M.I.T. Laboratory for Computer Science 9 February 1977

Computer Systems Research Division Request for Comments No. 135

FURTHER RESULTS WITH MULTI-PROCESS PAGE CONTROL

by R. F. Mabee

This memo updates performance measurements reported by Andy Huber
in his recent thesis "A Multi-process Design of a Paging System'", now
available as MAC-TR 171. The PL/I code is brought up to date with
NSS, and improved by removing many external subroutine calls from the
critical page fault paths. This gives a performance improvement of
about 30%Z. Many detailed measurements have been made; the results are
used to determine where time is spent in both this and the standard
page control.)

This should be the final report on this project, as no further

development is expected.

This note is an informal working paper of the M.I.T. Laboratory for
Computer Science, Computer Systems Research Division. It should not
be reproduced without the author’s permission, and it should not be

referenced in other publications.

I. Review

In one chapter of his thesis, "A Multi-process Design of a Paging
System', Andy Huber reports measurements made on two versions of
Multics, one using his multi-process page control (MPPC) and the other
using the standard page control. The former has two H-procs (fast
éystem processes) that run the resource freeing functions of page
control, and pérform some operations for segment control (typically
truncating a page table). Most of the code was rewritten in PL/I,
except for the bulk store DIM, a piece of the fault handler, and the
system interrupt handler, which are essentially unchanged. The
results show comparatively poor performance by the MPPC in two
respects:

1) The number of page faults (during a standardized
benchmark run) is much higher.

2) The CPU time spent by the PC processes is excessive,
doubling the time per page fault.

The increase in page faults can be attributed to the reduced size
of the paging pool. The wired stacks, the RWS buffer, the increased
size of the PL/I code, and the free core list reduce the paging pool
by 10 to 20 pages. This could be cut in half by careful tuning of the
algorithm, and becomes unimportant in systems with larger memory.
Huber also points out that MPPC disconnects pages before writing them,
while the standard PC leaves modified pages connected for an extra
lap. If modified pages are more likely to be referenced than
unmodified pages, then the standard PC will have fewer page faults.

The increased paging isn’t very interesting, because it’s readily

explained and wouldn’t much matter in more reasonable configurations.

-2 -

For comparisons of CPU time, we adjust the sizes of the paging pools
so that the metering run takes about the same number of page faults
with each version of PC.

There are two special processes in MPPC: the core manager and the
paging device (PD) manager. They perform functions that are mostly
done at page fault time in the standard PC, so the MPPC should spend
much less time in the page fault handler. Instead, the time is
slightly higher (3%). This 1is the effect of using PL/I. Huber
predicts a 40% improvement by replacing external calls with internal

calls, with the resulting times shown in the last column of the table.

Standard PC MPPC Predicted
Page fault handler 1973 2043 1226
PC processes - 2641 1585

Table I. wusec per fault. Adapted from Huber.

Three modifications should be made to these numbers for more
accurate comparison. In both versions of PC, the fault time meter is
updated about 500 usec too soon, before the bulk store read (if any)
is posted. There is no question that the time should be accounted to
the page fault handler; it°s just a bug. Also, the time spent by the
PC processes on operations other than page faults (primarily
truncation) should be subtracted from the totals; by reasonable
extrapolation from more recent measurements this amounts to 336 usec
per fault. Thirdly, the cost of interrupt handling and of
inter-process swapping (getwork time) should be included; again, these
numbers are taken from recent runs. The corrected figures appear in
the next table. Comparing the total times, we find MPPC just under

twice as expensive.

Standard PC MPPC Predicted

Page fault handler 2473 2543 1726
PC processes - 2305 1383
Interrupts and getwork 445 684 684
2918 5532 3824

Table 1II. usec per fault. Approximate corrections added.

I1. Recent changes

For this new series of experiments I used version 28-10 of
Multics, with both standard and MP page control subsystems. Among
other changes since Huber’s experiments was the introduction of NSS
(New Storage System), with many consequent effects in page control.
NSS resulted in a 200 usec improvement in page fault times for the
standard PC, although. no corresponding improvement was observed in
MPPC. I believe this shows the benefit of the 1long, careful tuning
process applied to standard PC; MPPC must compete without such tuning.

Page faults in the IPC benchmark have increased by 10%Z during
this time, probably due mostly to online changes and only somewhat to
reduced paging pool. As before, timing measurements are made with
paging pools adjusted so the two versions of PC handle about the same
number of faults during a standard metering run.

The final version of MPPC is optimized by embedding subroutines
as 1internal procedures of the page fault and core _manager programs so
that most external calls and redundant assignments (i.e. "sstp = addr
(sst$);") are avoided. 1If all of the external calls could have been
removed, then the predictions in Table II would be realized. However,
the calls to ALM subroutines (such as the bulk store DIM) couldn’t be

removed. Moreover, some of the calls that Huber counted to make his

predictions are executed only once in several page faults; in that
case the cost per fault is proportionally lower, reducing possible
optimization.

Six external calls were removed from page fault, leaving only
four calls, all involving ALM. Seven external calls were removed from
core_manager, leaving four to or from ALM. However, three of the
calls removed were executed only half the time (when a page must be
written). If each external call costs 70 usec, the net gain is only
800 usec, or 14%. The rarer cases aren’t optimized, on the grounds
that a small improvement 1n an unusual case wouldn’t affect the
average times very much. Specifically, only PD reads, page creations,
virtual writes, and PD writes not requiring PD allocation are
optimized. This handles 84% of the cases.

As another optimization, the core manager page removal algorithm
is made more efficient, although complex, by starting writes for

several pages before waiting on any. The overall results are shown in

Table III.
28-10 Original Predicted Observed
Standard MPPC by Huber by me
Fault handler 2531 2543 1756 2162
Core manager - 1985 1191 1272
PD manager - 320 192 312
Interrupts and getwork 445 684 684 684
2976 5532 3823 4430

Table III. usec per fault. Results of optimizations.

III. Where the time goes

It is possible to attribute the total CPU time spent on a page
fault to the various functions performed. The bulk store DIM alone

accounts for about 500 usec per read or write in both systems, which

-5 -

is surprisingly high. This apparently indicates that the I/0 greatly
slows the CPU by competing for memory cycles. 0f course, this
behavior should be unique to the test configuration combining Més
memory with bulk store. Depending on whether the CPU is locked out
entirely or just slowed down, this effect may also be slowing down the
rest of PC. Another 500 usec is spent (mostly by page$done) to report
completion of the I/0. In the following table, the measured time for
the standard PC page fault is arbitrarily divided between freeing core

and real page fault in the proportion measured for the MPPC system.

The wunusual cases of page creation or forced write to disk are

ignored.
'28-10 28-10 MPPC MPPC
us/event us/fault us/event us/fault
Real page fault 482 482 1162 1162
Getwork awaiting core - - 637 54
DIM and page$done 1000 1000 1000 1000
Getwork awaiting disk 692 69 637 64
Interrupts, disk read 1921 192 2102 210
Getwork for pre-empt 692 69 637 50
Freeing core frame 297 297 715 715
DIM if must write 1000 557 1000 557
Getwork by core_manager - - 637 124
Freeing PD record 580 83 1400 200
DIM if must RWS 2000 112 2000 112
Getwork by pd manager - - 637 56
Interrupts, RWS 1921 115 2102 126
2976 4430

Table IV. Detailed breakdown of page fault cost.

The total CPU time per fault for MPPC is 1454 wusec longer, or
about 497%. Approximately 230 usec of the excess is spent in getwork
when any process has to wait for a PC process to refill some free

list, or when the PC process is done and goes to sleep. Perhaps an

equal amount (unmeasured) 1is spent 1in calls to perform the
inter-process communication required for the PC processes. An
estimated 300 usec represents the effect of less common paths that I
didn“t bother to optimize, and the cost of putting free frames on a
separate list, and the cost of the extra metering done in this
version. The rest of the excess (estimated at 700 usec) is directly
caused by using PL/I to express the algorithms, which apparently
increases the execution time of comparable operations by about 80%.
(Note that Huber chose PL/I for ease of implementation, and not for
performance.)

One important factor adding to the cost of PL/I is the frequent
use of the pointer built-in function (to follow the many threads used
by PC). 1In the ALM version this is done by one instruction, loading
an index register. The PL/I compiler optimizes to shorten the
generated code; this 1is not always best for execution speed.
Furthermore, the ALM version optimizes register usage over a much
larger scope. Mostly these are problems inherent in the use of PL/I,
so (unless some gross bug is found) the best performance that might be
achieved must still be 20% poorer (in total CPU time per fault) than
the standard PC. It s worth noting that the interrupt times for MPPC
are only slightly higher (181 usec). The system interrupt handler and
disk DIM (both unchanged) use most of the time; the difference is in
page$done, a very short procedure converted to PL/I for MPPC. Its
execution time 1is around 400 usec, so the 80% PL/I overhead is still
consistent.

In the test configuration, the page fault rate is somewhat less

than 100 per second. Since the excess time for MPPC is 1454 usec per

-7 -

fault, it should cost less than 145400 usec per second, or only 147 of
the elapsed time for any run. However, overall system performance is
not that much worse. In fact, the faulting process is delayed 369
usec less by the fault (from Table III), so it seems to run faster,
and can respond to interactions faster (if it needs only a few new
pages).

The PC processes sometimes run during time that would otherwise
be idle. The benchmark results show this effect clearly if the
working set estimator is enabled -- that reduces multiprogramming and
increases idle time, so the MPPC system completes the benchmark in
just 8% more elapsed time. (Tuning parameters: WSF = 1, Max Elig = 4;
about 150 pages; 23% idle with standard PC.) The MPPC will provide
faster service than the standard PC if there is enough idle time. If
the PC processes always take what would otherwise be idle time, the
page fault costs 369 usec less; if they never do, the fault costs 1454
usec more. At a point in between, the extra cost of MPPC is zero;
this happens if the PC processes take idle time 80% of the time. Thus
MPPC performs better than the standard PC if there is at least 80%
idle time.

The paging function is exercised so heavily in the tiny test
configuration that its cost.is exaggerated in importance. A system
with much larger main memory and no bulk store, which seems to be the
right approach for Multics, might, for example, take only ten page
faults per second per CPU. In this environment MPPC (minus the PD
process) would cost only 4% of the total time, versus 2.87% for the
standard PC. The reduction in the paging pool caused by maintaining a

free list (in MPPC) would also be unimportant in such a configuration.

-8 -

Since choosing the right page to evict would become relatively more
important than doing it fast, alternative strategies should be tried,
and for such experiments the modularity, readability, and PL/I-ness of

MPPC make it ideal.

IV. Conclusions

First, the negative recommendations: MPPC as coded 1is not
suitable for installation on a thrashing system like MIT-Multics. It
is not ready for use anywhere because of glossed-over NSS issues,
incomplete error handling, and just plain bugs. I have no inteﬁtion
of updating the code to more recent Multics releases than 28-10.

There are many positive results. The cost of the inter-process
communication and swapping is not too bad (400 usec per fault?), and
it could be made much lower by making the free 1lists longer. (The
measurement runs were made with a maximum of 12 free cmes on the list.
Because of the interaction with paging rate this size free list would
be used only with paging pools from 500~1000.) The delay seen by a
process when it faults is slightly reduced. The PL/I version of page
control is available as a better base for experimentation and metering
than the ALM version.

It turns out that the cost of using general-purpose processes and
inter-process communication facilities, while small, 1is intrinsic.
This cost would probably not be much reduced wusing another
implementation of the process, such as Dave Reed”s Virtual Processor,
since a lot of the cost is in wunavoidable overhead of process
switching or of calls to perform IPC. Many of the 1IPC operations

either implement a cross-process call to a specific routine, or merely

indicate that (say) the core manager should be run sometime soon to
free up more core frames. The latter function could be more cheaply
implemented, at the expense of modularity, if the scheduler called the
core_manager directly just before going idle. Of course, if the
core_manager isn’t a real process, it loses the ability to wait on I/O
or on a lock.

By far and away, the biggest performance problem is the wuse of
PL/I. It has already forced a non-modular design for the main
programs, by imposing a stiff penalty for good design; it also handles
the list-structured objects of page control very poorly. 1In order to
obtain better performance, I would have to rewrite the programs to use
constructs for which the code is known to be particularly good; that
means picking out the machine language sequence I want first, then
fooling the compiler into emitting it. It just isn”t worth writing
any program in higher-level language if its performance 1is so
important and the language so poorly suited.

Let us momentarily suspend disbelief, to consider an ALM version
of MPPC. It should execute similar functions at the same speed as the
standard PC, so the extra cost is just the 400 usec presumed for IPC
and swapping, or only an 8% increase in CPU time per fault. The delay
at fault time becomes 1049 usec less (from Table 1IV), so overall
performance is improved for any load up to 72% (i.e. more than 28%
idle). In fact, if the IPC and swapping were optimized as previously
suggested, the overall performance might be improved at any realistic

load.
Even the ALM MPPC would cause some loss in throughput if there

were no otherwise-idle time to give to the PC processes. In the face

- 10 -

of strong real-world emphasis on execution speed, it’s sometimes hard
to explain why the program with good organization and modularity,
clearly expressed in higher-level language, is better than its
assembly language predecessor. We have no way of measuring the
intangible benefit of any such improvement or of weighing it against a

known cost in CPU cycles or dollars. All we can fall back on is the

general philosophy, '"Good is better than evil, because it’s nicer."

- 11 -

