M.LT. Laboratory for Computer Science January 13, 1977
Computer Systems Research Division Request for Comments No. 133

Multiplexed Communication for Secure Operating Systems

Eugene C. Ciccarelli

Attached is my recently accepted Master’s thesis proposal.

This note is an informal working paper of the M.I.T. Laboratory for Computer Science,
Computer Systems Research Division. It should not be reproduced without the author’s
permission, and it should not be referenced in other publications.

Massachusetts Institute of Technology
Laboratory for Computer Science
Computer Systems Research Division
Proposa_l for Thesis Research in Partial Fulfillment
of the Requirements for the Degree of

Master of Science

Jitle: Multiplexed Communication for Secure Operating Systems

Submitted by: Eugene C. Ciccarelli Signature of Author

550 Memorial Dr. Apt. 22D
Cambridge, Massachusetts 02139

Date of Submission: January 13, 1977

Expected Date of Completion: August, 1977

Brief Statement of the Problem: .

In computer systems, network control programs are usually large and complex. As
networks are added to the system, the size of the supervisor grows quickly betause these
control programs are implemented independently of each other; this rapid growth makes
detailed understanding of the supervisor very difficult. The proposed thesis will present a
design that removes most network-dependent code from the supervisor, leaving a very simple
multiplexing mechanism largely shared between networks.

Supervisor Agreement:

The program outlined in this proposal is adequate for a Master of Science thesis. The
supplies and facilities required are available, and 1 am willing to supervise the research and
evaluate the thesis report. ‘

David D. Clark, Research Associate in
Electrical Engineering and Computer Science

E. Ciccarelli 2 January 13, ‘1977
|

Introduction

My thesis will attempt to simplify the design of the multiplexed communication system
within the supervisor of 5 general time-sharing computer. It is part of a larger project
seeking to identify and design a security kernel for Multics. A major requirement of a
security kernel is that its subsystems be small and simple, in order that they be well
understood; currently, however, 1/0 subsystems are neither small nor simple. In Multics most
of the supervisor’s 1/O subsystem deals with multiplexed communication; it thefefore is a
major obstacle to the design of a complete security kernel.

(The Multics system will be used as an example throughout this proposal and my
thesis.)

In Multics there are two parts of the supervisor that handle multiplexed
communication: one that communicates with a Front End Processor, to which user terminals
and other devices may be attached; and one that communicates with the Arpanet. Using
Arpanet terminology, I will call such modules “network control programs”, or "NCP’s". These

two modules are large and complex, with almost no sharing between them. The strategy of

separate and complete NCP’s, each entirely within the supervisor drastically increases the

amount of supervisor code as more networks are connected and more NCP’s are implemented;
the effort required to understand and ensure proper operation of the supervisor increases
proportionally.

Thus, two goals of my design will be: reduce the bulk of the NCP supervisor code, and
reduce the number of network dependencies within the supervisor -- allowing a uniform

design that grows slowly as the number of NCP’s increases.

S il

E. Ciccarelli 3 January 13, 1977

Secure Multiplexed Communication

My thesis will model the multiplexed communication facility, and then proceed to
examine functions in this model to determine which affect security and therefore mﬁst-reside

in the kernel. Before this can be done, security requirements must be explicit.
Security Requirements

Since communication 1/0 deals with entities outside the sysfem being secured, the
security requirements for 1/0 may not be obvious. If communication is to an unsecured host,
data transferred to and from that host is not secure; however, we would like to ensure that
such communication may occur without endangering the security of users who are not
communicating with that unsecured host. Further, when two secured hosts are communicating
via a secured network, the combination must be secure: the communication path must meet
the security requirements of a path completely within one secured host. Precise details of

1/0 security requirements will be presented in my thesis.
Communication System Model

Diagram 1 shows a data flow model for a communication facility. Higher level (protocol)
functions are on the left; basic multiplexing and finally the hardware interfaces are on the
right. Currently, both the Front End Processor and Arpanet NCP’s implement something like
this model separately within the supervisor.

In my thesis 1 will use this model to identify attributes that cause functions to be

placed in the supervisor and to show how the principles of separating policy from mechanism

E. Ciccarslli 4 January 13, 1977

and minimization of supervisor mechanism can be applied at the same time network
dependencies are identified and separated. Most network dependsncies can be mapped onto
policy desicions about network-independent mechanisms. |

Messages read from the network are stored in a multiplexed input buffer (MIB). The
demultiplexing function (DMPX) examines each incoming message, checks its validity, and
decides for whom it is intended; the message is put in a demultiplexed input buffer (DMIB)for
its recipient. The recipient (e.g. user) process may then, at its leisure, call to read from the
DMIB.

A sender process calls the WRITE function to send data; this is put in an demultiplexed
output buffer (DMOB), which is marked ready for outputting. The multiplexing function (MPX)
schedules the reédy DMOB’s and copies messages into the multiplexed output buffer (MOB).
The multiplexor ensures that the from-name field in the message is correct.

Some of the demultiplexed streams carry protocol-specified control information. The
PROTOCOL function shown communicates with local users and with protocol modules on other
hosts to control the connections between users.

I will divide this model into two parts: basic multiplexing and protocol functions. My

thesis will argue that while the former is a kernel function, the latter is not.

Basic Multiplexing

Since basic multiplexing will reside in the kernel, it must have a simple design. There
are several problems that have to be faced, among them:
Network-dependent functions have to identified, minimized, and isolated from network-

independent parts as much as possible. Since these functions constitute the part of the

E. Ciccarelli 5 January 13, 1977

kerne! that grows when new networks are attached, minimizing their functionality iessens the
extra effort needed to ensure that they are secure. Isolating them from network-independent
functions simplifies their interactions with the rest of the kernel, and thus allows the kernel to
be incrementally secured as networks are added.

The decision about what to do with incoming message§ with header errors can
complicate the demultiplexor mechanism. This iss‘ue is related to the previous, since this
decision may be network dependent.

The DMIB’s and DMOB’s run into the small-object problem. It may be too expensive to
keep these buffers in separate segments outside the supervisor; in addition, there may be
naming constraints that limit the supervisor’s ability to access many separate user segments. '
These buffers are then likely to be within shared, supervisbr segments, and buffer
management should be done in a simple network-independent manner it possible.

Each network’s MIB and MOB will be expensive wired resources. Management of these
buffers also is critical to keeping the kernel simple. Network dependence should be placed in

the functions that access these buffers, not in the buffers themselves.
Principles of Design

In designing the bas‘;ic multiplexing facility, 1 will use the following guidelines:
1. Isolate policy from mechanism.™" ™

2. Isolate and minimize network-depeﬁdent parts.

3. Use type extension to structure the various resources.™ ™ [n particular, type
extension can be used to separate network dependencies that might exist in the multiplexed

butfers, building them upon network-dependent multiplexed-buffer types.

4, Mechanisms should be stateless as much as possible, so that understanding them

E. Ciccarelli 6 . January 13, 1977

does not require knowing history of the multiplexing.
5. The muitiplexing facility should consider each connection to be half-duplex; i.e.,

input mechanisms and states should not interact with output mechanisms and states.

Protocol Functions

Logically, per-connection protocol could be handled by the user domain, while any
multiple-connection messages in general must be handled by a supervisor function. I will
attempt to move as rﬁuch per-connection protocol as possible out of the supervisor, removing
most network de'pendence, complexity, and bulk.

Three important protocol issues can force code into the supervisor: simulation of
parallel processes to handle network connections, facilities for interrupting a user
computation, and ensuring that some incoming messages get handled very quickly. Each of
these must be examined carefully to see when they are necessary, and what minimum

supervisor mechanism is necessary to implement them.
"Parallel Processes”

The Multics Arpanet NCP implementation centers the protocol code around one "socket
stafe" for each connection, and uses this state to control simulation of parallel processes to
handle each connection; The assumption in the design is that the user cannot have (or it is
too expensive to have in general) a separate process for this purpose. Whenever any .
process calls into the NCP it will cause the supervisor to handle any socket control that needs

to be done. Thus the decision.to simulate processes causes functions to be placed in the

E. Ciccarelli 7 January 13, 1977

supervisor and must be examined carefully.

Some functions don’t need parallel handling, i.e. protocol exchanges that start and
proceed synchronously, such as connection setup; they need no help from the supervisor.
Other functions, such as connection termination, may start at any time, but then proceed
synchronously. These functions need only a supervisor mechanism to start them, i.e. an
interrupt facility. The user domain can do its paraliel-process simulation in this mannér

without affecting security.
Interrupts

An interrupt facility is fundamental to multiplexed communication, and needs a kernel
mechanism to handle it. However, this can be provided by a very simple, network-
independent, stateless mechanism, e;g. a bit in an incoming message. - Having such a mechanism
within the kernel leaves the interpretation of the interrupt, a protocol issue, out of the
supervisor. |

If users can have a separate, parallel process synchronously reading incoming control
messages, then this interrupt mechanism is not needed within the NCP. (It is provided by

other inter-process signaling kernel mechanisms.)
Quick Response

The problem of very quickly responding to an incoming message can seriously
complicate attempts to extract network protocol from the supervisor. This problem arises
with respect to flow control: the issue is maintaining high throughput to a recipient that

cannot butfer very much and yet can process its input at a high rate (but not necessarily at a

E. Ciccarelli 8 January 13, 1977

constant rate predictable by the sender). An example of this would be a display terminal

attached directly to a high speed, local network with very little buffering except that in the

hardware interface. If there is enough buffering at the receiver, the sending user process |
has enough time when it gets a flow control message to wake up and respond by issuing more

output, keeping the overall bandwidth high. However, if there is not enough receiver

buffering then the response of the user process will not be fast enough to maintain the

desired bandwidth. This problem has, in the past, forced some flow control code not only into

the supervisor, but into interrupt-time code.

Thére may be several ways of dealing with this problem:

First, it might be considered not to be a problem; since memory is getting much
cheaper, it may be acceptable to require that enough buffering be used.

Second, if sender and receiver can agree on a method of predicting the receiver’s
processing rate as a function of the data, the kernel could provide some simple, network-
independent mechanism for regulating the output rate, possibly by a time-stamp on messages
(relative to the last message’s output time or absolute). This would be a more eftective way,
for example, of handling known delays that occur when sending certain control-sequences to
terminals (e.g. clear-screen, home-up) than inserting padding characters.

Third, thé needed buffering and response may be provided in a separate processor,
oﬁe in which a process can wake to handle frequent flow-control messages without loss of
bandwidth. The user would send large, infrequent messages to the buffer-processor, whicﬁ
would break them into small, frequent messages to be sent to the receiver.

A buffer-processor could be associated closely with the writer’s host, or it could be a
separate host on the network. In either case the question arises: how much of this
processor has to be secured? The answer depends upon the exact form of the security

requirements for the 1/0 system, but consider a secure host sending via a secure network to

E. Ciccarelli 9 : January 13, 1977

a secure receiver, with the information routed through an unsecured buffer-host; the
resulting path may not be considered secure. There are two approaches to this problem:
First, it may be possible to identify a very small kernel for this processor. Second, a low-
level flow~-control protocol could be embedded within a higher-level protocol using end-to-end
encryption.™ ™' Encryption can provide the security instead of the buffer’s kernel, and the
buffer may be left unsecured. The encryption protocols, unlike flow-control protocols, do not
demand quick response, and therefore may be handled by the end user processes without
trouble. Note that both approaches benefit from a very simple flow-control protocdl within
higher-level protocols, and that the flow-control protocol can be under the contro! of the user

processes, just as is the higher-level protocols.

E. Ciccarelli 10 ; January 13, 1977

Proposed Plan of Research

- My research will consist of two parts: a.comprehensive design of the secure
multiplexed communication 1/0 facility, and a partial implementation to demonstrate the
teasibility of my design.

The kernel design will stress network independence and minimum mechanism, leaving
(as much as possible) network dependence and policy outside the kernel. The design will also
include discussions of non-kernel facilities, since the thesis must show that removing much of
currently supervisory functions can be dOné efficiently. Particular attention will be paid to
the problems of high-bandwidth flow control under quick-response, smali-allocation conditions.
various solutions will be offered, dealing with‘fast processes, special processors, and buffer-
hosts. Various protocols and their possible implementations will be discussed, including TCP, |
Arpanet Host-Host, Telenet, and DSP, /" 7 ATA 76, Teknel 75,057 761

The specifics of the partial implementation will be worked out as the design
progresses. The implementation will concentrate on showing the viability of the major ideas:
it must show that a protocol can be implemented efficiently outside the supervisor, psing
network-independent kernel mechanisms, It will not offer several complete protocols, but will
demonstrate a few different skeleton protocols showing differing approaches to issues such
as flow control, interrupts, and re-use of sockets. In particular, since my research group is
committed to implementing TCP in 1977, my implementation may be very closely tied with the

group’s TCP effort.

E. Ciccarelli i1 ‘ January 13, 1977

References
[ARPA 76] Arpanet Protocol Handbook, pp. 7-40, NIC# 7104, ARPA Netowork Information
Center, Stanford Research Institute, April 1976.

[Cerf 74] Cerf, Vinton, et al., "Specification of Internet Transmission Control Program®, INWG
Note No. 72, December 1974 (Revised).

[Clark 74] cmk, David D., "An Input/Output Architecture for Virtual Memory Computer

Systems”, MAC TR-117, January 1974,
[DSP 76] “Protocols for the LCS Network", Internal LCS document, 1976.

[Janson 76] Janson, Philippe A., "Using Type Extension to Organize Virtual Memory
Mechanisms”, LCS TR-167, September 1976.

[Kent 76] Kent, Stephen T. "Encryption-Based Protection Protocols for Interactive User-

Computer Communication”, LCS TR-162, May 1976.

[Telenet 75] Telenet Communications Corporation, "System Planner’s Guide for Host Computer

Systems”, March 1975,

[Wulf 74] Wuif, W,, et al, "Hydra: The Kernel of a Multiprocessor Operating System”, CACM,
Vol. 17, No. 6, June 1974, pp. 337-345.

January 13, 1977

12

E. Ciccarelli

(&

G

SNIXITIILINW

.

DISVE | 1020104d

DR

me,

— Lf‘/

.

e~y

&)

CommunicatTion System Mobe L

)
D

DIAGRAM 1 :

