Laboratory for Computer Science September 8, 1976
Computer Systems Research Division Request for Comments No. 123

A Two-level Implementation
of Processes for
Multics.

September 8, 1976 21:23
R. Frankston

This is a description of an implementation of Multics Processes using
multiple levels of abstraction. The implementation is being done in
con junction with David Reed and is based on the model described in his
Master’s Thesis titled Processor Multiplexing in a Layered Operating
System.

This draft contains many implementation details, some of which have
been modified in actually writing the code and will be described in a later
memo. Some sections are only superficial and are meant as a guide for
later revisions and extensions. Warning: Since this document is being
modified as design changes are being made without a complete rewrite
there may be inconsistencies in the descriptions.

If you have comments, suggestions or questions either see me personally or
send mail to Frankston.CompSyseMIT-Muitics or RMFeMIT-MC.

This is an informal working paper of the Computer Systems Research Division of the MIT
Laboratory for Computer Science. It should not be reproduced or referenced without the author’s
permission.






Two-level Process Implementation

Table of Contents

Introduction. . ........ .. ... .. ]
The Processor Assignment Manager and primitives. . ............. 3
PAM Details. ... .. ..o it i 5
Thecallpoperator. . .........oooviiiiiiiiiiiiiiiinnannann, 1
The VPlinterface. .........ooviiiiiiiiiiiiiiii e, 13
VPC Operation. . .....coouutiieniniiiiirennnnnnns 21
Modifications to pagecontrol...................... .l 23
The Active Metering Table. . ..............oiiiiinnein.t, 25
Notificationand Events. . . .........coiiiiiiiiiiiiiinnenin., 29
The Level Two Traffic Controller. ........................... 31
The Implementation of old IPCand IPS....................... 32
Implementation. . ...... ... ... ittt e, 33
Imitialization. . . ...... .. i i i 34
Transition. . . ... ..o e e 36
EXtensions. . .. ... i i i i i it i e 38
The existing implementation. . ............... ... ... ... .... 40
Glossary. .. ... e i e e e e 42

R. Frankston i RFC September 8, 1976 21:23






Two-level Process Implementation
Introduction

The description of the implementation below is concerned with relatively narrow issues involved in
actually coding algorithms which implement the model described in David Reed’s thesis. The
implementation includes some arbitrary decisions necessary for the embodiment of the algorithms.
This description assumes familiarity with the current Multics system. David Reed’s thesis should be
consulted for a fuller discussion of the issues involved. To make the document at least somewhat
readable for a wider audience as well as to reduce the problem of the proliferation of strange
abbreviations there is a glossary on page 42.

The key difference between the current Multics implementation and the multilevel one is that a
distinction is made between scheduling decisions (i.e. traffic control) that involve policy and those
that don't. For the ones that don't involve policy the decision is relatively trivial -- the next
processor available to run will be run, a relatively cheap operation. In order to achieve this
simplicity the primitive level, level one, consists of a fixed number of virtual processors that are
considered at higher levels to be always assigned to a processor. In fact physical processors are a
relatively expensive and therefore scarce resource requiring the basement of the implementation to,
in fact, multiplex the virtual processors on physical processors on a first-come, first-served basis
within a predetermined priority assignment.

The advantages of the two level approach to traffic control include:

i. The system is simplified since one can view a Multics process as being
built upon the relatively simple semantics of a virtual processor as opposed
to the complex semantics of the current traffic control and interrupt
structure.

ii. The implementation of the system primitives for process coordinations can
be more efficient than the current ones because of the simplified
environment in which they run.

ili. By improving the structuring of the system, the system an become more
understandable and thereby more reliable.

iv. Robustness is enhanced by isolating Virtual Processor multiplexing within
the PAM. One can assign properties such as encachability to individual
processors. Since the PAM does all storing and restoring of physical
processor states it can be responsible for all the complexity of maintaining
such states.

v. By handling the fault within the PAM outside of the virtual processor, the
VP itself need not be capable of handling page faults thereby simplifying
the semantics and removing special restrictions which require the wiring
of the descriptor segment. Further more faults due to processor failures
can be handled by another VP that does not use the particular feature.
For example, the can be a process that does not rely on the cache so that it
can diagnose cache failures.
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Two-level Process Implementation

vi. By separating processor multiplexing from scheduling the implementation
of the policy portions of the scheduler are simplified by separating them
out and are infrequent enough to remove the need for the efficiency of

assembly language programming.
The current implementation plan consists of three parts:
1. A basic level one system without paging.
2. Level one with paging.
3. A full Multics system with the second level traffic controller.

At present a basic version of level 1 has been debugged and run. It is described on page page 40.
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Two-level Process Implementation
The Processor Assignment Manager and primitives

This basement (level zero) program (corresponding to the GPP algorithm in the thesis) is referred
to as the Processor Assignment Manager (PAM). The PAM is to be considered as part of the
physical processor -- there exists one logical instance of the PAM per processor. In addition to the
function of multiplexing the physical processors, the PAM also serves to enhance the basic 68/80

processor by rationalizing its operation so as to provide a better basis for the other levels of
implementation.

The PAM is entered whenever an interrupt or fault occurs. The currently executing virtual
processor is unbound from the physical processor by saving its state in its Virtual Processor Table
Entry (VPTE). As part of saving the state of the process the metering information is updated and a
check is made to see if the process has exceeded its limit for CPU usage. The next step in
processing depends on the reason for entering the PAM.

External interrupts are transformed into events that can be serviced by processes awaiting their
occurance. If an internal interrupt (fault) can be handled by the VP itself, the fault information is
saved in a communications area in the VPTE, the VP is marked as being unable to process
further faults and its state is modified to execute its fault handler. If the fault cannot be handled
by the VP, the VP is marked as unsafe and the Virtual Processor Coordinator (described below) is
expected to do further processing. One fault is handled specially; the mme4 executed in a priviliged
segment is treated as a callp operation by the PAM and serves to extend the capabilities of the
physical processor. callp is described in more detail below. When the PAM has finished the
interrupt processing, it places the VP into a new state. If nothing that affects the ability to run the
VP has occured, it is placed in the runnable state.

The states that a VP may be in are:

running indicates that the VP state is currently being interpretted by a physical
processor and that the version in the VPTE is therefore invalid.

runnable indicates that the VP may be assigned to a physical processor as soon as
there are no higher priority runnable VPs. A VP enters the runnable state when it is
unbound from a physical processor, but may continue to execute.

unsafe indicates that the VP cannot be run without further handling by the Virtual
Processor Coordinator. A VP enters the unsafe state if it takes a fault it cannot handle
or does something the PAM does not expect. Currently this state is not used, instead
the VP is simply placed in the stopped state for examination by the level two traffic
controller.

{ For historical reasons this module is also referred to as the Processor Binding Manager (PBM).
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stopped indicates that a VP is no longer runnable and will not be handled further by
the VPC. Once a VP enters this state it is eligible for unbinding by the level two
traffic controller. Furthermore that is the only operation that may be performed on it.
A VP enters this state when it exceeds its resource limits, or otherwise requires higher
level processing to continue. The level two traffic controller explicitly places a VP in
this state when it wishes to unbind it so that the L2TC my modify its state. Stopped
VP's are kept on a queue for action by the L2TC.

awaiting is a state the VP enters when it goes blocked waiting for an eventcount to be
advanced.

V PC blocked is a special state indicating the VPC is waiting for something to do. The
VPC may only be in this state, runnable or running.

After placing the VP in its new state the PAM can do some standard processing including
processing requests for clearing the cache and possibly deleting the CPU on which it is running.
(Some of this standard processing is done earlier in the sequence than indicated in this description
in order to minimize the time between entering the PAM and performing the function.)

Once the PAM has finished its processing, it then searches the VPT for next runnable VP. It
places the VP in the running state to indicate that no other processor may examine the VPTE
state. After checking to make sure that the VP may indeed run on the available CPU, it then
loads the VP’s state in effect binding it to the processor and running the VP

The support of the virtual processors is split between the PAM and a dedicated VP; the Virtual
Processor Coordinator. This support includes the handling of faults and interrupts and mapping
them into the appropriate functions. It also includes the support of the extended operations
described in the section on VPl and on the CALLP operator. The VPC runs in a Virtual
Processor so that it may take advantage of the process environment to simplify its implementation.
The details of the VPC operation are given in a later section of this memo. The VPC is made
runnable whenever an event occurs that requires its attention. The VPC is always the highest
priority process so that it runs as soon as it is made runnable. Events requiring the VPC include

the transition of a process to the unsafe or stopped states, the occurance of an interrupt or the
transmission of a message to the VPC via callp as described below

Other dedicated VP’s perform functions such as interrupt handling and page fault handling. A
key dedicated processor is the policy module for scheduling user processes. This process is referred
to as the level two traffic controller. Because of the limited number of virtual processors the level
two scheduler must multiplex these processors. The details of this operations are not relevent for
this memo. What is important is how a user (or level two) process is bound to a virtual processor
and later unbound. This is similar to the function performed by the PAM and is done via the
VP18bind and VP18unbind primitives.
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PAM Details

There are a number of details associated with actually accomplishing the functions required of the
PAM. These are discussed in the relatively unordered sections below. Detailed knowledge of the
68/80 processor is assumed. This information is contained in the GMAP manual, the 6180

processor manual and the Multics debuggers handbook. None of them fully or accurately
described the current 68/80 processor.

General flow through the PAM.

i.

il

ili.

iv.

Vi.

vii.

viii.

ix.

Xi.

The PAM is entered via the interrupt or fault vector.

The control unit state and processor registers are saved. The current value of the real
time clock is saved.

Any requests to clear the cache of an associative memory are honored. This is described
below under heading of connect fault processing.

Virtual CPU time is computed. If there is a process awaiting the realtime event count, it
is is notified.

Any special processing associated with the particular fault or interrupt is done.

The virtual processor that was executing is placed in a new state. Normally it is placed
into the runnable state unless the fault handling changes the process’ characteristics. If
the resource limit for virtual CPU time has been exceeded the process is placed into the

stopped state.

If the CPU is to be deleted, it notes that it in fact has been deleted and then goes to
sleep here. The interrupt indicating that it has been added back continues from this
point after intializing the processor state.

The VPT is locked. If there is a pending wakeup for the VPC and the VPC is in the
V PC_blocked state, it is made runnable.

A virtual processor that is runnable and does not have any restriction against the current

physical processor is placed in the running state.

. The timer register is set as described below.

The state of the virtual processor is loaded into the physical processor and begins
execution.
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Operating Modes

Since the PAM is meant to act as an extension of the processor and form the basis for other
mechanisms it operates in absolute mode so as not to depend on the correct functioning of the
memory management software or hardware. This also removes the need to treat the descriptor
segment specially (such as wiring the zeroth page) since the PAM is even more primitive than the
levels relying on the appending hardware. When the PAM does use the appending hardware in
implementing the callp operation, it is able to take faults in the same manner that any other
hardware instruction might and processes them as if they had occured in an arbitrary hardware
instruction. Since PAM processes interrupts by simply noting that the event took place and then
restoring the processor state it operates inhibited.

Interrupt and Fault Handling

The 68/80 does not have any physical processor registers that can be used to distinguish between
physical processors when addressing memory to store the machine state when an interrupt is taken.
Furthermore there is only one address associated with each interrupt handler, without regard to the
processor on which the interrupt is taken. Because interrupts are handled by processes, the
processor need not be masked for interrupts at any time it is assigned a virtual processor.
Therefore there is no need for complex masking strategies -- the processor can run with all
interrupts unmasked at all times with the PAM using the inhibit bit to prevent interrupts.

Since any interrupt can be taken on any processor it is necessary to be able to save the machine
state without regard to the processor it is taken on untii sufficiently far into the PAM to enable the
program to determine which processor it is on and where the associated VPTE is for deassigning
the virtual processor. The algorithm used was inspired by Andre Bensoussan’s work and worked
out in con junction with Bob Mabee (of course Dave Reed contributed, but then his contributions
are assumed throughout). There exist two tables with enough capacity to store SCU data for each
processor that may be configured. There is a pointer with a delta modifier equal to the length of
an SCU entry. The interrupt vector is initialized to store the SCU data using an AD modifier.
Thus when the interrupt occurs an address is obtained to store the current data and the pointer is
updated in storage in an atomic operation so that if any other processor takes a fault it will not
interfere. Control is then transferred to a common disambiguating routine that operates under a
lock. The lock itself is grabbed using the sznc instruction which does not require the use of
registers. The rest of the registers are then stored, the processor id is determined and thus the per
processor storage address to which the registers are transfered. The pointer to the SCU table is
then reset to point to the beginning of the other table and the first table is scanned from its
beginning using the AD modify. Each entry is checked to see if it belongs to the currently running
physical processor. If it does, then the data is simply copied out into per processor storage. If it
does not, the data is then copied into the new table, again using an AD modifier to grab and
reserve a slot. When this processing is done, the lock is released (via an stcl) and the next
processor looping on the lock can repeat the operation with SCU tables switched.

Fault processing is similar to interrupt processing except that we can have a separate fault vector
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for each processor to save the need for having to determine dynamically the identity of the
processor on which the handler is running. The processing for both faults and interrupts is the
same once we have copied the machine conditions into per processor storage.

Faults while in the PAM.

When the PAM is processing a callp request or a page fault, a further fault may be taken. In
order to handle these a separate fault handler is used that assumes the fault is expected and that
the PAM is in a "good” state. The handler does not save any registers and assumes that control
registers (pointers to the VPT entry and the perprocessor information) are intact. The detailed
handling depends on the PAM state. If a callp operation is being performed then the machine
conditions are set to indicate that the fault occured while processing the callp operation itself and
the fault is processed as if it had occured at the beginning of the operation. For page faults a
message is sent to the page fault process for the fault (which must be on the descriptor segment)
and the machine conditions are set to continue with the appending cycle when the descriptor
segment becomes available.

The descriptor segment.

It should be noted that by operating in absolute mode, the PAM avoids dependence upon the
descriptor segment. Current Multics takes advantage of appending mode by using the fact that
the descriptor segment can be used to address different memory in the PRDS for each processor.
The elaborate scheme described above is complicated by not having this mechanism available but
as a consequence removes the requirement that descriptor segments be different on each processor
and allows processes to share descriptor segments. This can be of great importance in permitting
many small process with a single descriptor segment. The idle process is a simple example of a
process sharing a single descriptor segment.

Details of callp implementation.

The callp is supposed to look like a normal machine instruction that may take faults. It is first
validated to make sure that the instruction was executed in a priviliged segment (maybe just the VP
program’s segment?). If not, it is treated as a standard (mmed) fault and reflected back to the
virtual processor. If the instruction is acceptable, the pam state is set to indicate that the callp is
being processed and a copy of the machine conditions is saved. The operation number in the A-
register is then examined. If it is invalid the virtual processor is made unsafe and the VPC is
notified (this should never occur).

The specific processing is done according to the request. Typically it would involve copying the
data pointed to by pointer register 0 into VPTE or copying the data from the VPTE. The
detailed operation of each callp is described in the section on the callp operator.

When the processing is done, the PAM continues by placing the virtual processor into the runnable

state and resetting the callp-in-progress flag. The PAM then continues as for any other fault.
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If a fault occurs while the callp is being processed, the fault conditions are reset to those at the
beginning of the callp instruction with the exception of the data address being referenced which
is taken from the new SCU data associated with the fault. When (and if) the callp is restarted
after the fault, it will begin from the beginning of the instruction. This allows the fault handling
program to use the calip operation itself and not have restrictions on using the communications
area in the VPTE.

Page fault processing.

The SCU data is examined to determine the type of fault. A message is sent to the page fault
process consisting of the ASTE entry pointer, a unique segment id (in case the AST entry is
deactivated), the descriptor segment AST entry pointer, the page number and a eventcounter
associated with the fault. The process is then left awaiting this event, ready to continue address
evaluation.

Processing the connect fault

The processing of the connect fault is very simple -- it is ignored. Its purpose is to force a
processor to enter the PAM. It achieves its effect since whenever the PAM is entered it performs
standard housekeeping functions. In particular a connect fault is issued after a message is left
when clearing the cache or when adding/deleting a processor.

Clearing the Cache

The table of pending clears has one entry per processor. When the PAM wants to clear the cache
in other processors, it places in each table entry the appropriate instruction. It does this via a stacq
instruction to make sure that it is replacing a nop. If it does find an instruction other than a nop,
it assumes that another processor has left a instruction and loops attempting to execute the
instruction in its entry and leaving an instruction for the other processor. It makes sure the other
processor enters the PAM by issuing a connect to the other processor.

Process addition and deletion. .

When a processor is added, after some initialization, it enters the code to scan the VPT and find
work to do. When a processor is being deleted, it checks for he request immediately priori to
scanning the VPT for more work to do and disables itself. In either case an eventcount is
incremented and the VPC is notified of the change.
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Making the VPC runnable and processing the VPT

Whenever there is an event that requires the VPC’s attention, a wakeup-waiting flag associated
with the VPC is set using the stcl instruction. The last part of the PAM locks the VPT. The
wakeup-waiting switch is cleared with an sznc instruction. If it was set, then the VPC is placed in
the runnable state from the V PC blocked state, using the sznc instruction.

The VPT is then scanned for the first (and therefore highest priority) process that is in the
runnable state. One will always be found since there is always a lowest priority idle process
available. When the entry is found, it is placed in the running state. A check is made to see if the
process has a restriction against the current processor and if so, makes it again runnable and
continues the scan. Otherwise the VPT is unlocked and the virtual processor is run.

Running the VP

This is the final part of processing that is done after a VP has been found in the VPTE and has
been placed into the running state. The appropriate pointers are set in the per processor tables for
storing fault data and referencing the VPTE, the clock time is saved for computing virtual CPU
time and the registers are loaded. If the VP is being run on a different processor than it had last
time, the cache for the current processor is cleared. Final processing is done with separate code per
processor so that the appropriate SCU data may be restored. The VP is then off and running.

Process Signals (IPS)

The process signalling mechanism corresponds to the current IPS mechanism. It is implemented by
setting a flag in the VPTE to indicate that an interrupt is pending. When the virtual processor is
to be run a check is made to see if the flag is set and faults are permitted. If so a fault is
simulated. If faults are not permitted, the action is deferred until the flag is reset to indicate that
it is safe for the virtual processor to take faults again. The details of using this signal are
discussed in the section on notification.

The interrupt pending flag is set by the L2TC. If a running process is to be interrupted, it is first
stopped, the flag is set and then it is rebound to a VP. The choice of this method is motivated by
a desire to minimize primitives available for accessing the VPTE. A tradeoff can be made

between number of such primitives and the frequency with which the L2TC must unbind a VP in
order to access parts of its description.
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Special machine state information

This section explains how history registers, fault registers, alarm register are managed. In addition
there is software state information such as the VP state which is discussed elsewhere. This will not
be addressed at the moment since it is more a matter of retaining current Muitics details without
requiring a ma jor changes for the PAM. Note, however, that since the PAM is aware of the VPs,
it is feasible, possibly, to control history register handling on a per-VP basis (and therefore on a
per process basis.

Virtual CPU time measurement and limits

Associated with each processor running a VP is the clock time at which the currently running
virtual processor started running (the PAM was last exited). When the PAM is entered the starting
time is subtracted from the clock time at which the virtual processor stopped (the PAM was
entered) to determine how long the VP has been executing. This value is added to the value
accumulating the in the VPTE. A check is then made against the VCPU limit for the VP. If the
limit has been exceeded, the process is stopped for deassignment by the level two traffic controller.

As a refinement to this scheme is an estimate of the overhead involved in invoking the PAM
before the clock is read on entry and after the is read on exit. This can be subtracted from the

VCPU in an attempt to isolate the charge for a processor from that of running the PAM.

Timer register setting and usage by PAM

The timer register is used to make sure that the PAM gets invoked periodically so as to enforce
quantum length restrictions (i.e. virtual time quota) and to make sure the VPC gets invoked so
that it can advance the real time eventcount. For simplicity the PAM is run at least every 50(?)
milliseconds. The alternative would be to calculate the minimum of the virtual time limit for the
process being bound and the time the VPC is to be run. This would be more complicated and the
additional resolution is not necessary.

Other processes

Proper operation of the PAM depends on two kinds of VP’s. The first is the Virtual Processor
Coordinator that is described in great detail below. It is always the highest priority virtual
processor and is made runnable whenever there is something requiring its attention and therefore
run immediately. Second are the lowest priority processors -- the idle processors. There is one idle
processor for each physical processor. Since the idle VP is lowest priority it is run only if there is
nothing else for the physical processor to do. The idle processors are quite cheap since they can
share a descriptor segment or run in absolute mode without a descriptor segment. Other than that
no special consideration need be given to the idle process.
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The callp operator

As noted above the callp instruction is used to extend the operation of the virtual processor. It is
implemented within the PAM. It takes an operation number in the A-register and a data
pointer, if any, in pointer register zero. Like any other normal instruction, it may take faults.
When the fault occurs the machine conditions are set to restart the execution of the instruction
from the beginning so that there is no need to save partial state information associated with
copying information into the VPTE buffers.

The operations are:

l: AWAIT takes a list of eventcount names and values (as described below under VP18await
and places the process in the awaiting state until one of the named events is notified.
It is possible for one of the awaited events to be advanced while the process is being
placed in the awaiting state. It is therefore necessary to make sure that the none of the
eventcounts has passed the awaited value after the process is in the awaiting state.
Since the process is no longer considered running it is necessary that no faults occur.
In order to prevent faults the absa is used to get the address in primary memory of the
counter value for each eventcount. A fault can occur during this operation in which
case the normal page fault processing is done and the await is restarted from the
beginning. This pointer can then be used to reference the value while the process is
awaiting. We are assured that no fault will occur since primary memory addresses are
being used for the reference and the virtual memory support is not invoked. We are
assured that the address is valid since any other processor that is updating the page
tables cannot assume all references to the page frame are completed until it receives an
acknowledgement form the other processors. The processor performing the await will
not give this acknowledgement until it finishes processing the await request.

The. real time clock is a special eventcount in that the minimum value of all such
events must be stored so that the timer can be set to notify the event at the specified
real time.

2: WAKE VPC is used when a change is made to a VPT entry that requires VPC attention. For
example, when a message is queued for the VPC. ‘

3: STOP is used to forcefully stop a specified process. If a process is in an atomic operation, but
is to be stopped, a flag is set to indicate that it is to be stopped when the atomic
operation count reaches zero.

4: BEGIN ATOMIC OPERATION is used when a process is executing a critical section of code. It
increments an atomic operation counter in the VPTE. ’
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5 END ATOMIC OPERATION decrements the atomic operation counter. If the count reaches zero
and a stop is pending, the process is placed in the stopped state.

6: GET_FAULT DATA copies fault data out of the process’ state into pageable storage. Note that
page faults are permitted during this operation since they are handled by another
process. Segment faults are not permitted because they are handled by the faulting
process and will require the use of the fault data area. Note that the atomic operation
counter was incremented at the time of the fault and the process was marked as not
being safe to take faults. The safe_to_take_fault_flag is reset by this operation. The
atomic operation count must be decremented by restoring the processor state or
explicitly ending the atomic operation.

7: RESTORE PROCESSOR STATE restores the machine conditions as specified and decrements the
atomic operation counter. If this interface is not used the end atomic operation
interface must be used to decrement the counter.

8: ADD_CPU sends an ADD _CPU message to the VPC.

9: DELETE CPU sends a DELETE_CPU message to the VPC.

10: CLEAR CACHE used when an object loses encachability. Its parameters consist of a
suboperation number and the page id for suboperation cache clearing by page. The
suboperations are:

. Clear PTW cache via a camp.
2. Clear SDW cache and PTW cache via cams and camp.
3. Clear PTW cache and memory cache by page - camp 4 + page id.

4. Clear memory cache, SDW cache and PTW cache with cams 4 and camp.

These are used by (1,3) page control, (2) segment control and (4) access control. They
apply to all processors. The actual method by which the processors execute the
instructions is explained in the section on PAM details.

1l: VPC_BLOCK is used by the VPC so as to cause checking of the VPC's wakeup waiting
switch. It takes as a parameter the next real time before which the VPC is to be run.
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The VP1 interface

The VP1 program provides a PL/I compatable interface to the callp instruction, the VPC and the
VPT. It limits the operations the can be performed; no other interface exists. The use of the
common segment name of VP1 is primarily for convenience; the entries are essentially independent.

A basic service provided by the VP1 routine is the management of assignment of level two
processes (those managed by the level two traffic controller) to virtual processors. There are a
number of semantic models that can be associated with this operation. The primary one is that of
binding and unbinding. An alternative view is that one loads and unloads a processor state to and
from a virtual processor much as one loads and unloads a process the current Multics
implementation. A better understand of what is actually happening can be achieved by realizing
that the bind operation is really taking a processor state description maintained by the level two
TC which has no existence other than as an entry in a database and is creating a level one
processor with an initial state for execution. The unioad operation destroys this processor and
returns a description of its final state. Key to the understanding is that the PAM does not enforce
any continuity between the process description returned by an unbind operation and that provided
to a bind operation. While the description is being maintained by the level two traffic controller,
the L2TC is permitted to perform arbitrary operations on its description including fabricating new
descriptions and discarding old ones.

VP1 communicates with the VPC via a communications queue. The queue is managed without the
use of explicit locks. The stacq instruction is used to perform interlocking.

The information maintained in the VPTE consists of two parts -- that which is communicated via
the VP1 interface and that which is internal to VP support. For convenience the portion that is
passed through the interface is kept in the same format by the level two traffic controller as in the
VPTE, but this is not necessary.

R. Frankston 13 RFC September 8, 1976 21:23



Two-level Process Implementation

The Process_Description portion of the description is used to store information that maintains
the identity of a Multics process as seen by the user.

declare 1 Process_Description based aligned, /% 16 words aligned! x/
2 process_id bit(36),
2 lock_id bit(36),
2 excluded_processors aligned,
3 excluded_processor{0:3) bit(1l) unaligned,
3 padding bit(32) unaligned,
BAR bit(36), /% For 6080 emulation x/
DSBR bit(72), /x Descriptor Segment Base Regx/
ring_alarm_word bit(36),
PD_flags aligned,
3 safe_to_take_faults bit(l) unaligned,
‘ /x Fault data can be copied? x/
3 pending_process_interrupt bit(1) unaligned,
2 resource_metering, /% Metering and limits x/
3 virtual_time_used fixed binary(71),
3 virtual_time_limit fixed binary(71),
3 memory_usage_meter_reference Tike meter_reference,
2 processor_state,
3 machine_conditions like mc;

NN N
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The VP_Description contains information that is only available to the VP support and is not
passed through the VP interface.

declare 1 VP_Description based aligned,
2 next_VPTE like VPT_ptr aligned, } '
VP_id bit(36), /x Identification of this VP x/

2

2 VP_state fixed bin, /x runnable when bound x/
2 VP_priority fixed binary,

2 last_processor fixed bin(2), /x For cache maintainance" x/
2 atomic_operation_count fixed bin(35), /x Initially zero x/
2 padl6(10) bit(36) aligned, N

2 fault_conditions like processor_state,

/% Communication with handler x/
/% For simplicity I am putting the awaited events
in the VPTE. Eventually they will be managed:
separately by the VPC. x/
2 eventcounts,
3 number_events fixed binary,
3 event_names(4) like global_eventname aligned,
/% 4 = max_number_of_11_events x/
2 VPD_flags aligned,
3 pending_stop bit(1l) unaligned,
3 padding bit(35) unaligned,
2 pad8b(6) bit(36) aligned;

declare 1 VPT_ptr based aligned, /% Pointer entry for VPT x/
2 abs_ptr bit(18) unaligned, /x For use in absolute mode %/
2 rel_ptr bit(18) unaligned; /% For use in appending mode x/

The VPTE itself contains both parts:

declare 1 VPTE based,

2 VP_info like_VP_Description;
2 Process_info like Process_Description;
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The awaiting_events_table is used in the interface between Vigawait and callp/await.

declare 1 awaiting_events_table based,
2 number_events fixed binary,
2 events(max_number_of_11_events),
3 local_name pointer, /% Only valid in owner’s address
space x/
3 global_name like global_eventname,
3 value fixed binary(35); /% Value process is awa1t1ng */

declare 1 global_eventname based aligned,
2 segment_unique_id bit(36) unaligned,
2 word_offset bit(18) unaligned,
2 pad bit(18) unaligned;

VP18bind

declare VPI8bind entry (bit{36),1 1ike Process_Description, fixed
binary(35));

call VP18bind (VP_id, process_description, code);

The semantics of the bind operation has been discussed above. The caller of VPI§bind
should set the appropriate flag in the ASTE to keep the descriptor segment of the specified
process active. It initializes the values in VP_info as part of the transformation from the
representation maintained by the L2TC and that in the VPTE. The process_state is stopped,
the last processor is "-1" (i.e. none), and the atomic operation count is zeroed. It then uses the
callp/load operation to load it into a free VPTE. The operation will fail if there are no
VPTE slots available. It would be expected, however, that the second level TC will not call
the primitive unless it knows that there is one available.

VP18unbind

declare VP18unbind entry (bit(36), 1 like Process_Description, fixed
binary(35));
call VP1Sunbind (VP_id, process_description, code);

The semantics of unbinding has been discussed above. It issues a callp/unioad operation
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to request the contents of an stopped VPTE be returned. When this operation has been
done the VPTE is available for a subsequent bind operation. It is expected that VPl$unbind
would be used repeatedly to unbind all stopped virtual processors so that the associated
process descriptions would be available to the level two traffic controller. Note that an
eventcount is incremented any time a process is stopped so that by awaiting that event count
the L2TC can immediately perform the unbind operation.

VP18stop

declare VP18stop entry (bit(36), fixed binary(35));
call VP18stop (VP_id, code);

The stop entry is used to force a process associated with a VP to stop executing. The details
a discussed in the description of the callp/stop operation. The VPl§stop operation is used
whenever the level two traffic controller needs to manipulate the process’ description. For
example, to destroy a process, the L2TC would note that it wants a particular process
destroyed. If it already has full control over the description, i.e. the process is not bound to a
VP, it can perform the operation immediately. Otherwise it would- issue a VP18stop for the
process. As soon as the process is stopped, the “stop process” eventcount would be
incremented, VP18next_stopped would locate the VP, and VP18unbind would copy out the
process description. For each process description returned by the VP18unbind operation the
L2TC would check the notes associated with the it and perform any necessary operations; in
this case the process would get destroyed.

VP18next stopped

declare VP18next_stopped entry (bit(36),‘ fixed binary(35));

call VP18next_stopped (VP_id,code);
This entry is used by the L2TC to get the id of the next available stopped VP. It is
invoked in response to an advance on the stopped eventcount.

VP18run

declare VP1Srum entry (bit(36), fixed binary(35));
call VP18run (VP_id, code);
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This places a makes a stopped VP runnable. It is normally used after the VP18bind
operation.

VP1gawait
declare VP18await entry (1 (x), 2 pointer, 2 fixed binary(35), fixed
binary, fixed binary);

call VP18await (events, number_events, advanced);
The parameters consists of a table of event names (pointers) and values to be awaited. The
number parameter specifies the number (up until the maximum value) of events that are to
be awaited. The index of the event which caused the return from awaiting is given as
“advanced”.
The table of event_counts is completed by filling the event name as derived by the VP
interface from the segment id and the word address and passed to the callp/await
operation. Note that there is a maximum for the number of entries in this table. The user
level interface to VP18await must permit an arbitrary number of event names to be

specified while only passing a limited number of event names to VP18await. The details of
this are described in the section on notification.

vP18advance

declare VP18advance entry (1 like awaiting_events);
call VPl8advance (event_table);

As with VP18await, the event_name is filled in. The await_value is, in this case also filled
in after incrementing the associated counter with the new value. The table is then passed to
callp/notify

VP1$add_cpu

declare VP,lSadd_cpu entry (fixed binary, fixed binary(35));
call VP18add_cpu (cpu_number, code);

This entry interfaces to callp/add_cpu.
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VP18delete cpu

declare VP18delete_cpu entry (fixed binary, fixed binary(35));
call VPl8delete_cpu (cpu_number, code);

This entry interfaces to calip/delete_cpu.

VP18crash system

declare VP18crash_system entry ();
"call VPl8crash_system ();
Deletes all physical processors from the system, and forces one of the processors to execute a
special debugging program.

VP1Sclear

"declare VP18clear entry (fixed binary, bit(18), fixed bin,ary(35));_
call VPl8clear (suboperation, page_id, code);

Interfaces to callp/clear_cache to clear cache the specified associative memory.

VP18begin_atomic_operation

“declare VP18begin_atomic_operation entry ();
,call VP18begin_atomic_operation ;

Interface to callp/begin_atomic_operation.

VP18end atomic operation
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|
i

|
. declare VP18end_atomic_operation entry ();
call VP18end_atomic_operation ;

Interface to callp/end_atomic_operation.

VP18get fault data

declare VP18get_fault_data entry (1 like fault_conditions);
call VPl8get_fault_data (fault_conditions);

Interface to callp/get_fault_data.

VP1i8restore processor_state

declare VP18restore_processor_state entry (1 like processor_state);
"call VP18restore_processor_state {processor_state);

Interface to callp/restore_processor_state.
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VPC Operation

As noted above, the VPC is run whenever an event occurs that needs it attention. For example, a
process leaving the runnable (or running) state, an interrupt event occuring or a message being
sent from a process. In later implementation some of these occurances might bypass the coordinator
but for now it is assumed that all complicated low level operations involve the coordinator.

The basic operation of the VPC consists of three loops:

1. Scanning for processes by state, i.e. unsafe and exceeded limits.

2. Scanning for advanced interrupt cells. This means that there is an implicit, rather than an
explicit advance done on the cells by the PAM.

3. Processing of explicit messages to the coordinator.

Note that each loop is entered only if an associated flag has been set to indicate that there may be
work of the specified type to be performed. When the processing is done the VPC unbinds a set
of physical processors so that they may ad just to the new state of the world. It is only necessary to
unbind those processors that are running the "n" lowest priority processes where "n" is the number

of processes that have been made runnable by the VPC.
In more detail, the processing consists of:

1. This loop scans the Virtual Processor Table (VPT) examining the state of each process that is
found. Each stopped VP is removed from the chain of runnable processors and an
eventcount is advanced to notify the level two traffic controller. Note that kernel processes
should never be stopped. If an unsafe process is found, a debugging process should be
notified or the system crashed. ???? '

2. Next the interrupt and fault counters are scanned for any that have been incremented by

- comparing against an earlier set stored in the VPC and the appropriate waiting processes are
notified. (For the interim implementation with a single "interrupt side” processor there is an
additional event counter to indicate that any interrupt has occured). As a special case of
interrupt handling, the system clock can be interogated and compared with the value for the
next timer event of interest.

3. Scan for messages from other processes.

i. RUN. Places the specified VP into the runnable state and chains it into the queue of
runnable VP’s.

ii. NOTIFY notifies processors that are AWAITing that counter.
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iii. DELETE CPU. Leave a note for the specified processor to deconfigure itself and then
unbind from any virtual processor it may be running it via a connect.

iv. ADD CPU. Leave a message telling a CPU to come to life and send a connect to it
forcing it to initialize itself. -

A final note on locking. Normally the VPC looks at the VPT without setting a lock because it is
the only process that may change the VPT. When it does change the VPC it loop locks to prevent
conflicts with the PAM that may be searching the chain. The VPC itself is run whenever its
wakeup-waiting switch is set by the PAM indicating that there may be work for it to do. This flag
is reset whenever the VPC is placed in the runnable. Any events of interest that occur after this
time will set the VPC wakeup-waiting switch in case it hasn’t done all of its processing in its
previous incarnation. Thus for example, if no paging communication buffer is available when the
VPC looks and one becomes available while the VPC is running, no race condition arises because
the VPC_run flag will be set anyway so that the VPC will be run again to make use of the buffer
immediately after it unbinds to wait.

Also some efficiency considerations. As pointed out above it is possible to bypass some of the
mechanism described above should the running of the VPC be considered too expensive. The
VPC need not be expensive. Its operations are simple and it avoids the ma jor expensive operation
in PL/I, the full subroutine call. The only call it needs make is to an ALM procedure that is used
for basic utility operations. This call only involves minimal housekeeping making it more efficient
than a full PL/I call.

R. Frankston 22 RFC September 8, 1976 21:23



Two-level Process Implementation
Modifications to page control

Unlike the current Multics, a page fault is not handled by the process taking the fault. This
approach greatly simplifies the construction of a process because it removes the need to handle
"awkward” situation such as a page fault occuring when the fault handler is copying fault data out
of the VPTE. It also makes it possible to take a page fault on any page of the user’s descriptor
segment removing the necessity for wiring any pages of a process since the other requirement for
wired pages -- external interrupt handling, is also removed by having interrupts handled by
dedicated processes.

The page fault processing itself is simplified since the use of a process dedicated to this functions
greatly reduces the locking problems associated with page fault handling. The modifications to
page fault handling are minimal since page fault already runs in an environment that has little to
do with its host process and is thus easily decoupled. Some consideration has been given to using
the modified version of page control designed by Andy Huber and refined by Bob Mabee.

The PAM generates a message to the page fault process by extracting the relevent data from the
SCU data. Faults on page zero of the descriptor segment are permitted. The messages is placed in
a ring buffer. The format on an entry is:

declare 1 page_request based,

2 pointer fixed binary, /% In AMT or WMT x/
2 segment, !

3 astep pointer, /x ASTE Entry =/

3 uid bit(36) aligned, /x To make sure still same. x/
2 eventcount_index fixed binary; /% To notify process x/

The meter pointer is discussed in more detail below in the discussion of the Active Metering Table.

When the request is queue the AMTE wire count is incremented. After the meter is incremented to

charge for the processing, the wire count is decremented to release the meter. The event count is

derived from the segment unique-id and the page number within the segment. This value is -
hashed into a wired table of page events. It is the index of this entry that is placed in the page

request. The use of a preallocated table removes the problem of allocating wired storage. We can

use a small table without limiting the number of outstanding page faults by not requiring that the

assignments of eventcounts to paging operations be unique. There is no requirement that the event

be unique, it is only a matter of efficiency. At worst, a processor may get a spurious notify, attempt

to execute, and fault again.

The modifications to page control consist of:
Removal of the code that handles the fault directly as this is now done by the PAM.
Removal of the explicit interactions with pxss.

R. Frankston 23 RFC September 8, 1976 21:23



Two-level Process Implementation
Removal of the code involved in locking the page table since this process has exclusive

access to its databases.

Changing the references to rhetering data in the APT entries to use the AMT.
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The Active Metering Table

Note: The discussion of the active metering table is included for
completeness. The actual details of the mechanism are not yet fully
worked out and the implementation of a layered system need not be
dependent upon the current AMT design.

In a “real” system it is necessary to account for resource usage and to limit such usage against
predetermined limits. In the current Multics system, many of the resource measurements are
associated with processes. Since the processes are known to the lowest levels of the system, not even
deactivated, the Active Process Table (APT) has become a repository for such information, or at
least the resource measurement information.

In the multilevel system, only virtual processors exist at the lower levels. Since the processes
assigned to this virtual processors do not exhibit the continuity of the present Multics processes it
is necessary to develop a separate mechanism for measuring resource usage. Furthermore, if we
look beyond just supporting the current measurements, a restructuring of the metering would
permit the offering of improved mechanisms such as resource limits and shared meters at the base
level; mechanisms which have been proposed in the past but which have not been implemented.

There are two primary components to resource measurement -- the long term and the short term.
The long term measurements in current Muitics are stored in the PDT (Project Definition Table)
and consist of dollar usage and more detailed resource usage measurements. Short term
measurements are maintained in the APT. Periodically the Answering Service copies
measurements from short term to long term storage.

In the proposed Multics a similar mechanism is used except that the choice of short term meters is
more explicit and not directly related to processes. At present we are mainly concerned with meters
that must be available to ring zero” -- those that correspond to the APT information. In addition,
to simplify the design of page control, the meter (and limit) for storage system usage is also of
interest. For the duration of its existence, each such meter resides in the Active Meter Table. It is
only necessary for a meter to exist as such while the resource it is measuring may incur charges.
For example, the meter of a process’ processor usage can only be incremented while the processor is
bound to a VP. Thus the level two traffic controller can create the meter at the time that it the
process gets assigned to a VP and destroy it (after reading out the value) when the process is
deassigned”. In contrast a process can incur memory usage charges after the process has been

i Need better term
i In fact, the VCPU meter is a special case and is kept in the VPTE in the current PAM design;
but could reasonably be incorporated into the AMT mechanism as soon as the operation of the

AMT is better described, i.e. when I finish writing this section
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deassigned from its VP. A third example of a meter is the storage quota meter. Since this meter
must be accessible from page control when assigning additional pages to a segment, it seems logical
to associate the information with the wired AST entry. Because the meter is actually shared by
Multiple segments, it is actually kept separately in the AMT. Note that as a benefit of this
aproach the quota limit is independent of the directory hierarchy and that storage system usage can
be associated directly with accounts instead of just to superior quota.

Note that the meters described thus far share a special property - they must be accessible without
taking a page fault; ie. they must be wired. This is accomplished by maintaining a Wired Meter
Table (WMT).

An entry in the Active Metering Table takes the form:

declare 1 AMTE based,
2 id bit(72),
2 value fixed binary(71),
2 limit
3 limit_set bit(l),
3 value fixed binary(71),
2 eventcount fixed binary(71),
2 wire_count fixed binary;

When a meter is to be incremented (via amtm$add), the meter id is used to hash into the WMT
and then the AMT to find the entry. If none is found, one is created in the AMT. To make the
search more efficient, a meter_reference is used which contains a meter_index in addition to
address the table entry. When the entry is found via the index, it is checked to make sure the
meter_id in the entry matches that in the reference, if it does not, the hash search must be used
and the index is updated to make the next reference more efficient.

declare 1 meter_reference based,
2 index fixed binary, /x Index in AMT or WMT x/
2 home fixed binary(l), /% AMT or WMT x/
2 id bit(72);

A meter may reside in either the AMT or the WMT, but not both in order to make limit checking
work. When the wire count changes to or from zero the entry is moved. This move is not

necessary if the meter is being created in one or the other, or is being read and cleared.

The AMT is managered by the active_meter_table_manager (amtm). The following entries
are available.
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declare amtm8set_limit entry (1 like amte, 1 like meter_reference,
fixed binary(35));

call amtm$set_limit (amte, meter_reference, code);

As noted above, meter entries are created when an attempt is made to use them. For entries such
as page quotas, it is necessary to initialize the entries with a limit value. It is necessary for
programs setting and using limits to cooperate such that programs do not check limits unless the
limits have been set. For example, as part of activating a segment, a quota limit is set in the AMT.
This entry is cleared when all segments sharing that limit are deactivated.

declare amtm$read entry (1 like amte, 1 like meter_reference, fixed
binary(35));

call amtm8read (amte, meter_reference, code);

Returns values for the specified meter entry. If the entry does not exist, zeros are returned for the
values.

declare amtm$read_clear entry (1 1ike amte, 1 like mefer__reference.
fixed binary(35));

call amtm8read_clear (amte, meter_reference, code);

Same as the read entry, except clears the value. This is the entry used to read a meter out so it can
be updated in a higher level table. The AMT entry may be deleted if it is not wired and does not
have a limit set.

declare amtm8read_clear_limit entry (1 like amte, 1 like
meter_reference, fixed
binary(35));

call amtm$read_clear_limit (amte, meter_reference, code);

This entry is similar to the previous but also clears the limit setting so that the entry may be
deleted from the AMT if not wired.

declare amtm$add entry (fixed binary(71), 1 like meter_reference, fixed
binary(35));

call amtm8$add (value, meter_reference, code);

Adds the specified value to the given meter. A code is returned if the value exceeds the meters
limit. If the meter does not exist, it is created.
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declare amtm$add_conditionally entry (fixed binary(71), 1 like
meter_reference, fixed
binary{(35));
call amtm$add_conditionally (value, meter_reference, code);
This is like the add entry, except the meter value is left unchanged if the limit is exceeded.
declare amtm@wire entry (1 like meter_reference, fixed binary(35));

call amtm8wire (meter_reference, code);

The wire count for the specified meter is incremented. If the meter is already in the AMT, it is
moved to the WMT.If it sdoes not exist at all, it is created in the WMT.

declare amtm$unwire entry (1 like meter_reference, fixed binary(35));
call amtmSunwire (meter_reference, code);

The wire count for the specified meter is decremented. If the count reaches zero, it is moved from
the WMT to the AMT.

declare amte$unwire_read_clear entry (1 like amte, 1 Tike

meter_reference, fixed
binary(35));

. call amteSunwire_read_clear (value, meter_reference, code);

Combines unwire and read_clear.
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Notification and Events

The basic mechanism for coordinating processes in the proposed system is the event. More
precisely, event counts are used to store state information about eventsThe eventcounts are
discussed in detail in a CSR/RFC by Dave Reed and Raj Kanodia. When an event occurs the
value of the eventcount associated with the event is advanced. A process interested in the
occurance of the event can await this advance.

Eventcounts are identified by eventcount names. To the user an eventcount is simply a word in
memory and thus its name is its address. To convert this into a system-wide address the segment
number is replaced by the segment-unique id. The eventcount can then be referenced by the
system-wide name in order to do a notification. The actual réference to the value of the
eventcount within the process awaiting or advancing the primitive is done using the pointer for
efficiency. - '

Eventcounts form a robust mechanism because, though a process may await a transition, the
eventcounter itself always maintains its state for later examination. ~Since the counter is
monotonically increasing the await operation can be implemented by simply comparing the current
value of the counter with a previous value. If the previous value has not been surpassed the
process can loop waiting for the change, or can go blocked. This block is actually implemented via
the callp/await primitive described above. Complementary to going blocked is the mechanism
for getting awakened. This is the notification mechanism.

The notification is performed by the VPC as a result of a callp/notify operation. This
primitive is invoked by the VP1$advance interface. Note that only the advance interface is
available outside the PAM. While this is not strictly necessary it does preserve the semantics of
eventcounts. When the VPC gets a message to perform a notification, it scans the VPTEs which
are in the awaiting state and places them in the runnable state. For efficiency, the VPC can
actually check to make sure the value awaited has been reached since the value is copied into the
VPTE, but this is not strictly necessary since the VPC can simply compare eventcount names.

Spurious notifies are not harmful since the callp/await primitive checks the values anyway
before returning. callp/await also checks the eventcount values after putting the process into the
awaiting state to prevent any loss of notifies sent just before the process entered the awaiting state.

Eventcounts associated with interrupts and page fault processing completion must be wired and
preallocated. To simplify this a Wired Event Table is maintained. We can go further and require
that all events originating at level one be in this table. Note that, unlike current IPC, the use of a
wired table does not have the danger of overflowing since no messages are placed in the table,
eventcounts are simply incremented.

We can take advantage of the restriction on level one originated requests when implementing the
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level two primitive for event counts. Observe that there is a fixed maximum for the number of
events upon which a process may wait. The user interface need not, and should not, have such a
restriction. The level two traffic controller can implement its own await/notify mechanism similar
to the lower level mechanism except using virtual memory to get around the restriction on the
number of events.

A level one process (i.e. a kernel process) can simply use the VP1 event count interface (advance and
notify) directly. For level 2 processes, there is a VP2 interface for these primitives. Since a level
two process may have an arbitrary large number of events and may be unbind from a VP while
awaiting, it is necessary for the level two interface to provide much of the functionality of the
interface. To aid level two a special event count is provided that is advanced whenever a level one
event count is advanced, the outward_signal counter. This is discussed in more detail in the
description of the implementation of the level two traffic controller. Other event countes used for
communicating with the level two traffic controller include the stopped event advanced whenever a
VP is stopped and the clock event that is advanced at fixed intervals.

As described above eventcounts are passive in that they don't affect a process unless the process
examines its value or awaits an adwvance. This is not sufficient to implement the current IPS
mechanism. What is needed is a means of faulting a process so that it can examine eventcounts
which it thinks are important. This consists of setting a process’ pending interrupt flag while
unbound at level two. When the process is to be run, the flag is examined by the PAM which will
cause a fault to be simulated. Note that the fault itself doesn’t tell the process what has happened;
the process is simply told that somnething of immediate interest has occured. To give the effect of
current IPS, there would be an eventcounter associated with the terminal I/O channel for quits, the
real time clock and the virtual clock.
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The Level Two Traffic Controller

The lowest levels of Multics described above do not provide all of the functionality of the current
system. The implementation requires a second level of control that multiplexes the virtual
processors among user processes. This second level is conceptually much like the lower level in that
it multiplexes a limited number of processors to give the effect of a larger number. While the first
level emphasises simplicity, the second level emphasises function. The second level removes
restrictions on the number of processors provided and the number of events that can be observed.
It is able to do so because it can make use of the virtual memory mechanisms for managing its
databases. Note that the term process is used in the conventional Multics sense, of a user’s address
space and control point. The level two process is representation of the logical processor that
executes a user’s instructions. ' '
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The Implementation of old IPC and IPS

Basic to the design of any change to Multics is the requirement that the new mechanism provide
an external interface that is compatable to any preexisting interface. The Interprocess
Communications Mechanism of Multics is basic to many programs and must be supported.

IPC is relatively simple to implement and offers a subset of the facilities of the eventcount
mechanism. Most significantly IPC lacks the access controls afforded by using normal memory
words a means of communications and coordination. To implement IPC a per-process segment of
eventcounts associated with IPC channels can be maintained. In addition a per-system segment
could be used to transmit messages between users. An alternative is to provide each process with a
segment for receiving its messages so that the access control can be used.

Much of the complexity of IPC comes from the requirements of wired programs and programs
requiring a very high degree of efficiency. Since the wired programs will be converted to use
eventcounts, the IPC implementation is greatly simplified. Similarly for programs using fast IPC
channels, they can be converted to use eventcounts, though they can still operate using IPC during
a transition period.

The implementation of IPS has been discussed in the section on notification. The mechanism has
been generalized to separate the occurance of the signal from the message associated with it. Thus
one is not limited to the signals currently defined in the APT entry. For example, the quit signal
can be associated with the terminal as an I/O device without requiring that it have special
significance as the process’ controlling terminal.

The IPC facility offers an ability not offered by event counts alone -- the sending of mesages in

addition to the wakeup. This can be accomplished by using the message segment facility
accompanied by eventcounts within the message segments.
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Implementation

Both top-down and bottom-up views of the implementation of the layered system are applicable.
The top-down views entails examining the existing Multics implementation and determining what
one must change to retain is functionality. The section on initialization examines the
implementation from the bottom-up view. The following section on transition examines the
implementation from the view of modifying and preserving the existing Multics system.
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Initialization

The bottom-up view begins by recognizing that level one of the layered Multics is sufficient for
supporting a simple operating system directly without the features provided by level two. In fact
this is an environment that is much more sophisticated than BOS in that it permits the use of
processes and programming in PL/L

By making the first stage of implementation the programming of an environment consisting of
just level | primitives. An environment can be brought up without requiring the modification of
the existing Multics. Most importantly, such an implementation resuit in a running system that
can support a set of debugging tools for the later software. The psychological value of having a
completely running piece of software should not be ignored. The level implementation also
provides a starting point for the initialization of Multics itseif and is thus a necessary first step.

The level one implementation consists of relatively few programs:

1. A program to initialize the level one system within collection one. Associated with this is a
program to generate a relocation dictionary for the PAM. In addition to initializing the

PAM tables, the program also creates processes for the VPC, the idles processes and an
interrupt side process.

2. The PAM.

3. The VPC.

4. An interrupt side process. In order to simplify implementation 1/O programs will continue to
run much as they do now except all programs that normally run in response to interrupts
will run in a single processes in response to the correspond eventcount being advanced. The
old interrupt handlers themselves should be able to run unchanged.

5. A debugger.

That is all that is strictly necessary. An additional nicety might be to implement the existing BOS
within a process so that its functions can slowly be spread to multiple processes without the need to

continue to support a second 68/80 operating system and without the alternative of rewriting all of
the code from scratch.

Initialization consists of loading the kernel processes necessary to support the fuil level one
environment and then the ones needed for level two. There is a discussion on page 39 of creating

VP’s as necessary as part of the operation. To fill out the level one environment the following
functionality must be brought up:

1. Disk Control
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2. Segment Control
3. Page Control
4. The Level 2 Traffic Controller

Once the level 2 traffic controller is brought up Multics is essentially running. An answering
service process can be created to create user processes. Given that processes can be created easily,
the answering service does not need the primacy it currently en joys.
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Transition

One question that must be considered if the implementation of the two level traffic controller is to
be taken seriously is that of how to get from the current implementation of Multics to the new one.
The difficulty is that a complete transition is necessary. This is not an insurmountable obstacle in
that we have had such transitions in the past as in the case of the new storage system and earlier
file system flag days. While the need to convert over completely is present, the difficulty is not
comparable to that of a ma jor change to the file system. Most of the Multics system will continue
to operate as it presently does. The changes consist of

I. Changes requiring new software
1. A level one initialization program must be written.

9. The basic mechanisms of the PAM, VP1 and VPC must be implemented. The VPC
would be implemented in PL/L

3. The initialization path must be modified to build up a system from one running at
unadorned level one to a full Multics environment.

4. The level two traffic controller must be implemented While it must acquire all of the
functionality of pxss, the level two traffic controller function is less critical -- the vast
ma jority of the scheduling decisions are made by the PAM and the VPC. Thus the
initial implementation need not be highly optimized for demonstration of its feasibility.

5. A primitive version of the amtm must be implemented to support basic accounting
functions.

II. Modifications to existing software
1. A replacement must be provided for IPC using events.

2. Page control must be removed to its own process. Much of the work has been done
already. This task is simplified by the fact that the page control environment is already
very constrainec so as not to be dependent upon the process in which it is a parasite.
This is discussed in detail on page 23.

3. The interrupt handlers must be moved to their own processes. As with page control,
they already operate in a constrained environment and thus providing them with their
own process will not deprive them of features and will simplify them by the removal of
the need to do direct interrupt handling and will remove the need for separate interrupt
side and user side components. As an interim implementation all interrupt side programs
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can be written unchanged within a single processes with only iom_manager begin
modified.

4. pxss would simply be removed from the system.

5. System initialization must be modified and possibly redone. Much of the existing
software can be used. For example disk support must still be initialized. The
initialization would, however, be done as part of setting up the disk control process.

6. Present H-Procs could be simplified by replacing them with kernel processors.

7. The accounting software must be supported.
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Extensions

The thesis has been concerned mainly with presenting a clean model processor multiplexing. In
actual implementation some additional issues can be considered. Some of this are simple extensions
and others represent a different point of view on the part of the implementor.

1. Robustness

The layered implementation provides a much cleaner structure than the current Multics
system. This structuring provides an environment in which the implementation of features
to make the higher levels more robust by providing a low level in which the implementation
of such support facilities is simplified

1. A Level | debugging process.
2. Ability to recover from trouble faults -- spare repair processes.
3. Ease of timeouts and error recovery by I/O processes.
4. Daemon kernel. processes.
II. Taking advantage of the implementation

This section lists some ways of taking advantage of the existing software in implementing
facilities on Multics.

1. Waiting on messages.

One can associate an event counter with each message segment (or mailbox) that gets

" advanced whenever a message gets placed in it. This is an effective and much more
powerful replacement for IPC. Some of the advantages include the ability to have
InterProcess (message) Communication with access control. There is also no limit to the
number of processes that can be awaiting the message. Since the transmission of the.
message is via a segment in the hierarchy the problem of setting up and communicating 1PC
channel numbers is eliminated. One final advantage of the proposed implementation is that
any process with access to await a message can specify immediate attention (i.e. an interrupt)
when the value is changed.

These facilities can provide a basis for a number of features. It is possible to implement
notification upon the receipt of mail. Alternatively a server can be awaiting messages and
then create processes the handle them (i.e. potential processes).

III. Changes to the model
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I. One of the basic assumptions in the model is that Virtual Processors at level | are
neither created or destroyed. This assumption actually complicates the system by
requiring that all uses of kernel processes be predetermined. In particular the
initialization of the system must be carefully planned with respect to the use of VP’s.
This is similar to requiring that all Multics tables used in managing the system such as
the AST be determined when the system is generated, as opposed to during initialization
as is presently done.

The reason for the restriction on VP's comes from two primary sources: the need for
simplicity and the attempt to carefully structure management of memory. The simplicity
argument is not one of absolute simplicity but a choice of what to simplify. One must
pay the price of carefully preplanning use of these processors. In particular when one
dynamically reconfigures the system to add a new device (logical or physical) and one
needs to dedicate a virtual processor to its management, one cannot tolerate the lack of
availability of such a processor, nor can one reduce the number of virtual processors
managed by level 2 since that would change the level of multiprogramming of the
system.

While the requirement of a program that is able to assign primary memory addressable
by the PAM might add additional complexity to the system, it does not affect the
layering of memory memory management since it is not dependent the management of
virtual memory. In fact in an ideal processor such a mechanism would be simply
structured such that it can be shared by both the page frame allocation mechanism and
the primary memory allocation interface. The 68/80 processor is a little more complicated
in that the PAM is unable to easily address more than the first 256K of memory. But
this requirement is already present for I/O buffer management. To summarize, this
mechanism must exist anyway for performing I/O and fits within the structure of the
memory management hierarchy so that it does not really add complexity to the system.

Thus the ability to dynamically create virtual processors. would simplify the
implementation without affecting the layered model of the system.
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' . The existing implementation

A test implementation of the basic level one portion of the two level system has been completed. It
supports the functions of level | with the exception of paging and the handling of faults reflected
to user processes.
It is a modification of collection one of Multics initialization. Interrupt and fault processing have
been replaced by the PAM and the VPC. The VPI interfaces for "run”, “await”, "advance”,
“crash_system" and “clear_cache" are supported. The system spawns kernel processors (including
the VPC and the idle processors).
The only 1/O device supported is the console typewriter. The interrupt side processing for the I/O
is performed in a processor dedicated to that function. The stopped (to indicate a processor
entering the stopped state) and the clock events are supported. The idle processes share a
descriptor segment.
The following changes were made to the system:
l. The PAM was implemented to handle all faults and interrupts.
2. The VPC was implemented to:
a. Convert interrupts (as noted by the PAM) into notified events.
b. Manage the clock event.
c. Advance the stopped event when a VPT stops.

d. Process run and notify messages.

3. init_collections was modified to call init_basic_11 and not to call
initialize_faults. PVT initialization and tape initialization was also eliminated.

4. init_basic_11 was implemented to initialize the PAM and the VPT. It spawns the
VPC and idle processors.

5 create_kernel_process was implemented to initialize a VPT entry.

6. init_11_get_segment was implemented to create segments for processes’ dsescriptor
segment and pds.

7. The prds was eliminated.
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8. privileged_master_mode_ut was modified to use the pam for entering BOS and for

clearing the cache and associative memories.

9. init_sst (and the sst) was modified to remove masks was for inhibiting and
generating interrupts.

10. pxss was eliminated. So was tc_data.

ll. The fimand i1 were replaced by stubs since at this point the system is unable to
handle reflected faults. These routines will have to be redone. The same goes for
emergency_shutdown and related programs.

12. The pds was cleaned up to remove unneeded storage for fault data in the header.

13. VP1 and VP_util were implemented to interface to the pam and to support the idle
process.

14. run_basic_11 was implemented as a process to give periodic status messages. The
moritician was implemented in a similar manner to monitor stopped processors. It
uses status_report which, in turn, uses octal for typeouts.

15. interrupt_process_driver was implemented to manage the interrupt side process.

16. ocdcm_ was modified to use eventcounts to govern contention on locks. -

17. A pxss was implemented to provide a write-around to addevent and notify primitives.
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Glossary

Some suffixes are commonly associated with abbreviations. "E" is used to indicate an

entry in table and "p" is used to designate a pointer.

The Add Delta modifier causes the effect address to be computed using an indirect
word and increments the value of the word by a specified amount. It is of interest
because it is atomic with respect to other instructions using the modifier.

Active Meter Table.

Active Meter Table Manager.

Active Process Table. The APT in current Multics would be replaced by three
databases. At levels zero and one there is the VPT. The level two traffic controiler
maintains the APT, and for efficiency, an IPT.

Active Segment Table.

Basic Operating System. This is a standalone operating system for the H68/80. It
provides utility functions when the full Multics environment is not available. Such as

when actually bootloading or debugging Multics.

"Call Processor”, an instruction implemented using the faulting mme4 and interpretted
by the PAM.

Clear Associative Memory PTWs.
Clear Associative Memory SDWs.
Inactive Process Table. This is maintained by the level two traffic controller and
corresponds to the APT, except that for reasons of locality the entries that are

referenced infrequently are moved into the IPT.

Level Two Traffic Controller.

The Master Mode Entry 4 instruction simply causes a fault. The fault handler will
interpret this to be a callp operation if the fault is taken while executing in a
priviliged segment. N

Processor Assignment Manager.

Processor Binding Manager; older term for PAM.

R. Frankston 42 RFC September 8, 1976 21:23



v
=)
-

|

-
-
3

|

%
o
£

7]
[ad
(]
—

[
N
3
(2]

VCPU

vp

|

<

<
v
0

<
-
|

<
e
i |

|

Z
=
-

R. Frankston

Two-level Process Implementation

Project Definition Table.
Page Table Word

Segment Descriptor Word

Store Instruction Counter plus one. This instruction is used to set a f lag to be tested

with sznc. It is of interest because it does not affect registers, is atomic with respect to
sznc and stores a nonzero value.

Set Zero Negative and Clear. This instruction is used to test a flag set by stcl. It does
not affect registers and rests the flag after test Since it is atomic with respect to stcl it
is good for low level synchronization primitives.

Virtual Central Processing Usage. A measure of the time assigned and executing.
Virtual Processor.

The procedure that interfaces to the cal 1p instruction.

Virtual Processor Coordinator.

Virtual Processor Table.

Wired Event Table

Wired Meter table
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