M.I.T. Laboratory for Computer Science September 22, 1976

Computer Systems Research Division Request for Comments No. 124

Revised CSR Proposal to ARPA/ONR
from David D. Clark

The original version of the continuation proposal to ARPA for calendar
1977, which was distributed as RFC 117, has been extensively revised and
expanded as a result of discussion with ARPA, sufficiently so that it seems
desirable to distribute the revised version. I would suggest that those in
the group who are interested in our new research direction read this version,
since it confains much more concrete statements describing what we expect to
do.

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author's permission, and it should not be referenced in other
publications.






6. DISTRIBUTED COMPUTER SYSTEMS

The Computer Systems Research Division of the M.I.T. Laboratory for
Computer Science proposes to continue the research, started as a study last

year, in the area of distributed computer systems.

6.1 Introduction

The term "distributed computing" is appearing with increaéing frequency
in current technical material, often referring to such common computer
organizations and operating system strategies as multiprocessing, array
processing, time-sharing with remote terminals, and so forth., This broad
usage is generating considerable confusion as to what distributed computing
really is. To some, it seems the wave of the future, capable of solving all
current problems in large scale computing and information processing. To
others the term distributed computing is dismissed as a new catchword for old
techniques that do not work well. While we do not believe that distributed
computing is a panacea, we do believe that there are significant and
fundamental functional advantages to be derived in certain applications from

the use of distributed computing, advantages whose potential can be exploited
through a well organized program of research. It is this line of research

that this proposal addresses.

6.2 Justification for Research

The following are the most important functional advantages of distributed

computing that we have so far identified:



1) Reduced vulnerability to attack, sabotage, and failure.

There are many circumstances in which a single centralized computer facility
can not be sufficiently protected or reliable to provide required levels of
availability. In such a circumstance, a distributed éystem with some degree
of physical separation appears to provide an alternative architecture that can
be highly robust in the face of failure of individual computing nodes. Not
only does distribution allow continued service in the face of 1solated
failures, but iﬁ also prevents the compromise of one single site from
revealing the totality of the information stored in the system. This latter
point may make a distributed information system much more acceptable for

storing certain civilian information as well as military information.

Another kind of‘failure common in shared, centralized systems is the
administrative communication failure, in which the computer system is
intentionally shut down at a time when some individual needs its service.
First hand experience with such administrative trouble is probably one of the

primary forces leading to decentralization decisions.
II) Ability to grow.

A principal potential of distributed systems is that they can be capable
of growing in the same unbounded way that telephone networks can and dékgrow.
The interesting aspect to this growth is not so much increasing computational
capacity, but increasing information capacity and the accessibility of that
information. A properly designed distributed system should be capable of
growing with a cost that is linearly related to the size of the computation
performed, and with no increase in the complexity of the organizational

algorithms. In contrast, while a centralized realization of a computation can



often be moved to a larger machine, the cost in complexity as well as dollars
is often increased by a factor much larger than the absolute increase in the

size of the facility.
II1) Rapid response through parallel computation.

Parallelism is not the same thing as distributed computing, and we are
not proposing to study the general topic of parallel structuring of
algorithms; much work has already been done by other workers in this area.
However, it must be noted that parallel computation may provide a fundamental
solution to certain requirements of speed, an especially interesting point to
us when the limitation on speed is not raw calculation, which can be tackled
with a more complex central processor, but rather a limitation on the ability

to access and manipulate data.

IV) 1Increased function for information utilization.

By increased function, we do not mean the ability to perform new sorts of
computations not performable on a centralized site. We feel that any
computation performable on a distributed system is in principle capable of
being performed on a centralized machine. Rather, what we mean here is
increased ability of the user to access the information on which his
computations are to be performed. Information stored in a single central site
may be difficult and unwieldy to use if the eventual producers and consumers
of this information are geographically distributed. Conversely, information
maintained on separate, isolated machines is very difficult to use as an
aggregate. We anticipate an increasing need for the fusion and integration of
related information which is generated from many individual and geographically

distributed sources. While this point is somewhat more subjective than the



previous, we believe that this increased ability to make use of information

is, by itself, a compelling reason for the study of distributed systems.
V) Economic Advantage.

While the economic arguments in favor of distributed systems are not
functional ones, as the previous arguments have been, they may be quite
compelling in the long run. We observe in practice that the cost of the
computing hardware grows directly as the product of its processing capacity P
in MIPS (million instructions per second) and its storage capacity M in MBYTES
(million bytes). Accordingly, assuming low communication costs, a large
system consisting of N processors with N memory units, each of capacity P and
M is considerably cheaper than a single unit with the same overall capacity

(NP)*(NM), since N*(PM) < (NP)*(NM).

The preceding items seem to us to represent a clear enough justification of
the advantages of distributed computing that research in this area is
justified in order to realize these benefits. Even in the absence of these
positive benefits, there is a very compelling reason for investing the effort
now to understand the implications of distributed computing, following from a
reverse application of the previous argument of economics. The apparent
economic advantage of dedicating a small computer to each small task is
causing organizations to decide at a low administrative level to purchase
local, dedicated computers, rather than participating with other organizations
in using a shared computer. Since each application is intended to run in
isolation, the software cost is not influenced by this decision to use a
separate machine, and local organizations achieve a significant reduction in
hardware cost. By itself, each such decision seems quite reasonable, but

insufficient attention ig paid to the inevitable future need for these systems

4



to communicate with other locally justified small computers. While for any
single special case, it is possible to string communication lines and invent
protocols to connect the machines together, a need is certain to develop for a
greater degree of coherence across such operations. It is likely that
"patching on" of coherence across systems that are not ﬁrepared for it will be
expensive and impractical. Many computer users are just now involved in
unsuccessfully trying to "patch on" security in systems that were not prepared
for it -- the issues seem quite parallel. For this reason, it is appropriate
to study how the machines and their information should be structured so that

eventual unification as part of a distributed system is feasible.

6.3 Relevance to ARPA and the Department of Defense

The five advantages of distributed systems presented in the previous section
are all directly applicable to problems facing the DoD now or in the near
future. Looking at the broad spectrum of DoD computing, we see these
advantages as being relevant in a variety of ways. For example, 1if the DoD
is to have an advanced command and control system on which users can depend in
a crisis situation, several problems must be solved which may only be
approachable by means of the sort of distributed system we gnvision. In order
to provide the rapid response needed in a crisis situation, ~computation by
multiple processors may be required. To obtain the level of availability which
will allow end users to depend on the system, the reliability obtainable
through distribution will almost certainly be required. To enable the system
to adapt to chahging demands, the growth potential of a distributed system

will be needed.



Less demanding computing applications of the DoD will not require the
increased functionality of distributed systems, but even in these sorts of
applications, it is clear that the advantages of administrative convenience
and autonomy and lower hardware costs obtainable from decentralization are
already a force throughout the Defense establishment, and decentralization can
be detected in some part of almost every new procurement of computer-based
systems. The need for coHerence amoﬁg these independently acquired systems
will soon be one of the dominant problems of computer use facing the Defense
Department. We believe that it is crucial for ARPA to fund research that will
enable it to contribute to the solution to this problem of coherence in the

right time frame.

While a policy decision could be made to discourage this trend toward
decentralization in those cases which do not absolutely demand it, we feel
that this would be inappropriate. The benefits of distributed systems are
widely applicable, since advantages such as increased availability are
appreciated in almost every application, and contributevmaterially to the
eventual acceptance of a system by its end users. The ultimate failure of
users to accept a system is a serious problem now being faced by creators of
new computer applications. The potential of distributed systems to help
solve this problem is a strong benefit which ARPA can derive from this

proposed research.

The previous paragraphs indicate why we believe that research in
distributed systems is justified within the DoD in order to enable new
applications and avoid chaos. The next section will discuss how we propose to

carry out this research in order to achieve these goals.



6.4 Strategy for Research

At a high level, our research goals can be very simply stated: we wish
to discover and develop a structure for a system of interconnected computers
such that the positive goals outlined in the previous section are realized.

We emphasize our goal at this high level because, in our opinion, much of the
current research in distributed computing has, even at this high level, missed
the point, in that it has not addressed itself to realizing any of the
fundamentally new capabilities that will dépend on distributed computing.
Superficially, justifications of highér reliability and increaséd speed (of
parallel operation) are often used, but these justifications usually turn out,
on more careful analysis, to be based on the economic advantages éf modern
mini- and micro-computers, rather than on any intrinsic limitations of the
functional capability of traditional system organizations. More strongly,
current research has missed the point by failing to build systems whose
intended applications are those that will benefit from the advantages listed
above., For example, a distributed computing system designed to deliver as its
end product a fairly traditional time-shared programming enQironment does not
provide a vehicle to demonstrate the potential for unlimited growth. Such a
system could provide increased reliability, but only as increased availability
of the computing resource, not as increased reliability of the distributed

information stored in the system.

Thus we assert that legitimate research in distributed system can only be
carried out in the context of particular sorts of applications that can
benefit most strongly from the structural advantages of a distributed
realization. The two most promising examples we have considered are a

distributed message passing system and a distributed data base management



system, \

The technical problem that seems most central in>dealing with either of
the above kinds of applications is the naming, accessing, and protection of
the objects with which the distributed system deals. We expect that this
topic will represent the major focus of our research for the coming year. The

following discussion expands on these ideas.

Several ideas come together under the topic of naming of objects. First
is the concept of object-oriented addressing. Our experience with Multics has
convinced us of the great benefit of a segmented address space, in which the
user may refer to a number of segments, information containers, that are
separately named. The Multics realization of segments, however, is deficient
in two respects. First, segments in Multics are rather expensive, so that the
user cannot afford to have a very large number, each perhaps rather small.
Rather, he tends to use large segments with a great deal in each one. Second,
the names used by the hardware to refer to segments do not have sufficient
scope in Multics: they exist for the duration of a process, while they should
be unique for all time. The importance to a distributed computing system of
providing a programming environment in which these deficiencies are corrected
is that these inexpensive segments with universal names, often called "small
objects'", appear to be the entities that will form the basis of inter-system
transfer in the distributed system, and it is crucial, if the system is to
provide support for the distributed computation, that the elements being

transfered are entities understood at the system level.

The second issue is the question of locating and resolving names
generated at distant sites. In a traditional centralized computer system all

objects are under central control and are consequently known. In a

8



distributed system, objects are necessarily generated in an independent way,
hence there exists no central location where they are all known. This
important distinction has far reaching consequences in the design and
organization of a distributed system. The problems here range from that of
finding a particular record of a data base stored on some foreign machine to

locating the mailbox of the user whose home machine is unknown.

Third, there is the problem of how objects shall be represented in the
programming environment of the user. 1In Multics, a segment from the file
system is made accessible to a user program by a simple mapping between two
name spaces, rather than by the copying of this file into the user’s address
space. This form of diréct access appears to simplify the construction of
programs, buf it is not a natural representation in the case that the object
being referenced is in fact on a different site. The particular mode of
access developed on Multics was designed to facilitate the direct sharing of
information between users. It appears that while the pattern of access itself
is very desirable, the ability to share objects directly is not exploited to a
significant extent. To the extent that this is true, as we are now attempting
to determine, it may be possible to devise a means of representing objects in
the programming environment of the user that maintains the same programming
advantage as the direct access file system but is more natural in the case
where some of the objects being referenced are stored in another node of a

distributed system.

Fourth, objects in a distributed computer system must be protected
against inappropriate reference or modification. There are several aspects to
this problem. A user, properly identified on one machine, may need to have

access to information stored on a different system. How is the user’s



identity and access rights to be passed from one machine to the other?

Another problem has to do with users who are not permitted access to data
itself, but are permitted to perform certain manipulations of the data, for
example to produce statistical summaries. The necessity of imposing this sort
of restriction on the user may strongly constrain where certain computations
may be performed in the distributed system. This sort of constraint must fit

into the computing patterns of the system in a natural way.

Last, there is a protection issue of a different kind. 1In addition to
worrying about unauthorized access to a data base, we must worry about two
authorized users who render a data base inconsistent by updating it
simultaneously. This problem is cured in a centralized system by various
sorts of locking stratégies; however most locking strategies do not extend
well to a distributed case, in which delays or failures may occur in the
locking protocol. We have had some success in attacking this problem, with
tpe discovery of a process synchronization mechanism, called eventcounts, that

seems to work well in the distributed environment. Much more work is

required, however, to demonstrate its applicability.

6.5 Uniqueness of this Approach

Although there are many research projects underway claiming the banner of

"distributed systems," most of these projects are addressing other issues,
such as hardware architecture, process synchronization, or high computation
rate, rather than the coherent naming issues raised in the previous section.
Two recent or current ARPA-supported research projects do have some objectives

similar to the work proposed here: the RSEXEC system, and the National

Software Works.

10



The RSEXEC system was an ARPANET experiment in using files from a
distance, on homogeneous machines (PDP-10"s running TENEX) whose operating
systems could be modified slightly if necessary. The National Software Works
(NSW) is an ongoing project to create a program development system using
facilities from several ARPANET hosts, and is based on a concept of a
network-wide cataloging system. Both of these systems deal with relatively
large objects (files) and use naming techniques for inter-system file
reference that could not (economically) be used for more fine-grained
information structures. In both of those systems, the intended applications
do not call for more fine-grained structures, but future, different
applications will cal for larger numbers of inter-object references, and more
refined addressing techniques need to be invented. Another way of describing
the same distinction is to note that both RSEXEC and NSW operate by copying
entire files; no finer-grained operations exist, and there is no concept of
sending a process to work on the data at its original site. The work

described in this proposal is intended to explore exactly such opportinities.

Another distinction separating NSW and RSEXEC from the proposed work is
that neither of the earlier systems had explicit goals of lower vulnerability
to failures and unhampered growth, and fail in several respects to.display

these features.

Finally, NSW in particular was designed under the constraint that it
should fit into previously existing inhomogeneous systems and the ARPANET:
for its application that constraint is acceptable, but it means that
techniques requiring either higher bandwidth ovr significant changes to the
underlying systems could not be considered. The proposed work considers these

two constraints to be substantially relaxed, with the probable result that

11



much more rapid time scales of interaction should be feasible.

In summary, the previous and ongoing research projects have goals and

constraints that differ significantly from the proposed work.

6.6 Experimental Programming Environment

The studies proposed in section 6.4 are conceptual in nature, and while a
proposal for an actual system implementation may evolve at a later date, no
immediate system development is appropriate. It is very important, however,
that we have available to us as a tool a programming environment in which we
can evaluate concepts and experiment with new ideas in distributed computing.
One of the particulat strengths of our research group has been that we combine
a strong expertise in developing new and theoretically interesting programming
structures with a willingness to construct practical systems to demonstrate
the validity of ouf ideas. It is clear, looking back on our Multics
experience, that our ability to implement our ideas as we proposed them was

instrumental in shaping these ideas to their final viable form,

We propose to use as an experimental test bed for our research the LCS
Local Network, implementation of which was started in calendar 1976. The
network will provide a valuable facility through which we can experiment with
the naming and refgrencing of objects in a practical environment. During
1976, as we proposed, we will complete a network design based on a buffered
version of the Ethernet, originally developed at Xerox PARC. We hope that
initial operation of a few PDP-11 hosts will take place by fhe end of the
current year. In our evaluation, which led to the decision to use the
Ethernet technology for this local network, we determined that we could

discover no significant distinctions between the Ethernet technology and the

12



ring network developed at the University of California, Irvine, except for one
issue related to acknowledgement of certain sorts of broadcast messages. We
believe that we can devise an interface to our network which is independent of
whether the ultimate technology is a ring or an Ethernet.k Depending on the
availability and suitability of ARPA developed interfaces to a ring network,
we will implement part of our network as a ring, in order to evaluate for ARPA

the comparative merits of the two architectures.

The LCS local net, in addition to providing an experimental medium for’
studying issues and problems of distributed computing systems, will serve as a
tool for making more effective use of ARPA provided resources in order to
carry out research missions of the Laboratory. Since all available ARPANET
ports are now used, and all available terminal ports on the TIP are now
occupied or committed, the existance of the local network, equipped with
suitable concentrators and gateways, will eliminate present and future
problems related to the necessary interconnection of resources provided in

support of ARPA research projects.

While the development of the network itself is clearly n&t a research
project, we feel that the installation of this sort of network in the context
of LCS will make a significant contribution to several ARPA goals. First,
while ARPA has considerable experience in the area of file transfer and
message passing, it has been based largely on the ARPANET, which is almost 100
times slower than this local net. This increased speed should, even in the
case of interconnecting pre-existing systems, lead to techniques for system
interaction which are more intimate and sophisticated than in, the ARPANET. We
expect that the file systems of machines connected together with the local net

should be able to resolve a reference by a program to a file on another

13



machine in a manner invisible to the program, and without intervention by the
user of the program. An understanding of the actual advantages which follow
from this increased speed should be generally valuable. Second, the LCS
network will serve as a means by which CSR can participate in the ongoing ARPA
research in internetworking. As a result of our initial protocol design
efforts, we believe that we can define a large common element between our work
and the ARPA internetwork protocols, where this common element represents the
fundamental mechanism required for internetworking. Working with other
relevant ARPA researchers, we propose to define this fundamental protocol.
Finally, the:-LCS local network can serve as an example for imitation by the
many other organizations within ARPA and the DoD that have encountered a need

for computer interconnection, but have no model of how to proceed.

6.7 Qualifications of the Division

The Computer Systems Research Division of the MIT Laboratory for Computer
Science has as its major interest the discovery of pragmatic ways for
systematically engineering useful compute; systems., It brings to this
research a perhaps unique combinatibn of strong expertise in the development
of theoretically interesting system structures, along with an interest in
practical demonstration and evaluation of its ideas throﬁgh actual
implementation in real systems. In the past, this research thrust has led to
the development of time sharing through the vehicle of the Compatible Time
Sharing System, and the development of the iﬁformation sharing computer
utility, through the vehicle of Multics. More recently, the Division has been
working on protection and security in information sharing systems, again using
Multics as a vehicle. The development and continued experimentation with and

evaluation of Multics has given the group great strength in the area of

14



understanding issues of object naming, accessing, and protection, which we
feel are crucial in the successful understanding of distributed systems. The
Division is also well acquainted with current research in the area of
distributed systems, through participation in various projects, including the
National Software Works, and through a detailed study of ongoing research

performed last Spring, some of the conclusions of which are presented in this

proposal.

6.8 Proposed Work

We expect that successful completion of the research proposed here will
require continued effort for a period of two or three years. As detailed
below, we expect the first year to be spent understanding how the concept of

object-oriented addressing can be integrated into a machine architecture.

Successful completion of this task will give us a much better idea of the
constraints that must be imposed on object names in order that they be
realizable., Research in subsequent years can then address such issues as
resolving these names in a distributed environment. The result of this
research should be a detailed description of a prototype distributed computing
system. The system we develop will explicitly address itself to the solution
of the problems discussed in section 6.1. Specifically, we envision an
interconnected collection of machines, with each machine providing an
independent file manager, but allowing access by programs to files in other
machines with the convenience and utility now associate& with advanced
centralized operating systems. A typical application which could be
constructed on this distributed system would be an integrated file manager, in
which records of files could be linked together across machines using

hardware-oriented names (addresses) in the same manner that records can be

15



interlinked on centralized operating systems today. For example, the
‘functionality that our system is to provide would be suitable as the storage
management substrate of a typical data management system, but in a distributed
rather than centralized form. These interconnected machines will operate
independently of one another, providing necessary reliability, and as new
machines are connected, their file systems will be accessible as part of the
existing file structufe, without the programs or the user having to take
explicit steps to learn about the structure of the file system on that new
machine. This particular architecture will provide a successful solution to
the constraints of reliability and rearrangeability present in advanced
applications such as command and control, and will help to organize functions

such as logistics in a natural and efficient way.

While the primary output of this project will be technical reports and
theses which will collectively provide the system description specified above,
there will also be the results of various experimental implementations which
will of necessity be performed to validate the design which we specify. These
implementations, which will be performed using the computers at the laboratory
and the local net discussed in section 6.6, will serve as an additional means

of communicating our results.

The results of this research can probably best be exploited by ARPA in
the following way. Following the completion of our system description, an
implementation of the specified machine should be undertaken, as a viability
proof. This is not a minor project, since it will also require the

construction of an operating system for the machine. An additional part of
this viability proof is the implementation of one or more applications, such

as a data management system, in order to demonstrate the features of the

16



design. With advancing technélogy for creation of database management
systems, implementgtion of applications to run on this machine should not be
an overwhelming tgsk. It is not clear whether this construction phase would
best be performed by our group, perhaps in conjunction with some manufacturer,

or could best be done by some other agency.

As described, the system specification resulting from our research will
provide a distributed file management environment in which an applications
builder can construct a spohisticated package for the management and accessing
of data in a straightforward manner. There is a related problem, which is the
integration after the fact, of preexisting data files which were not initially
constructed using a uniform structure for the data representation. We do not
discuss this problem in the current proposal, because we feel that the most
fruitful approach to the problem will not be apparent until we have a much
better grasp of certain issues related to naming and protection of objects.
However, we can indicate the extent to which we feel the proposed research can
contribute to the solution of this problem. First, a primary component of the
structure:of a complex data organization is the means by which related items
of data are tied together. In other words, what naming scheme is used to link
one data record to another? In almost all such structure$ existing today, the
naming strategy is specifically devised for the particular application, so
that names of records are meaningless outside the domain of the particular
programs constituting the application. This very severe limitation is
directly addressed by our research, in that it is our intention that all such
interconnections between data items should be made using the standard object
naming scheme of the computer, rather than an application specific naming
scheme. Another way in which our research may contribute to the solution of

this problem is that as part of the protection of data items, it will be

17



necessary to explore how to transmit a request for a data manipulation from
one machine to another, so that the transformation can be performed in the
protected environment in which the data is stored, To the extent that this
mechanism is required, it will also provide a means Sy which a system can be
requested to transform data, the format which is unknoﬁn to the requestor.
Beyond these rather preliminary speculations, we are as yet uncertain as to
how the problem of high-level representatioﬁ and transformation of data ought
to be handled. We believe that this problem, although very relevant to our
research, is separable, and we note that it can be studied in the context of a

centralized system as well as a distributed one.

The following specific activities are proposed for the calendar year

1977:
1) Begin the specification of a suitable distributed system architecture.

First, we will produce a specification of a system which supports small
objects for the storage of information, as discussed in section 6.4. We
intend to begin by studying the intrinsic structure of various existing data
management programs, to understand exactly what attributes small objects must
have in order to meet the demands of these applications. For example, can
aggregates of small objects be considered as a unit for purposes of storage
allocation and protection, and if so, are the same aggregates appropriate for
both of these functions? We are currently attempting to understand the need
for direct sharing of stored information, as a first step in this study. We
must also understaﬂd the currently available strategies which can be used to

implement the mapping of object names in an acceptably efficient manner.

18



Second, we will identify constraints which must be imposed on distributed
systems if they are to provide the functional advantages discribed in section
6.1. Initially, we expect the most success to come from addressing the issues

of reliability and growth potential.

Finally, we propose to determine any additional benefits of distributed
computing which should be included as goals of the archiﬁecture which we
design., While we feel that the list of advantages presented in 6.1 directly
addresses ARPA needs in a compelling way, we hope to identify other potential

advantages.

2) Complete the implementation of our experimental programming environment,
the LCS local network. We expect that the hardware design and low-level
protocol development for the net should be completed by the end of the current
year, but effort will be required to place the network in operation. To the
maximum extent possible, we intend to make use of technology already developed
by ARPA for this network; in particular, for the gateway which we must provide
between the ARPANET and the LCS local net we plan to use the gateway machine
which has been developed by ARPA. As discussed in section 6.6, we will
perform two explicit experiments using this network. First, to the extent
that ARPA developed.technology for ring networks is applicable, we will
perform an experimental comparison between the ring network technology and the
Ethernet technology which we intend to employ initially, for the purpose of
determining any possible operational advantages of one over the other.

Second, we will attempt to develop a basic inter-network protocol, embodying
the commonal;ty between TCP and the rather similar protocols which we have

developed for our own local net, in order to better understand the fundamental

19




mechanisms required for inter-networking. This effort is intended to be
viewed as part of the inter-networking research currently being carried out by
ARPA. If possible, we would like to broaden the range of networks available
for our studies in inter-networking by use of ARPA packet radio technology.

If ARPA can provide two packet radio transceivers, we will connect the Multics
machine to the LCS Network using packet radio, thereby creating a multiple
network consisting of the ARPANET, the LCS local net, and packet radio. This
experiment with the interconnection of subnetworks using radically differing
design should enhance our contribution to the ARPA research in

inter-networking.

3) Implement a version of the "Transmission Control Program" (TCP) for
Multics, so that Multics can communicate with other systems which have
implenmented a TCP. This implementation will enhance our ability to
communicate with other sites on the ARPA Network, and will 2llow Multics to

participate in inter-networking activities.

6.9 National Software Works Participation.

We anticipate that by December 1976, most of the significant work
required to make Multics a tool-bearing host, participating in the National
Software Works will be complete, and that it will be possible to edit NSW
files, translate them,vand use the Multics GCOS simulator, remotely through
the facilities of NSW. In addition, the NSW interface for Multics has been
developed in a way that many other Multics commands should be either directly
usable, or usable with only minor changes. For this reason, we propose to
reduce our level of activity on this project to that needed to tie up loose

ends, and to provide technology transfer support. We are actively looking for

20



"

an organization that is interested in taking over support of the special NSW

packages created for Multics.

21





