialization area [Montgomery76], the bulk of the
initialization task, which used to be performed when the system was brought up
for service is now performed prior to bringing up the system. Thus, the tape
that is used to bring up the system contains an image of the initial state of
the system that can be verified correct, instead of containing copies of
uninitialized procedures and data bases. A few tasks cannot be performed
prior to bringing up the system because they depend on the configuration that
needs to be brought up. These tasks are no longer regarded as initialization
but are treated as part of dynamic reconfiguration.

In the process initialization area [Luniewski76], much of the code that
creates and initializes processes, and authenticates users has been removed
from the kernel, as it was deemed not critical to security. The security
kernel only supports the creation of a process "frame" and the insertion of an
execution site in a protection domain. A user is then given control over a

process "frame" in the same way as an execution site enters a domain.
"Entering" a process "frame" consists of inserting an execution site at an
entry point of an initial procedure, called a gate, which is under the control
of the owner of the process "frame". Access to the gate is further controlled
by an access control list. This design makes the task of authorizing a user
to control a process much simpler. In particular, authentication information,
which can be saved by the kernel, allows a user to gain control over as many
processes as he wants to create without having to authenticate him for every
process he creates.

In the multilevel memory management area [Huber76], it has been
recommended to use parallel processes to capture the parallelism of different
functions. Each user process is responsible for bringing into core, on
demand, the pages of information it references. However, the page removal
algorithm is implemented by one dedicated system process for each level of
memory. That p.ocess is responsible for continually maintaining available
space at the level it is managing so that new pages can be moved to that level
of memory.

Finally, in the process management area [Reed76], a two-level
implementation of the processor multiplexing mechanism has been proposed. A
structural problem encountered in many existing systems is a mutual depeddency
between the processor multiplexing mechanism and the memory multiplexing
mechanism. The memory multiplexing mechanism uses the processor multiplexing
mechanism to switch processes when a process waits for the completion of an
I/0 operation. The processor multiplexing mechanism uses the memory
multiplexing mechanism to store the state of non-running processes. The
two-level implementation of the processor multiplexing mechanism eliminates
this dependency loop. The lower level multiplexes physical processors among a
fixed number of virtual processors. That number is sufficiently small so that
the state of all non-running virtual processors can reside in core. The
higher level of the mechanism multiplexes virtual processors among user
processes, whose state is not necessarily in core. Thus, the higher level of
the processor multiplexing mechanism uses the memory multiplexing mechanism
but this latter mechanism uses only the lower level of processor multiplexing
to switch virtual processors. This two-level design has the additional
advantage of allowing the use of virtual processes to implement kernel
processes whose state is permanently in core, and which therefore need not
depend on the memory multiplexing mechanism. The question is whether or not
the two-level design of processor multiplexing can be implemented effectively.

This question is currently being explored.

d. The storage system.

Perhaps the most intricate area of the system is the storage system or
virtual memory mechanism. By removing the dynamic linker and the name space
manager from the kernel and by reorganizing the management of multilevel
memory and the multiplexing of processors, the virtual memory mechanism has
already been somewhat simplified. Yet, much work remains to be done because
the mechanism performs exceedingly complex functions, including naming,
protection, addressing, backup and resource allocation and accounting. The
interactions of all these functions have not been well understood and the
modules that implemented them are too few, too large and not well distinct
from one another.

The type extension technique is being used to organize the virtual memory
mechanism into a set of small and distinet type manager modules that is
structured according to the dependency relation. The technique has proved to
be particularily useful in identifying the implicit dependencies between
modules, which usually are a source of complexity. It has also proved to be
useful in guaranteeing that the system is deadlock-free, a property that
usually is hard to verify.

This research project has lead us to conclude that type extension is a
viable technique for organizing a real virtual memory mechanism. It has been
used successfully to design a well-organized system. And it has proved able
to cope with the complex functionality of a real system, which is more than
most other organizational techniques have been demonstrated capable of.

6. Conclusion.

At this stagev of the project, we have made substantial progress in
identifying those functions that must be part of the Multics security kernel
and in reorgahizing the memory and processor management mechanisms of the

security kernel. Work remains to be done in the I/0 area, which has remained
essentially unexplbred until now.

| Yet, before a certified secure Multics system can be produced by HISI,
substantial progress will have to be made on program verification techniques.
As modular and structured as the Multics system may become, it will never be
amenable to verification techniques as they stand today. It may be amenable
to informal human auditing. However, such auditing is a slow tool. If a
system evolves rapidly, this tool may not be sufficiently fast to help certify
every system version that is produced.

Leaving the scope of single hosts to envision the validation of computer
networks, current technology is even further away from achieving substantial
results. - While we believe that efforts towards the validation of single hosts
like Multics are useful contributions to the study of network validation, we
are convinced that much more work will be necessary to validate a network.
New problems that simply do not exist in the framework of single systems will
have to be faced at the level of computer networks. For instance, the problem
of validating distributed storage systems will certainly be raised. One may
hope that techniques, such as type extension, developed to organize the
storage systems of individual hosts will be applicable to distributed system.
However, such hypotheses certainly deserve some thinking and would have to be
tested.

Acknowledgements.
Research reported here is the fruit of the effort of a group of Faculty

members, graduate students and staff members of the Computer Systems Research
Division of the M.I.T. Laboratory for Computer Science. Considering the size
of' this group of people, we cannot give credit individually to each member for
his or her contribution to the project. We can only give credit to the group
at large for the whole project. Preparation of this paper has been aided by

comments and suggestions of Professors D.D.Redell, J.H.Saltzer and
M.D.Schroeder.

References.

[Bell73] D.E.Bell, L.J.LaPadula, "Secure computer systems", ESD-TR-73-278,
Mitre Corporation (Nov.73).

[Bratt75] R.G.Bratt, "Minimizing the naming facilities requiring protection in
a computing utility", MAC-TR-156, MIT LCS (Sep.75).

[Feiertag76] R.J.Feiertag, "A methodology for designing certifiably secure
computer systems", to appear as TR, MIT LCS (1976).

[Huber76] A.R.Huber, "A multi-process design of a paging system", to appear as
TR, MIT LCS (1976).

[Janson74] P.A.Janson, "Removing the dynamic linker from the security kernel
of a computing utility", MAC-TR-132, MIT LCS (Jun.T74). _

(Janson75] P.A.Janson, "Dynamic linking and environment initialization in a
multi-domain process", Proc. ACM 5 Symp. on Oper.Syst. Prine., ACM Oper.
Syst. Review 9 5, pp 43-50 (Nov.75).

(Janson76] P.A.Janson, "Using type extension to organize virtual memory
mechanisms", to appear as TR, MIT LCS (1976). |

(Luniewski76] A.W.Luniewski, "A certifiable system initialization mechanism",
to appear as TR, MIT LCS (1976).

[Montgomery76] W.A.Montgomery, "A secure and flexible model of process
initiation for a computing utility", to appear as TR, MIT LCS (1976).

[Reed76] D.P.Reed, "Processor multiplexing in a layered operating system", to
appear as TR, MIT LCS (1976).

[Saltzer75] J.H.Saltzer, M.D.Schroeder, "The protection of information in
computer systems", Proc. IEEE 63 9, pp 1278-1308 (Sep.75).

[Schroeder75] M.D.Schroeder, "Engineering a security kernel for Multics",
Proc. ACM 5 Symp. on Oper. Syst. Prine., ACM Oper. Syst. Review 9 5, pp
25-32 (Nov.75).

N

