M.I.T. Laboratory for Computer Science February 3, 1977
Computer Systems Research Division Request for Comments No. 134

Measurements of Sharing in Multics.

By Warren Montgomery

The following is a report on an attempt to measure the extent of sharing in
the M.I.T. Multics system. The report is primarily concerned with types of
sharing that are difficult to provide in a distributed system, such as sharing
of writeable objects and sharing of main memory pages. Several measures of
sharing are reported and analyzed.

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author’s permission, and it should not be referenced in other
publications.

1) Motivation:

One of the primary design goals for the Multics system was to provide
extensive facilities for controlled sharing. To help achieve this goal, the
multics system allows user processes to share physical memory pages. Thus
Multics allows for a great deal of interaction among user processes through
shared pages. It is unclear, however, just how much the average user depends
on such sharing in his use of Multics.

It would be very difficult to provide this level of sharing in a
distributed system. It 1is interesting, therefore, to measure the extent of
sharing in a system such as Multics. Such measurements would be of great
value 1in determining the strategies used to provide sharing in a distributed

system.

2) Definitions:

Before we can attempt to measure sharing, we must settle on a precise
definition of what it is we should be measuring. The definition of sharing
that follows is an attempt to capture the aspects of shared objects that may

be difficult to provide in a distributed system.

An object is said to be shared in a time window t if it is used by

at least 2 different processes within the time t.

There are several terms in this definition that require further
clarification. The term object refers to a logical unit of information. We
want to measure the sharing of different types of objects separately, because
different types of objects are used in different ways, some of which may be

more difficult to provide in a distributed system.,

-2-

There are many ways in which objects can be used. 1In this report, I will

distinguish two kinds of uses: reads, which obtain information from an object
but do not modify its contents, and writes, which modify an object. An object
is read-shared in the time window t if it is shared in t and was not written

in tt. Similarly, a write-shared object is one that is shared and written. I

chose to make the distinction between read-sharing and write-sharing because
read-sharing is in general easier to provide than write-sharing. We can
provide 'sharing" ©of an object that is only read by giving each process that
reads the object a private copy. The processes cannot detect the difference
between such an implementation and one in which all processes share a common
copy. If a shared object is written, however, the information obtained by
subsequent reads in any process must reflect the modifications made by the
write.

Notice that I have chosen to define sharing in terms of the wuse of
objects by processes instead of the use of objects by users (people). This
choice is made because I am interested in determining how much sharing must be
provided for by the hardware and the operating system, which deal with
processes., In the Multics system, each user has control of a single process,

so a measurement of sharing based on references by users would not be much
different from one based on references by processes.

The time window in the definition is a very important parameter. This
window is an indication of the communication bandwidth needed to provide
sharing. A much higher bandwidth is needed to provide sharing in a small time
window than is needed to provide sharing in a large time window.

We can now ask ourselves what is the proper way to parameterize sharing.
Different sets of parameters are useful for different purposes. 1In this

report, we are most interested 1in determining how easily sharing can be

-3-

provided in a distributed system. The remainder of this section describes
several parameters that 1 feel would be most useful in describing sharing in a
distributed system.

One interesting parameter to measure is the percentage of objects of each
type supported by the system being measured that are shared at some point in
their 1lifetime. This parameter could be used to determine whether or not to
provide for the sharing of an object at the time that it is created. If the
measurement shows that very few objects of a particular type are ever shared,
then sharing should not be considered heavily 1in the design of an
implementation of objects of that type.

Similarly, we can ask what percentage of objects are ever shared by
concurrent processes. An object can be shared by our definition without ever
being used by concurrent processeé. Such a situation occurs when several
processes use an object, but their 1lifespans do not overlap. Sharing of
objects by concurrent processes 1is much more difficult to provide in a
distributed environment than sharing of an object by processes whose lifespans
do not overlap.

Another interesting parameter would be the percentage of | objects
referenced 1in the 1last tl seconds that were also shared in the last t2
seconds. This provides some indication of the communication bandwidth needed
to provide sharing. The time interval t2 is the time window described in the
definition of sharing, while the time interval tl selects the objects of
interest. (A small tl selects only recently used objects, while a large
enough t] selects all objects.) For a given interval tl, we would expect this
parameter to increase as t2 is increased. The value of this parameter for tl
and t2 both infinite is the percentage of all objects that are shared at some

point in their lifetime.

—f-

A very important parameter describing sharing is the percentage of all
references to objects that reference shared objects. fhe parameter described
in the preceding paragraph can be wused to get an approximation to this
parameter, If tl is chosen very small (on the order of the time required to
reference an object), the percentage of objects referenced in the last tl
seconds that were shared in the last t2 seconds approximates the percentage of
all references to objects that referenced objects shared in the last t2
seconds. If in addition we can estimate the amount of communication needed to
support one average reference to a shared object, we can use this parameter to
estimate the communication bandwidth needed for sharing.

In addition to measuring the proportion of objects that are shared and
the proportion of references to objects that reference shared objects, it is
interesting to know how many processes are sharing the average object. If
each process must be given a private copy of a shared object, then this
parameter gives an estimate of the storage required to hold the copies. Thus
it would be desirable to see the distribution of the number of processes
sharing an object in the time window t2 for all objects referenced in the last

tl seconds.

3) Measurement Techniques.

The parameters described above would provide a good estimate of the
storage capacity and communication bandwidth needed to provide sharing in a
distributed system. Unfortunately, the Multics system does not provide the
information necessary to directly measure these parameters: they must be
.indirectly measured or estimated. This section describes the measurements
that can be ecasily made, and how these measurements relate to the desired

sharing measurements described above.

-5-

I studied sharing by observing "snapshots" of the M.I.T. Multics system.
Some of the snapshots that I used were obtained from the system dumps
generated at the time of a crash, while others were obtained by copying the
relevant data bases from a running system. The data obtained from these two
methods appear to be consistent.

The results presented in this report come from a snapshot of the M,I.T.
Multics system taken in January of 1977. This snapshot was typical of all of
those examined, and the figures reported varied very little from snapshot to
snapshot. The system was loaded with about 50 users, many of whom were
involved 1in program development, and thus were editing, compiling, or
debugging programs. Another large class of users was involved in document
preparation.

I studied the sharing of three different types of objects provided by
Multics: Segments, Directories, and Pages. (1) The Active Segment Table (AST)
of the Multics system contains data on approximately 1000 of the most recently
used segments and directories. My sharing measurements were derived from this
data. (2)

The segments and directories in the AST are known as active segments.
The AST is managed by an algorithm that keeps the most recently referenced
segments active. A segment must have been referenced within the 1last 3

minutes to remain in the AST. (The exact time depends on the size of the

(1) There is some confusion over the meaning of the term '"segment" in

Multics., I will wuse this term to denote a file system segment, or
non-directory segment. The word segment 1s sometimes used to include
directories as well. When T intend to include directories, I will say so
explicitly.

(2) The encacheability algorithm was investigated as another potential source
of sharing data. Appendix A of this report contains a discussion of that
algorithm, and its relevance to sharing measurements.

—-6-

segment and on the system load). Directorles remaln active as long as they
have descendants that are active.

For each active segment or directory, Multics maintains a list of all of
the processes that currently have that segment or directory in their address
space. In making my sharing measurements, I counted all segments and
directories that appeared in the address space of two or more processes at the
time of a snapshot as shared. The correspondence between this definition of
sharing and that given above is somewhat unclear, as the time interval of
sharing cannot be precisely determined. This time window corresponds roughly
to the average lifetime of an object in the address space of a process. This
average was about 30 minutes for the snapshots measured. This lifetime varies
dramatically, however, depending on the object and the process, so that the
correspondence is not exact.

The main memory and the paging device are managed by algorithms that keep
the most recently referenced pages 1in core, and the next most recently
referenced pages on the paging device. A page must have been referenced in
the last 1 second to remain in main memory (core), and in the last 4 minutes
to remain on the paging device. Again, tﬁe exact times vary. Thus we can
examine the page tables of active segments and directories to determine which
segments or directories were read or modified in the last 1 second, or in the
Last 4 minutes.

There is no information available as to which processes are using a
particular page, but by examining the AST entry for the segment or directory
that contains that page, we can determine if it is at least possible that fhat
page has been recently shared. Thus we can obtain estimates of such sharing,
by counting a page that appeared in at least 2 address spaces at the time of

the snapshot as shared.

-7

The amount of write-sharing can be estimated by examining the access that
processes have for shared segments. 1In the Multics system, a process cannot
indicate whether or not it intends. to modify a segment when it brings that
segment into its address space. Each process is therefore given all access
rights to which it is entitled for each segment that that process uses. The
access that a process has to an object is the only 1indication that Multics
provides as to whether that process has written or will write that object.
Because not all processes that have write access to an object actually write
that object, the amount of writing is overestimated. Thus the measurements of
write-sharing reported below are upper boﬁnds.

From this data, we can arrive at approximations to some of the sharing
measurements described in the last section. These approximations are reported

in the next section of this report.

4) Results.

This section presents the results of the sharing measurements discussed
above, These results are analyzed to determine the causes for any unexpected

results, and to determine the implications of all results on the

_implementation of a distributed Multics-like system.

4.1) The Shariqg,gg Segments and Directories.

Table 1 shows the numbers and percentages of the active segments and
directories that were shared at the time of the snapshot. The table shows
that about 54% of the active directories were shared, while only 11% of the

segments were shared.

Table 1

Sharing of Active Segments and Directories.

Unshared Shared
Segments 555 (89%) 70 (11%)
Directories 138 (46%) 165 (547%)

Closer examination of the data used to obtain these results revealed
several reasons why a higher proportion of the directories were shared. One
reason is that directories stay in a processes address space longer than do
segments, because a directory remains in a process’s address space as long as
any object inferior to that directory remains in the address space of that
process. Directories also stay in the AST longer for the same reason.

A second reason that the percentage of shared directories is so large is
that all of the process directories appear as shared, but in fact most have

not been recently shared. The Initializer process, which creates all other

processes, never terminates process directories. Therefore each process
directory appears as shared by its process and the Initializer. If we count
process directories as unshared, the percentage of shared directories drops to
43%.

A third reason for the larger proportion of shared directories 1is that
our measurement of sharing will count a directory as shared if two different
processes have referenced that directory or any of its inferiors since the
directory entered the AST. Thus a directory is shared if any of its inferiors
are shared (or if two of its inferiors are used by different processes.)
Therefore we would expect a high proportion of shared directories.

Although a higher proportion of directories than of segments are shared,
it is unlikely that shared directories would cause as much trouble in a
distributed system as as would shared segments. Directories are generally
smaller than segments. From my data, the average size of an active segment
was 8.6 pages, while the average size of an active directory was 3.5 pages.
The cost of maintaining duplicate copies, or of communicating updates, should
therefore be smaller for directories than for segments. Directories are also
less frequently referenced than segments.

Another point to consider is that directories are referenced through
calls to the supervisor, and processes are prepared for delay in the execution
of such calls. Thus additional delay due to communication in a network would
not be a severe problem. Processes reference .segments directly, through
machine instructions, and are not prepared for long delays. Furthermore, the
supervisor synchronizes references to shared directories, while processes rely
on sharing the same copy of a segment to synchronize their references to it.

For these reasons, many of the measurements made for this report were

made only on segments.

~10-

4.2 Read-Sharing and Write-Sharing of Segments.

Table 2 gives the numbers and percentages of active segments that were

read-shared or write-shared at the time of the snapshot.

Table 2

Read-Sharing and Write-Sharing of Segments

Read-Shared 61 (9.7%)

Write~Shared 9 (1.4%)

These figures suggest that very little write-sharing of segments takes
place. Most of the write-shared segments were actually the representation of
some cxtended type object, such as a Message Segment, or a Mailbox. Such
segments are referenced by a small set of programs that carefully synchronize
modifications. As noted previously, these estimates of write-sharing are

probably above the actual amount of write-sharing in the system.

4.3 The Effect of System Processes and Segments.

The measurements of sharing above include all of the processes, segments,
and directories in the Multics System. We would like to be able to examine
sharing of objects by user controlled processes separate from that by system
processes. Sharing due to system processes may be more easily provided for in
a distributed system, and thus the sharing that is solely due to the
interaction of wuser controlled processes may be of greater interest. It is
also interesting to examine the sharing of user-created objects separate from
that of system objects such as program libraries and bound procedure segments.
Table 3 gives the results of performing some of the measurements presented in
tables 1 and 2 on the same system with the effect of system processes removed,

and on that system with both the system processes and system segments and

-11-

directories removed. The table gives the amounts and percentages of
read-sharing and write-sharing of active segments, and of all sharing of
active directories. The table gives two sets of figures, one for each of the

above mentioned systems.

Table 3

The Effect of System Processes and Objects on Sharing Measurements

User Processes and User Processes and
All Objects User Objects.
Read Sharing of Segments - 56 (10.4%) 5 (1.12)
Write Sharing of Segments 3 (0.6%) 1 (0.2%)
Sharing of Directories 62 (22%) 44 (18%)

These figures show that the system processes are responsible for a
substantial proportion of the sharing of directories, and much of the write
sharing of segments. The address space of the Initializer process contains a
large number of directories that only appear in the address space of one other
process. Thus removing the effects of the Initializer process greatly
decreases the amount of directory sharing. As noted before, there are very
few user programs that share writeable éegments, so it is not surprising that
the system processes account for most of the write-sharing.

The figures above also show that most of the read-shared segments are
system segments. This is not surprising, as the average Multics user process
uses a great many system programs that are contained in system segments.

These segments account for most of the read-sharing.

-12-

4.4) The Average Number of Processes that Share an Object.

The figures presented so far suggest that sharing of segments may not be
very important in Multics. The percentages of shared segments seen here
suggest that it is relatively rare that a particular segment is shared. It is
possible however that the shared segments are much more heavily used than the
unshared segments and are therefore very important. One way to try to measure
such an effect 1is to measure the number of processes that share each active
segment and directory, and to compute the average. Table 4 gives this number
for segments and directories for three different cases: All processes
referencing all active segments and directories, User processes referencing
all active segments and directories, and User processes referencing active

user segments and directories.

Table 4

The Number of Processes that Share an Average Segment or Directory.

Segments Directories
All Processes, All Objects 2.5 3.8
User Processes, All Objects 2.5 3.1
User Processes, User Objects 1.1 1.9

The figures show that although few segments and directories are shared,
these few are enormously popular. Again, much of the sharing is due to the
system segments. Figure 1 shows a histogram of the number of processes shared
by exactly N processes as N varies between 1 and 50. Notice that most of the
segments are unshared or shared by only 2 processes, while a few are shared by
most of the processes on the system. These few are the bound procedure

segments that contain the most popular system programs.

=z

o <R NI N I U

PP DWWWWWWWWWWRNNNRONDNDRNDNRNRN - e e e s s
BEWIN ~ O VRN UVMPAEWNRO VWO NTOUVUEREWNROWOLENOOWMDWN—~O W

-13-

Figure 1

The Number of Segments Shared by Exactly N Processes

0.0:0.0:0.0.0.0.0.0.0.0.0.0.0.0.0.9.0:9.0.0.0:0.0.0.0.0.0.0.0.6.0:0.0.0.0.0.0.0:0.0:0:0:0:0.0:0 0.0 6.0.0:0 0.0 0.0 $.0.¢
XXXXXXXXXXXXXXXXXXX
XXXXXXXXX

XXXXXX

XXX

X

XXXX

XXX

XX

X

X

XX

XX

XX

XX
X

X
X

X
XXXXXXXX

14~

4.5) Sharing of Pages.

As noted earlier, the Multics system does not provide as much
information on the sharing of pages as it does on the sharing of segments
and directories. We can, however, make an estimate of the sharing of pages
by examining the information available for the segments and directories to
which the pages of interest belong. By examining the pages in main memory,
and the pages on the paging device, we can derive estimates of the sharing
of pages referenced in the last 1 second, and of pages referenced in the
last 4 minutes.

Table 5 presents the figures for the amount of read-sharing and
write-sharing of pages referenced in the last second, and of those
referenced in the last four minutes. The table presents the number of
shared pages in each category, followed by a percentage. This is the
percentage of the pages referenced in the time interval that were shared.
Thus the table shows that 42 pages were referenced in the last second and
were read-shared, and that 31% of all of the pages that were referenced in

the last second were read-shared.

Table 5

Sharing of Pages

Referenced in Last 1 Second Referenced in last 4 Minutes

Read-Shared 42 (31%) 410 (24%)

Write-Shared 1 (1%) 10 (1%2)

-15-

Notice that the pages that are more recently referenced are more likely to be
shared. This is expected, as shared segments should be more frequently
referenced.

We can also compute the average number of processes that share a page at
each level of the memory hierarchy, just as we got an average for the number
of processes that share a segment. This is done by computing the sum for each
memory level of the number of processes that share each page at that level,
and dividing that sum by the number of pages at that level to obtain an
average. Table 6 presents these averages for pages of active segments and

directories in core, on the paging device (PD), and on the disc.

Table 6

The Average Number of Processes Sharing a Page.

Pages of Segments Pages of Directories
Core Pages 7.6 27.6
PD Pages 4.0 16.8
Disc Pages 2.8 7.9

Notice that the number of processes that share a page is highest in the
fastest portion of the memory hierarchy. This is because the chance that a
page will be referenced increases with the number of processes that share that
page, and the more heavily shared pages compete more effectively for space on

the paging device and in core.

~16-

5) Conclusions.

The results above show that most of the sharing of memory pages 1is
confined to read-sharing of system created segments. This fact suggests that
it would at least be possible to implement a Multics-like system in a
distributed environment where direct sharing of memory pages is not allowed.
This could be done by providing each site in the distributed system with a
copy of the system segments.

Writeable segments are in general shared intentionally only when
synchronization is wused to limit the writing to one process at a time. Such
synchronization could be accomplished in a distributed system without direct
sharing of memory pages.

The measurements also show that although the number of shared segments is
small, a large proportion of the references to segments reference shared
segments. There are several large segments that are shared among all of the
processes on the M.I.T. Multics system. The figures show that the average
page of main memory is shared among 11 processes, and the average bulk store
page is shared among 5 processes. This means that as much as 11 times as much
main memory and 5 times as much bulk store may be needed to achieve
performance equal to the M.I.T. Multics without shared pages. These estimates
are probably far too high, because the number of shared pages may be greatly
overcestimated. Following are somé ideas for ways to get better measurements.

One idea that would be relatively easy to implement as an experiment
would be not to turn on write access to a segment for a process until that
process actually tries to write. This would allow us to obtain a much more
accurate measurement of the number and nature of writeable segments, because
it would provide a method to determine which processes have written an active

segment. This change would cause cach process that writes a segment to take

-17-

an extra fault in doing so, but would reduce the ‘number of unencacheable
Segments, It 1is therefore uncertain what effect such a change would have on
performance.

A much more difficult problem is that of trying to determine which pages
a processes actually réferences. This probably cannot be done without some
major changes, as all processes that share a segment share the same page
table, leaving no place to record the use of pages of that segment by
individual processes. Tt may, however, be possible to get some idea of how
much a process uses the segments in its address space. This could be done
either by making a hardware modification to turn on a bit in the sdw for a
segment each time that that segment is used, or by periodically turning off
access to segments in software, and recording a process’s use of a segment
when that process gets a fault trying to reference it. The hardware scheme
has much less effect on performance, but would not be easy to experiment with,
The software scheme is easy to experiment with, but is very inefficient.

I would greatly appreciate further suggestions for experiments. The
appendix to this report describes the programs used to obtain most of the
data, which are publicly available in the directory

>udd>CSR>Montgomery>sharing.

—-18-

APPENDTIX A

Notes on the encacheability algorithm.

FEach of the two processors on the M.I.T. Multics system has a private
cache memory that holds the memory words most recently referenced by that
processor, Because there are two such caches, segments that are shared and
writeable must be prevented from entering either cache. All other segments
can be allowed to enter either cache without any difficulties.

A perfect algorithm for deciding whether or not a segment should be
allowed to enter a cache would mark as unencacheable exactly the set of
shared, writeable segments. The algorithm used in Multics was therefore
investigated as a possible source of data on write-sharing. This algorithm
marked 6% of the active segments unencacheable in the snapshot from which the
data for this report was taken.

67 is much larger than the reported percentage of write-shared segments.
The reason for this difference is that the encacheability algorithm is not
perfect. A segment is marked as unencacheable {if it has been shared and
writeable at any point since it was last activated. Thus the percentage of
unencacheable segments is an approximation of the amount of write-sharing in
the time window of the average active time for a segment. This time window is
larger than that wused in the other measurements. Thus many of the segments
that were unencacheable were not even shared at the time of the snapshot.

Correcting this error in the cncacheability algorithm may improve
performance. Most of the data bascs used by the Tnitializer are currently
uncncacheable, but are only rarely shared. Because the response of the
Initializer is problem in the M.I.T. system, allowing the Initializer’s data

bases to enter the cache may improve performance.

o 4

~19-

APPENDIX B

Program Descriptions

Name: share

This command prints a number of meters of sharing in Multics derived from
the AST and the AST trailer list.

Usage

share path {control args} {select args} {distribution args}

1) path

is the pathname of the copy of the sst to be examined. Certain
arguments require data in addition to the sst as noted below. The
Segments containing this data are searched for in the directory
containing the segment specified by path. (Note that if path is a
link, the directory containing the link is searched).

2) control args These arguments control the mode of operation of the

-names

-long

command . If no control arguments are given, segments on the AST
used lists will be selected according to the selection arguments and
placed 1in categories according to the distribution arguments.
Summaries of the selected categories are printed. The following
control arguments are available and cause additional functions to be
performed.

This argument causes the pathname of each selected segment to be
printed. This argument requires that the data base sst_names_ be
present in the directory that contains the sst being analyzed. 1f
an empty segment is supplied for sst_names_, only the greater-than
signs (>) in the pathname are printed.

This argument causes a brief summary to be printed for each selected
segment. The summary consists of the uid, the number of pages of
the segment in core, the number of pages on the PD, the total number
of pages, a summary of the status flags for that segment, and a list
of the processes which have trailers for the segment. The following
status flags are printed:

- The segment has been used since it was activated.

- The segment has a page that has been recently modified.

The writg_access_pn flag.

- The cache flag, (inhibits encaching segments involved in 1/0).
- The any_access_on flag,

~ The segment is a directory.

O OZn 2ac
1

The process group ID of each process on the trailer list is printed
where available. A unique index 1s wused for each process that
cannot be identified. This option needs the data base str_seg to
print the trailer list. 1In addition, if process group IDs are to be
produced, the segment tc_data is needed and as many as possible of

-20-

>scl>answer_table, >scl>aut, >scl>dut should be copied to the
directory containing the sst being analyzed. Complaints are made
about missing or inconsistent data bases.

-ratios This option causes the average number of processes sharing a
segment, the average number of processes sharing a core page, the
average number sharing a pd page, and the average number sharing a
disc page to be printed for the selected group of segments.

-hist This option causes a histogram of the number of the selected
segments shared by exactly n processes to be printed (n<5l).

3) selection args These arguments select the segments to be used in the

computation of sharing. The following selection arguments can be
used:

-used, (-"used) Select segments that have been used since activation.

-mod , (-"mod) Select segments.that have a page with ptw.phm on.

-tmod, (=" tmod) Select segments that have been modified within the last 5

minutes. (Note that the program records the time that it
is first run on a particular copy of the AST, and figures
the 5 minutes from then).

-write,(-"write) Select segments that are writeable by at least one
process.

-any, (-"any) Select segments that are readable by one or more processes
and not writeable, or readable and writeable by exactly
one process.

—cache,(-"cache) Select segments that are inhibited from entering the cache
because they have I/0 in progress.

-core, (-"core) Select segments that have at least one page in core.

-gshare, (~"share) Select the segments initiated by 2 or more processes.
(This option requires a copy of str_seg).

-dir, (-"dir) Select directories.

4) distribution args These arguments select the categories into which the
selected segments will be sorted. If no distribution arguments are
given, no summary of the selected segments is generated. For each
pair of selection arguments described above, there 1is a
corresponding distribution argument that does not have the leading
- Thus to see a breakdown of the active directories into
categories of shared vs. unshared, one would give the arguments
-dir and share.

-21=

Name: prune sst

This command modifies a copy of the AST and AST trailer list to remove
selected segments, directories, or processes.

Usage

prune_sst path -function- {select args}

1) path is the pathname of the copy of the AST to be pruned. The copy of
the AST trailer segment is assumed to be in the same directory, with
the name str_seg

2) function. This argument determines the mode of operation for the command.
There are four modes of operation that are described below.

-init This mode causes the copy of the AST to be initialized for use with
prune_sst and share. The circular links in the AST used list are
broken, and inconsistent AST entries and AST trailers are removed.
prune sst should always be invoked with this mode prior to other
pruning.

-delete processes (~dp) This mode causes selected processes to be deleted
from all trailers. The select args are taken as the names of the
processes to be delete. All process names must be fully written out
(as in Initializer.SysDaemon.z).

—-delete_segments (-ds) This mode causes selected segments or directories to
be deleted from the AST used lists. The select args are taken as
the unique identifiers (uids) of the segments and directories to be
deleted. Two other arguments can be used to control the selection
of segments for deletion.

~tree This argument causes all segments and directories below
the selected directories to be deleted as well.

-level n (-1v n) This argument specifies a level in the hierarchy
below which all segments and directories will be deleted.

-select_segs (-ss) This mode causes all of the selected segments and
directories to be retained, and all others to be deleted from the
AST used lists. The arguments for selecting segments to be retained
are the same as those used to select segments for deletion in
-delete_segs mode.

Note:

This command is intended for use with the share command. It does not
alter any fields of the AST entries and trailers used by that command but does
destroy some of the other fields.

-22~

Name: restore_sst

This command undoes the pruning done by prune_sst.

Usage

restore_sst path

1) path is the pathname of the AST to be restored. The copy of the AST
trailer segment is assumed to be in the same directory with the name

str_seg.
Note:

This command does not undo all effects of prune_sst. It does not undo
the effects of the -init mode of prune_sst, and it does not restore the fields
of the AST entries damaged by prune_sst but not needed by prune_sst or share.

