M. I. T. Laboratory for Computer Science August 5, 1976

Computer Systems Reseérch Division Request for Comments No. 120

A Two Level Virtual Memofy Manager

by Andrew H. Mason

Attached is my recently accepted Master’s thesis proposal,

This note is an informal working paper of the M. I. T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author’s permission and it should not be referenced in other
publications.







Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts
Proposal for Thesis Research in Partial Fulfillment
of the Requirements for the Dégree of
Master of Science
Title: A Two Level Virtual Memory Manager
Submitted by: Andrew H. Mason - Signature of Author
‘ 50 Townsend Rd. ‘

Belmont, Massachusetts
02178 -

Date of Submission: August 2, 1976

Expected Date of Completion: January, 1977

Brief Statement of the Problem:

In computer systems, excessive complexity can make the system difficult
to understand in detail. The Multics virtual memory manager suffers from this
defect. It coordinates the usage of the physical and logical memory
resources. The page management module, or page control, is one part of memory’
management. It is responsible for implementing the demand paging algorithm.
Segment control, another part of memory management, supports the segmentation
feature of the virtual memory. 1In the current system, the two parts are
closely intertwined. Each depends on the other, making both more complex and
harder to understand. This paper examines the nature of the dependencies and
proposes study into alternative implementations of the memory manager.

Supervisor Agreement:

The program outlined in this proposal is adequate for a Master’s thesis.
The supplies and facilities required are available, and I am .willing to
supervise the research and evaluate the thesis report.

David D. Clark, Research Associate in
Electrical Engineering and Computer Science




Page 2

Introduction

Time-shared computer systems are being used for more and more
applications every day. As they become more wide-spread, the need to be able
to guarantee certain properties about them is also growing. Consequently,

techniques of proving or certifying operating systems are being studied {3].

In order to facilitate certification, the operating system should be made
as simple in structure as possible, vyet, at the same time, support a
sophisticated functionality. While there are no hard criteria for evaluating
the simplicity of an operating system, one ad hoc guideline is that a
competent programmer should be able to understand how any module in the system

works after studying the code for a few hours.

Since an operating system is comprised of many modules, the task of
simplification must proceed slowly, module by module. For my Master’s Thesis,
I propose to examine various ways to simplify the operating system module

known as virtual memory management in the context of a large, segmented memory

[1]. The result of the thesis should be the design of a simple but

sophisticated virtual memory manager for the Multics system.

Virtual memory management encompasses two distinct functions. First, it
must provide facilities for translating a two-dimensional virtual address into
a physical address usable by the hardware. This must be accompanied by the
ancillary capabilities of adding and removing segments to the virtual memory.

In other words, the manager must be responsible for mapping the



Page 3

two-dimensional virtual memory into the set of one-dimensional memory devices
available to the system. Second, the manager must organize the system’s

physical memory resources in such a way that a user of the virtual memory need
not worry aBout the location of his files. This means that if a user wants to
reference a word of the wvirtual meﬁory that 1is not currently hardware
addressible, the virtual memory manager must move the word to an addressible
place without the wuser’s explicit request. One common algorithm used to

implement this function is known as demand paging.

By its very nature, memory is important to a computer user. Therefore, a
user must be éble to trust in the correct operationv of the wvirtual memory.
Furthermore, virtual memory is easy to use, so other supervisor modules are
implemented using it, ‘rather than trying to handle the complexities of
physical memory. Thus, the correct operation of the virtual memory has a
strong impact on the correct operation of the entire system. This motivates
study into ways of simplifying, structuring, and certifying the virtual memory

manager.

The context of the thesis will be the Multics system [4], which is
marketed by Honeywell Information Systems, Inc. Multics was chosen for four
reasons: First, Multics is a real, live éperating systém serving real users
that has the requisite feature of a segmented, virtual memory. Second, one of
the current activities of the Computer Systems Research diyision is to study
better ways to engineer the Multics security kefnel. This thesis is directly

related to that project. Third, Honeywell is in the final stages of



implementing a new version of the Multics storage system, sO ways to improve
the virtual memory manager are pertinent to their effort. Finally, several

Multics installations are easily available, both directly and over the ARPA

network.

Current Structure of the Multics Virtual Memory Manager

The Multics virtual memory manager is made up of two main modules. The

first, known as segment control, performs the translation function from a

virtual address to a_physical device address. Virtual addresses have two
components: a segment number and an offset. The segment number is a
per-process unique number that identifies the segment to.be referenced. The
offset 1indicates the proper word within the segment. For ease of physical
device management, segments are broken up into 1024-word pieces called pages.
Since all bages of a segment must be permanently stored on the same physical
secondary storage device, a physical device address is composed of a
(per-segment) physical device identifier, a page address on the device, and a

word offset within the page.

Segment control manages the mapping by maintaining information on every

existing segment. Some of this information is called a file map. The file
map is a table which contains one entry for each page of the segment. The

entry describes the physical location of the page. Other kinds of information
kept about each segment include, for example, the segment’s current length in
pages and the date and time that the segment was last modified. Naturally,

the volume of this information for all segments is quite large and cannot all



Page 5

fit into primary memory at the same time. Therefore, if a segment is in use,

it is called an active segment and information about it is kept in a primary

memory data base called the Active Segment Table (AST). Information about

inactive segments is kept in secondary storage.

The second module of the Multics virtual memory manager is called page
control. It is responsible for moving pages among the secondary storage
devices, primary memory, and the paging device (1) to satisfy memory
references. When én attempt is made to reference a page that is not currently
in primary memory, a processor exception called a page fault occurs. The
process that took the fault enters the page control part of the supervisor and
tries to bring in the page. 1If page control is successful, the instruction
that faulted is restarted and the process continues from where it was

interrupted.

In addition, page control handles allocation. of new pages to segments.
Conceptually, every segment contains 256 pages at all times. If a page has
never been written, it is defined to contain zeroes. Wifh certain exceptions,
only those pages that are non-zero are physicaily kept in secondary storage.
For page control, this means that when a reference is made to a zero page, it
must make the appropriate resource control checks, create the page, and assign

it to a secondary storage location.

(1) The paging device serves as an intermediate holding station for pages.' It
is larger and slower than primary memory but smaller and faster than secondary
memory. Currently it is made out of slow bulk core.



Page 6

Complexities in the Virtual Memory Manager

The reason that the virtual memory manager is complex and hard to
understand is that there is no consistent, well—designed model on which the
implemenfation is based. Instéad, assignment of a particular function to a
particular module is done on a case-by-case basis by the implementer. For the
most part, the system has evolved by adding features to the implementation

rather than by developing a new model which incorporates the new feature.

Consider, for example, the gquota problem. Quota refers to the number of

secondary storage records that may be allocated to (used by) the collection of
segments in the sub-tree under a given directory. When page control creates a
new page, it must authorize the usage of an extra secondary storage record.
Storage resources are allocated on a per-directory basis and are kept in the
AST entry for some other active segment (a parent directory). The problem is
in designing a resource authorization mechanism that does not vioclate the

modularity of the system.

In order for page control to authorize resources.in the current system,
page control follows a series of indirect pointers to the proper quota cell.
A quota cell 1is part of an AST entry and contains the needed accounting
information for the allocation of storage records. Based on the contents of
the quota cell, page control decides whether the resources may be allocated,
and, if permissible, allocates them. This mechanism is flawed because segment
control is responsible for maintaining the indirect pointers. Therefore, the

proper operation of page control, as currently defined, depends upon the



Page 7
proper maintenance of indirect pointers by segment control.

The central issue behind this upward dependency is at what level in the
virtual memory manager should resource control be performed? 1If page control
is made responsible, the implementation must work to avoid upwafd
dependencies. If segment control is ﬁade responsible, it becomes difficult to
process the creation of new pages in an efficient manner. This problem exists
because quota management was incorporated into the virtual memory manager

without redesigning the model on which memory management was based.

One of the manifestations of this mutual dependency is a phenomenon

called data base communication. The modules page control and semgent control

are allowed to communicate to each other through a mutually shared data base
(the AST). 1If, instead, communications were only allowed through well-defined
entry points, mutual dependencies such as the one above would be much harder

to create and maintain.

Another consequénce of complexity is the proliferation of different types
of segments in the supervisor. At the present time, the supervisor makes use
of each different type of segment for a different purpose. For example, page
control is implemented in unpaged segments, while éegment control is paged,
but always active. The pages of Input / Output buffers ha?e fixed absolute
addresses in primary memory, but some of these buffers are not even 1in the
supervisor at all! (i.e. not 1in ring zero) Although each type of segﬁent

exists for a good reason, the fact that there are so many types of segments



Page 8

strongly suggests the lack of a consistent overview in the virtual memory

manager.

Applicable Techniques to Reduce Complexity

Five techniéﬁeé.of program organization seem useful to help structure the
virtual memory manager. The first is called the 'principle of least
privilege" [7]. The central idea is that a program should execute in the
environment which embodies exactly those capabilities and privileges that the
program needs to operate correctly. If the environment has too few
capabilities, the program cannot operate at all. 1If the environment has too
many, there 1is a risk that the program might abuse or might be made to abuse

some of its unneeded privilege.

The second is known as the tgchnique of "least common mechanism" [6]. If
two or more programs share a subroutine, the subroutine should only perform
those functions needed by gll users. If the subroutine does not perform these
functions, then the same function is being performed in more than one place.
On the other hand, if the subroutine performs some functions for all wusers
and, at the samé time, some added functions for only some users, it is doing

unnecessary extra work and is more complex that it has to be.

The third technique presents the concept of '"layers of abstraction",
originally propounded by Dijkstra [2]. Here, the module should be broken up
into layers, each implementing a specific, well-defined model. Higher layers

may use lower layers, forming a lattice of dependency among the layers. Lower



Page 9

layers, however, may not wuse or depend on higher layers in any way. Since
each layer corresponds to a model, the task of verifying _that the module
preserves the properties of the overall model becomes fairly simple. One need
only check the correspondence between each model and the appropriate layer,

and the check that the layers use each other properly,

The fourth, described by Wulf [8], stresses the importance of separation
of policy from mechanism in a module. Those programs necessary to impleﬁent
the algorithms used by a module (mechanism) should be segregated from those
which provide extra features to module users (policy); Unfortunately, this
separation 1is rarely clear-cut, but the division has two attractive
properties. First, the policy program can be implemented using the mechanism.
If the mechanism provides some desirable feature (such as virtual memory),
this can be very helpful. Second, properties of the mechansim can be

certified without having to also certify the policy.

The final technique is the rule of "hiding of information" due to Parnas
[5]. This rule requires that all interactions among modules occur at the
interfaces and, therefore, that the interfaces should be as simple as
possible. Internal algorithms and databases should be invisible to all users

of a module. This seems especially applicable to operating syétems software
because one module might have to contend with many different implementations

of another module as the system evolves.



Page 10

All of these techniques stress the same theme: necessary, primitive
operations should be separated from optional, usage-oriented operations and
implemented at a lower level. However, these techniques also require a model
of the system to determine exactly which operations are primitive. The

appropriate model will be one of the results of this thesis.

Phil Janson, in his Doctoral Thesis, presents a structure, called a

software cache, which is very useful for modeling memory systems. Briefly,

the structure takes a data abstraction point of view. Janson noticed that
sometimes, two data abstractions contain the same kinds of information. One

of them supports many operations and is called the cache container manager.

The other, called the slow container manager, only supports read and write

operations which transfer the contents of a slow container to or from a cache

container. On top of these, Janson constructs an abstract container manager

which supports the operations of the cache container manager on all of the

containers available to both managers.
Although there are several variations on the basic structure, it fits
“much of the Multics virtual memory manager nicely and naturally. I expect

that Janson’s structure will be useful in the modeling phase of the thesis.

Plan of Research

The overall goal of this thesis will be to redesign the Multics virtual
memory manager. The new design must preserve the functionality of the current

design, yet be simpler and easier to understand. The specific focus of the



Page 11

new design will be the separation of segment control and page control. At the

same time, I hope to solve the problems brought out in this proposal.

The research will be carried out in three phases. First, I will generate
a detailed model of my simplified virtual memory manager. To do this, I will
attempt to fit the 2current system into a model based on Janson’s software
cache structure. From there, I will develop the new model. This phase should

take about one month.

The second phase will be the new design. Based on the results of the
first phase, T will design the new virtual memory manager. It will be simpler
than, but functionally equivalent to, the current ome. This phase will take

between one month and one and one half months.

In the third phase, I will attempt to show that my design is, in fact,
workable. While no full implementation is planned, I expect to implement
enough of my ideas so that my design will be convincingly demonstrated. Two

months will be needed for this phase.

Overall, this thesis should take no more than five months. 1In addition,

I will need computer time on a Multics installation for coding and debugging

the implementation.



References

(1] Dennis, J. B., "Segmentation and the Design of Multiprogrammed
Computer  Systems,"  IEEE International Convention Record, Institute of
Electrical and Electronic Engineers, New York, 1965, Part 3, pp. 214 - 225,

[2]) Dijkstra, E. W., "The Structure of the "THE"-Multiprogramming
System," CACM, Vol. 11, No. 5, May 1968, PP. 341 - 346,

[3] Neumann, P. G. et al., A Provably Secure Operating System, Stanford
Research Institute, Menlo Park, Calif., June 1975.

[4] Organick, E. I., The Multics System: An Examination of its

Structure, MIT Press, Cambridge, Mass., 1972.

[5] Parnas, D. L., "A Technique for Software Module: Specification with
Examples," CACM, Vol. 15, No. 5, May 1972, pp. 330 - 336.

[6] Popek, G., "A Principle of Kernel Design," AFIPS Conf. Proc. 43, pp.
977 - 978, NCC 1974.

(7] Saltzer, J., "Protection and the Control of Information Sharing in
Multics," CACM, Vol. 17, No. 7, July 1974, pp. 288 - 402.

(8] Wulf, W., et al., "Hydra: The Kernel of a Multiprocessor Operating
System,'" CACM, Vol. 17, No. 6, June 1974, pp. 337 - 345,



