M.I.T. LABORATORY FOR COMPUTER SCIENCE December 2, 1976

Computer Systems Research Division Request for Comments No. 132

TRIP REPORT: WORKSHOP ON DISTRIBUTED FAULT TOLERANT SYSTEMS
by Liba Svobodova

Recently I attended a workshop on Distributed Fault-Tolerant Computer
Systems. This memo summarizes and analyzes those issues and problems discussed
at the workshop that might be of interest to our group. The workshop was
sponsored by the IEEE Technical Committee on Fault-Tolerant Computing and the
Technical Committee on Mini-Micro Computers. The purpose of the workshop was
to explore the relation between distributed computing and fault tolerance. The
interests of the people assembled at the workshop ranged from the design of
fault-tolerant switching circuits to the problems of reliability of data base

systems. The workshop program covered a variety of issues, but the whole notion
of distributed computing and, consequently, what reliability problems are solved

and what new problems are introduced by distribution, remained somewhat vague.

The distributed systems discussed at the workshop fall basically into two
classes:
.. multiprocessor systems where each processor can handle any of the
tasks performed by the system,
. functionally distributed systems where processors are dedicated

to specific functions.

Various tradeoffs were investigated along these lines. While pooling of
processors in a multiprocessor system seems to be more desirable from the stand-
point of hardware reliability, functional distribution is seen as a possible way
to reduce software complexity and, consequently, improve software reliability.
Multiprocessor configurations have been used as a means for achieving fault

tolerance for many years; multiprocessor systems provide redundancy required

This note is an informal working paper of the M.I.T. Laboratory for Computer
Scinece, Computer Systems Research Division. It should not be reproduced
without the author's permission and it should not be cited in other
publications.



-2-

for fail-safe operation. Functionally distributed system seem to be attractive _—
for special purpose applications where programming could be reduced essentially
to a control of the functional units (it sounds somewhat 1ike Dennis' Packet Flow
Architecture). It was agreed that the problem of distribution ought to be
further investigated to determine:

1) What are the primary reasons for distribution beside fault-tolerance,

and,
2) Is the distribution selected under these pressures also optimal

from the point of fault-tolerance?

One reason for going into distributed processing is the advantage of physi-
cal distribution. Physical distribution of computational facilities provides an
additional level of fault tolerance, namely, robustness in view of a physical
destruction of a part of the system. The need for such robustness has been dis-
cussed in our group in relation to data bases that, because of the importance of
their contents, may be a potential target of attack or sabotage. Perhaps a more
obvious situation where such robustness is important is a highly automized control
process in a possibly destructive environment. Military applications, of course,
belong to this category. bt

At first glance, it seems to be desirable that such a physically distributed
system would operate as a "multiprocessor" system, that is, the rest of the
system would absorb processing of the tasks normally handled by the destroyed
processing module. The system would permanently reconfigure itself and continue
operating, though with lower performance. It such a system were functionally
distributed, physical destruction of one processing module would lead not to
performance degradation, but functional degradation. But even such systems have
their justification, especially where a computing facility is only an element
of a larger and more complex system, where the correct operation of the system
depends on more than just the functions performed by the computing element. 1In
such systems, distribution of computing facilities should be based on the struc-

ture of the containing system. For example, in new airplanes where most of the

control functions will be computerized, it is planned to have specialized compu-
tational modules that will be located close to the corresponding sensors and
control hardware. If the sensors are destroyed, it does not matter if the attached

processor is destroyed too, since there is no need to continue related computations.

-



o

-3-

Other reasons for going into distributed processing quoted by workshop
participants included:

. easy expansion (and reduction) of the system,

. size advantages (for example, n small modules can be

more easily fit into the available space in an airplane

than a single large computer with an equivalent capacity).
Functional distribution was said to result in less complex software, facilitate
independent debugging of individual modules, make realization of hardware changes
easier, and give better performance than multiprocessor-like arrangement.

Fault tolerance in distributed systems was discussed mostly in terms of
redundancy, malfunction contaimment, reconfiguration, and also physical dis-
tribution as summarized above. A different set of considerations was presented
by Harris Liebergot from Sperry Univac. He defined a "distributed" system as a
system with distributed intelligence; such a system could be possibly implemented
as a single physical piece of hardware, but would be built of logically distinct
microprogrammed units. Replacement of hardwired logic by microprogram lowers
the cost for error detection, since error detection reduces to parity checking
on the control store but, as a tradeoff, microprogrammed logic is gslower. 1If a
system were built of microprogrammed units operating in parallel, cost of error
detection could be reduced without substantial loss of performance.

Functional distribution could be viewed as an extension of modular decompo-
sition used in software design, where a module implements a single abstraction.
Roy Levin and Fred Pollack from Carnegie-Mellon proposed a unified approach to
software and hardware design, based on three principles:

. mutual suspicion, that is, both software and hardware modules

use non-trusting interfaces,

information hiding, that is, only the abstract specification of

a module is known to other modules, information about the actual

implementation is not accessible,

fault detection on module level,
Roy Levin discussed mostly the problems of hardware design, with the conclusion
that mutual suspicion had been completely ignored in the PDP/11 design. Fred
Pollack talked about use of the information hiding principle for design of fault
tolerant software. His claim that some fault tolerant techniques can be better
implemented in software stimulated a lengthy discussion on the advantages and

limitations of hardware and software implementation of fault tolerance.



A

Most of the research in fault tolerance assumes faults in the form of
physical hardware failures or software and hardware design errors. The third
possible source of faults is the system input. In general, a system is required
to operate correctly even if the input contalns errors, be the errors accidental
or deliberate. Correct operation, however, can have several different interpre-
tations. In some cases, the system is required merely to detect an error in the
input and report it. In other cases, the system may be required to produce a
correct resultin spite of an error in the input. One example of the latter
approach was a presentation by Victor Lesser from Carnegie-Mellon. He uses
redundancy in the input data and applies AI techniques to handle errors and
uncertainties in perceptual problems. In control applications, the computer
module interfaced to a variety of analog devides might be the most reliable
element in the complete system. Thus the overall reliability of the system
could improve if the computer was able to tolerate errors in its input, Finally,
the system's enviromment must be regarded as a source of faults. The envirommental
"errors'" can cause physical failures of hardware components, induce errors in the
input, or, as already discussed, completely destroy a part of the system.

To what extent a system must tolerate different types of faults depends of
course on the system's function. To organize and relate the variety of issues
and systems discussed at the workshop, Jack Goldberg from SRI drew a space of
fault tolerance issues in terms of fault type, criticality, degree of tolerance,
maintenance, and redundancy. The criticality and the required degree of tolerance
are determined by the system's function. The criticality is measured in terms
of what is at stake in case of a failure: human life, organizational life, or
economics. The degree of tolerance could be assessed on three levels: correct-
ness, fail safety, and availability. Jack Goldberg used this classification
scheme to outline the fault tolerance issues in a distributed data base system.
The following is his description:

Dominant fault types: Breakdown in hosts and communicatioh

Poor data entry

(both may be accidental or deliberate)

Criticality: Organizational life

Economics



-5«

Degree of tolerance: Correctness of small fraction of data
Access to semantically related data (fail safety)

' Continuity of information flow (availability)

Maintenance: Human back-up for lost information (operational)

Automatic house keeping (off line)

Redundancy: Low average order of data replication

Intrinsic computational redundancy

This may be a fair description of a typical data base system, but there are
important cases that involve different issues. The criticallity concerning
human lives is generally associated with real time control systems, but human
lives might be also threatened by releasing sensitive information to wrong

hands. As for the maintenance, it may not be possible to rely on human back-up

for lost information due to the large volume of information processed or because
there is no human element involved!

Reliability of a system is its ability to provide a specific level of
functionallity in a particular enviromment. John Meyer from the University of
Michigan argued that reliability analyses should be based on the behavioral view

of the system rather than the usual structural view. The system can "fail" in many
ways internally, in its structure, yet externally still exhibit satisfactory,

or at least tolerable, behavior. Such "partial success" is difficult to express
in the structural model.

Consider a simple example. From a structural view, reliability of a dis-
tributed system can be expressed as a probability that a given subset of modules
(processors, memories, communication links) is working correctly. From the
behavioral view, reliability may have to be expressed in terms of a certain
function or functions being performed within time T. Thus, functionally relia-
bility means not only availability of computing resources but also speed of
execution. Also, from the behavioral view, reliability requirements often change
as a function of time: the system has to operate correctly only when actually
in use, which may be only a fraction of its total life time.

The behavioral view of reliability analysis is applicable to the problem
of consistency in data base systems with multiple copies of data files. We all
agree that in practical applications perfect consistency of data base is not
necessary. The reliability of such a system can be defined in terms of the

level of inconsistency in the data base. The system performs 'correctly'" as



-6~

long as the level of inconsistency does not exceed a specified limit. Theo-
retically, the methods used in reliability analysis are applicable here, but
the real problem is how to model the system, its environment, and the incon-
sistency relation.

Finally, in my short informal presentation, I described the types of
distributed systems considered in our research, with emphasis on the type of

"fault tolerance' required:

1) The system consists of self-contained members that have agreed to
cooperate in creating a coherent system at some specified functional
level. It must be possible to physically disconnect a member from
the rest of the system; the rest of the system must continue operaﬁ-
ing correctly, but possibly with degraded functionality.

2) Each individual member must be able to continue operating correctly
in case of a failure elsewhere in the system which may result in a
complete isolation of the member from the rest of the system;
however, such failure may possibly cause a degradation in the system
functionallity.

3) While availability of information is important, it is not always
critical; however, an unauthorized release or damage of stored

information may be critical.

As the last issue, I would like to discuss the relation between reliability
and performance. In the literature on performance evaluation of computer systems,
reliability (mostly in the sense of availability) is often considered to be a
measure of performance. However, it seems to be more appropriate to regard
performance (in the sense of execution speed and throughput capacity) as a relia-
bility issue. That conforms with the previously discussed notion of behavior-
based analyses of system reliability. From the behavioral view, reliability
means correct execution of permitted operatioms, refusal to perform operations

that are not permitted, and performance.



