M.1.T. Laboratory for Computer Science March 29, 1977
Computer Systems Research Division Request for Comments No. 138

SYNCHRONIZATION WITH EVENICOUNTS AND SEQUENCERS

David P. Reed

Rajendra K, Kanodia *

M.I.T. Laboratory for Computer Science (formerly Project MAC)
Massachusetts Institute of Technology

77 Massachusetts Avenue

Cambridge, Massachusetts 02139

The attached paper is submitted to the Sixth ACM Symposium on Operating
Systems Principles.

The work presented in this paper was sponsored in part by Honeywell
Information Systems, Inc., and in part by the Air Force Information Systems
Technology Applications Office (ISTAO), and by the Advanced Research Projects
Agency (ARPA) of the Department of Defense under ARPA order No. 2641 which was
monitored by ISTAO under contract No. F19628-74-C-0193.

* Present affiliation:
Bell Laboratories
Holmdel, N.J. 07733

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author’s permission, and it should not be cited in other
publications.






Synchronization with Eventcounts and Sequencers
ABSTRACT

Synchronization of concurrent processes requires controlling the relative
ordering of events in the processes. We propose a new synchronization
mechanism, using abstract objects called eventcounts and sequencers, that
allows processes to control the ordering of events directly, rather than
indirectly through mutual exclusion. Direct control of ordering seems to
simplify correctness arguments and also simplifies implementation in
distributed systems. The mechanism is defined formally, and then several
examples of its use are given. The relationship of the mechanism to
protection mechanisms in the system is explained; in particular, eventcounts
are shown to be applicable to situations where confinement of information
matters. An implementation of eventcounts and sequencers in a system with

shared memory is described.

Keywords and phrases: process synchronization, interprocess communication,

distributed systems, security models, mutual exclusion, semaphores.

CR Categories: 4.30, 4.32.






Introduction

The design of computer systems to be concurrently used by multiple,
independent users requires a mechanism that allows programs to synchronize
their use of shared resources. Many such mechanisms have been developed and
used in practical applications. Most of the currently favored mechanisms,
such as semaphores [Dijkstra,68] and monitors [Hoare,74] are based on the

concept of mutual exclusion.

In this paper, we describe an alternative synchronization mechanism that
is not based on the concept of mutual exclusion, but rather on observing the
sequencing of significant events in the course of an asynchronous computation.
Two kinds of objects are described, an eventcount, which is a communication
path for signalliﬁg and observing the progress of concurrent computations, and
a sequencer, which assigns an order to events occurring in the system.

Eventcounts and sequencers are a more natural mechanism for controlling
the sequence of execution of processes that do not need mutual exclusion.
Examples of these applications are monitoring state changes of operating
system variables, and broadcasting the occurrence of an event to any number of
interested processes.

In applications where mutual exclusion mechanisms are explicitly
prohibited, such as physically distributed systems and systems that need to
solve the confinement problem, eventcounts and sequencers can be used to solve

synchronization problems in a very natural way.



Eventcounts

An eventcount is an object that keeps a count of the number of events in
a particular class that have occurred so far in the execution of the system.
Events in this context are changes in the state of some part of the system,
for example, a change in the value of some variable, the arrival of input from
an input device, etc. A class of events is a set of events that are related
to one another, such as all changes to the variables X and Y, or all inputs
from teletype number 377.

An eventcount can be thought of as a non-decreasing integer variable. We
define an advance primitive to signal the occurrence of an event associated

with a particular eventcount and two primitives, await and read, that obtain

the "value" of an eventcount.

The primitive advance(E) is used to signal the occurrence of an event in
the class associated with the eventcount E. The effect of this operation is
to increase the integer "value" of E by 1. The "value" of an eventcount
equals the number of advance operations that have been performed on it (i.e.
the initial value of an eventcount is zero). In the rest of this paper, a
process that executes advance operations on an eventcount E will be referred
to as a signaller of that eventcount.

A process can observe the value of an eventcount in one of two ways. It
can either read the value directly, using the primitive read(E), or it can
block itself until the eventcount reaches a specific value using the
await(E,v) primitive.

The read(E) primitive returns the "current" value of the eventcount E.
As we shall discuss later, the value returned is some value that E had after
the read primitive began execution. Thus, although the value may increase

during the execution of the read primitive, the result of read(E) is a lower

-2 -



bound on the current value of E after the read, and an upper bound on the
value of E before the read.

Quite often, a process may not wish to execute until some event in a
class that it has interest in has happened. Although that effect can be
achieved by looping around an execution of a read(E) primitive until a
specified value of the eventcount, E, is reached, it is more useful to provide
a primitive that incorporates the waiting. Such a primitive would also
provide the opportunity to avoid the busy form of waiting. Consequently, we
define a primitive await(E,v), that suspends the calling process until the
"value" of the eventcount E is at least v. (1) Of course, as in all
mechanisms designed for asynchronous processes, the await primitive may not
return immediately once the vth advance on E is executed; the only guarantee

is that at least v advances have been performed by the time await(E,v)

returns.

Timing Relationships

In a single-processor system with processes communicating through shared

memory, the definitions of advance, await, and read given above are adequate.

In a distributed system, particularly one that consists of several processors
interconnected by communication lines, the definitions are not adequate,
because there may be a communications delay between the time an advance

operation is finished and the time that another processor can determine that

an advance has occurred.

(1) We require that v be a private variable that cannot change while the
process is suspended (effectively v is a call-by-value parameter).

-3 -



Lamport has defined time in a distributed system as a partial ordering of
the events in the system [Lamport,76al. We have modified somewhat his
formalization of time as a partial ordering to allow definition of eventcounts
in a precise way. Events are the executions of primitive operations of a

process, and particularly the executions of advance, await and read primitives

constitute events. (1) Time-ordering of events in the system is specified by

"

a2 partial-order relation on events, denoted by -> (read '"precedes"). The

relation -> must satisfy the following: (2)

D1) If A and B are events in the same process, and A is executed
before B, then A->B.

D2) 1f A is the transmission of information by one process, and B is
the receipt of that information, then A~->B. (Examples of
transmission of information are sending of messages, storing into
a shared variable that is later loaded by another process, etc.)

D3) If W, is the completion of an await operation of the form

await(E,t), then there are at least t members of the set {A, | A

E
is the execution of advance(E) and AE—>WE}. E
D4) If R, is the execution of a read operation of the form
v:=réad(E), then there are exactly v members of the set {AE | AE

is the execution of advance(E) and AE—>RF}.

D5) If A->B and B->C, then A->C.

As in Lamport’s formalism, it is possible that for two events in the system, A
and B, neither A->B nor B->A holds. Such a pair of events will be called

concurrent, since they correspond to events that have happened closer together
in time that can be resolved within the system, in terms of communication

delays. Events that happen at different times (from the point of view of an

(1) If advance, read, or await is implemented as a sequence of primitive steps
in a process, the event corresponding to the operation occurs sometime during
the execution.

(2) Our formalism differs from Lamport’s in that: (a) Conditions D3 and D4
are new in our formalism and (b) Condition D2 is generalized to include
information transmission other than by passing messages.

-4 -



omniscient observer) on two different processors may be concurrent under our
definition., For example, if A and B are events on two different physical
processors, and A’s processor does not detect the occurrence of B until after
A has occurred, while B“s processor does not detect the occurrence of A until
after B has occurred, we will call A and B concurrent.

We require that for any event A, A->A does not hold. This requirement is
necessary for physical realizability, for otherwise an event could precede

itself.

The definition just given allows for the possibility that advance, await,

and read operations on the same eventcount may be concurrent. In a later
section, we will show how concurrent operations on the same eventcount can be

implemented correctly without using mutual exclusion as an underlying

mechanism.

Single-Producer, Single-Consumer Example

As an example of eventcounts used for synchronization, we show how a
producer and a consumer process can synchronize their use of a shared N-cell
ring buffer. The ring buffer is implemented as an array in shared memory,
called buffer[0:N-1]. Two eventcounts, IN and OUT (initially zero), are used
to synchronize the producer and consumer. The producer generates a sequence
of values by calls on a subroutine "produce," and stores the ith value in
buffer{i mod N]. The consumer reads these values out of the buffer in order.
The two eventcounts, IN and OUT, coordinate the use of the buffer so that:

1) the consumer doesn’t read the ith value from the buffer until it
has been stored by the producer, and

2) the producer doesn’t store the (i+N)th value into the buffer
until the ith value has been read by the consumer.



procedure producer()
begin integer ij
for 1:=1 to infinity do
begin
await(OUT,i-N);
buffer[i mod N] := produce();
advance(IN);
end
end

procedure consumer()
begin integer 1i;
for i:=1 to infinity do
begin
await(IN,i);
consume(buffer[i mod N]);
advance(OUT);

end
end

Let the event Pi be the store of the ith value by the producer routine,
and the event Ci be the reading of the ith value. The two synchronization

conditions are equivalent to saying that P,->C, and C,->P, ..
i i i i+N

We can show the synchronization conditions fairly simply. Let AIN i be
. 3

the ith execution of advance(IN) by the producer, A be the ith execution

ouT, i

of advance(OUT) by the consumer, W i be the ith execution of await(IN,i) by

IN,

the consumer, and W

, be the ith execution of await(OUT,i-N) by the
OUT, i - —_—

producer. Because all the advances on IN are done in one process, they are

totally ordered, such that if j<k, A . =>A

IN, § N,k Similarly, if j<k,

A >A

OUT,j ~“OuT,k’

We also know that W —>Pi—>AIN,i’ and WIN

OUT, 1 from the

i7>C5 >0y, 40

’

sequencing of the processes.
'Now, condition D3 above states that must be at least i advances on IN

.y SO A ->W » .+ Similarly, A

preceding Wy ; IN,i VIN,i

OUT,i->w0UT,i+N' Putting these

relationships together,

>W >P

Pi=>ArN, 17y, 176> OUT, i+N L 14N

IN,i ~ "IN, OUT,i



or, showing the ordering of P’s and C’s,
Pi—>Ci—>Pi+N.

A similar proof of such a producer-consumer system was given by
Habermann[Habermann,72]. Our use of eventcounts corresponds directly to his
use of the auxiliary proof variable ns, which counts the number of times a
semaphore is V'ed.

Note that in our producer-consumer example, each eventcount has exactly
one writer, in contrast to the usual semaphore solution in which both
processes modify the same synchronization variable. This reduction in write
competition seems often to occur in eventcount solutions, making correctness
proofs easier (as in the example), making confinement feasible (see later
section on information flow), and making the problem of synchronizing
physically distributed processes easier to accomplish.

The synchronization of the producer and consumer is obtained from the
ability of the eventcount primitives to maintain relative orderings of events,
rather than by mutual exclusion. A sort of exclusion between the producer and
consumer arises out of the ordering constraints, but this exclusion does not

require run-time arbitration among events, and so is not mutual exclusion.

Seguencers

Some synchronization problems require arbitration: a decision based on
which of several events happens first. Eventcounts alone do not have this
ability to discriminate between two events that happen. Consequently, we
p?ovide another kind of object, called a sequencer, that can be used to

totally order the events in a given class.



A sequencer, like an eventcount, can be thought of as a non-decreasing
integer variable that is initially zero. The only operation on a sequencer is
an operation called ticket(S), which is applied to a sequencer, and which
returns a non-negative integer value as its result. Two uses of the ticket(S)
operation will always give different values. (1) The ordering of the values
returned corresponds to the time-ordering of the execution of the ticket
operations.

The inspiration behind the ticket operation is the automatic ticket
machine that is used to control the order of service in bakeries or other busy
stores. The ticket machine gives out ascending numbers to people as they
enter the store, and by comparing the numbers on the tickets one can determine
who arrived at the ticket machine first. Furthermore, the person at the
counter can serve the customers in order by calling for the customer whose
number is one greater than the one previously served, when he is ready to
serve a new customer.

Unlike eventcounts, sequencers do use a form of mutual exclusion. The
events corresponding to two ticket operations on the same eventcount may not
be concurrent. The precise definition of sequencers in terms of the partial
ordering -> is:

1) if T and T are events corresponding to ticket operations on the
same sequencer, S, then either T->T’ or T’->T.

2y If T is an execution of t:=ticket(S) then the value assigned to t
is the number of elements of the set {X | X is execution of a
ticket operation on S and X->T}.

(1) And therefore arbitration is required in the underlying implementation.

-8 -

-



The use of sequencers can be best illustrated by an example. Let us
introduce multiple producers in our producer-consumer example. We want all
deposit operations to be mutually exclusive, but are unwilling to place an a
priori sequence constraint on the several producers. We use a sequencer
called T, which is used by each producer to obtain a "ticket" for depositing
its message into the buffer. Having obtained a ticket, a process merely waits
for the completion of all producers that obtained prior tickets. Each

producer thus executes the following program:

procedure producer()
begin integer t;

do forever

begin
comment synchronize with producers;
t = ticket(T);
await(IN,t);

comment synchronize with consumer;
await (OUT,t-N+1);
buffer{(t+l) mod N] := produce();
advance(IN);
end
end
The consumer process executes the same program as before.

This program works by using the total ordering among the ticket(T)
operations to totally order the stores into the buffer array. The await(IN,t)
operation does not terminate until the advance(IN) operation of the producer
that got the value t-1 from its ticket operation is executed. This
advance(IN) operation also enables the consumer process to read the value just
stored, so reading of cell t mod N can proceed concurrently with storing into
cell (t+!) mod N. While we could have used an eventcount other than IN to
synchronize the producers (making the program more "structured" perhaps), we

chose not to do so to illustrate the "broadcast'" nature of advance. Each

execution of advance(IN) wakes up two processes in this example.

-9 -



Building Semaphores -’

Eventcounts and sequencers can be viewed as primitives at a lower level
than semaphores. We can build semaphores out of eventcounts and sequencers,
and in addition, can build some more powerful operations on these semaphores.

A semaphore can be built out of an eventcount and a sequencer. Call the
semaphore S, and the eventcount component S.E and the sequencer component S.T.

The P and V operations on S can be written as follows:

procedure P(S)
begin integer t;
t:=ticket(S.T);
await(S.E,t)
end

procedure V(S)
advance(S.E)
end

The P and V operations work in a way analogous to queueing in a bakery or -’
barbershop. The ticket operation assigns numbers to each process attempting a
P-operation. The process then waits until the corresponding number is
announced by the advance operation in V. The difference between the current
"values" of S.T and S.E corresponds to the value of the semaphore.

Another operation one can do on semaphores built with eventcounts and
sequencers is a simultaneous-P. This operation, which has been proposed by
several authors [Patil,71], involves suspending the invoking process until it
can successfully lock several resources simultaneously. Such a primitive
could be used to solve Dijkstra’s problem of the "Five Dining Philosophers"
[Dijkstra,71) very simply, by associating a semaphore with each fork, and
having each philosopher use a simultaneous-P operation to seize the two

desired forks at the same time.

- 10 -



The simultaneous-~P operation on 2 semaphores, R and S, could be coded as
follows. (1) We require a global semaphore (implemented with a sequencer and
an eventcount), G, that is used to synchronize a part of the simultaneous-P

operation.

procedure Pboth(R,S)

begin integer g, r, s;

comment first lock coordinated ticket generator;
g:=ticket(G.T);
await(G.E,g);
comment get a coordinated set of tickets;
r:=ticket(R.T);
s:t=ticket(S.T);
advance(G.E);
comment now wait for each semaphore in turn;
await(R.E,r);
await(S.E,s);
end
Several things should be noted about the simultaneous-P operation.
First, the G semaphore is used as a global lock on getting tickets from the
sequencers of R and S, but not on the waiting. Consequently, there is no
waiting going on under a lock. Second, the await operations on R.E and S.E
may be deferred until later in the program.
The ability of eventcounts and sequencers to implement the simultaneous-P
operation arises directly from breaking the semaphore P operations into two

parts, one "enqueueing" the process for use of the semaphore, and the other

waiting for the semaphore to become free.

(1) The more general operation for any number of semaphores can be easily seen
once the operation of the 2 semaphore simultaneous-P operation is shown.

- 11 =



Flow of information in Eventcounts and Sequencers

An eventcount is an abstraction that allows signalling and observation of
events in a particular class. As such it is an information channel among

processes. The eventcount operations, read, await, and advance, are defined

so that each is either a pure observer of events in the class, or a pure

signaller.

We can contrast this purity with the semaphore abstraction. Like an
eventcount, a semaphore is a channel that allows the signalling and
observation of events in a class. A V operation, like the eventcount advance,
is a pure signaller. On the other hand, the P operation on a semaphore is not
a pure observer -- it modifies the semaphore, an event that can be observed
through other P operations.

These observations about the flow of information make the eventcount
synchronization primitives attractive for secure systems that attempt (as far
as possible) to solve the confinement problem defined by Lampson [Lampson,73].
For each eventcount, one can provide two kinds of access permission to each
process. The first kind, signaller-permission, allows a process to use the
advance operation on the eventcount, and thus transmit information to
bbservers of the eventcount. The second kind, observer—permission, allows a

process to use the read and await operations on the eventcount, and thus

observe information transmitted by signallers of the eventcount. By
appropriately assigning access permissions to processes, one can ensure that
no information is transmitted from secure processes to processes that do not
have the right to directly access secure information.

Because semaphores do not have pure observation primitives, the use of
access permissions is not sufficient to solve the confinement problem in this

form, and requires more extensive examination of the way the processes use the

- 12 -



P and V operations to ensure that the exclusion provided by P and V operations
does not implicitly carry secure information.

Unlike eventcounts, sequencers do not have pure observation and pure
signalling operations. Consequently, information is transmitted through a
sequencer and received from a sequencer each time the ticket operation is

used. Thus, permission to use a sequencer is like having both signaller- and

observer-permission.

Secure Readers-Writers Problem

As an example of using access permissions on eventcounts to control the
transmission of information, consider a special readers-writers problem. We

will call this problem the secure readers-writers problem, to distinguish it

from other such problems [Courtois,71]. There are two groups of processes,
called the readers and the writers. These processes all share access to the
same data base. It is the job of the writers to perform transactions on the
data base that take the data base from one consistent state to another. For
this reason, the writers need to both read and update the data base, and thus
inherently have the ability for two-way communication with all other writers.

The job of the readers is to extract information from the data base. We
presume that extracting the desired information may require several
operations, so there is a problem of ensuring that the information obtained by
the reader is self-consistent, i.e. all accesses referred to the same data
base state.

We wish to ensure that readers cannot use the data base or any associated

synchronization mechanisms to transmit information to writers or to other



readers. (1) In addition, we wish to ensure this without having to know in
advance the programs that the readers and writers will execute. Without
knowing the program, we cannot ensure correct operation, but we can ensure
secure operation as long as we can be sure that the access controls work
right.

The first step in the solution to this problem is to require that readers
have permission only to read from the data base, and have only
observer-permission to any eventcounts associated with the data base. Then
this condition guarantees the security requirement, by forbidding readers to

use advance and ticket operations. We may then be concerned that the access

constraints may have also eliminated the possibility of correctly
synchronizing the readers with the writers.

The only difficulty is that the readers are not allowed to exclude
writers in order to ensure a consistent set of accesses to the data base.
Thus the readers must perform all the accesses, then abort the reader
operation and retry the accesses if a writer modified the data base while the
reader was reading. The following programs will work correctly in this way (S

and C are eventcounts initialized to zero, and T is a sequencer):

procedure reader()
begin integer w;
abort: w:=read(S);
await(C,w);
"read data base";
if read(S)#w then goto abort;
end

(1) Such a constraint arises in information flow control models such as the
MITRE security model [Bell,73].

- 14 -



procedure writer()

begin integer t;
advance(S);
ti=ticket(T);
await(C,t);
"read and update data base";
advance(C);
end

This solution to the secure readers-writers problem is closely related to the
proposal of Easton [Easton,72] for eliminating long term interlocks. The
eventcounts here correspond to Easton’s version numbers. Another solution

using version numbers to the secure readers-writers problem is given by

Schaefer [Schaefer,74].

Implementation of Eventcounts and Sequencers

In this section we primarily discuss those issues of implementation that
arise in a system that allows processes to communicate through shared memory.
Another paper in preparation will discuss in detail the issues of implementing
eventcounts in a physically distributed system [Kanodia,77].

If eventcounts are used to synchronize cyclic processes that never
terminate, one may be concerned that the values of eventcounts cannot be
stored in a finite amount of memory. In practice, however, one can always
bound the values that will be encountered, since no real system will operate
forever.

In this sense, eventcounts are a convenient abstraction, just as the
datatype integer is a convenient problem solving abstraction for Algol
programmers. In solving a problem by using eventcounts and sequencers, one
can first assume that eventcounts are unbounded. When the problem is solved
under that assumption, then one can use practical constraints to bound the
values of eventcounts and reserve storage for them. Proceeding in this manner

is exactly analogous to dealing with the limitations on Algol integers.

- 15 -



In discussing implementation of eventcounts, we will concentrate on the

implementation of advance and read, since an implementation of await is highly

dependent on the structure of the operating system (implementation of await in
an operating system for Multics is described by Reed in his S.M. thesis
[Reed,76]).

The major difficulty with implementing the read and advance operations

in a shared memory, multiprocessor system is to allow read and advance

operations in any number to proceed simultaneously, without some more basic
form of hardware interlock. If an eventcount could fit in a single storage
word, and the memory provided an access command that allowed a memory word to
be incremented in one memory cycle, while excluding other such commands,
implementing eventcounts would be simple. However, this would also be taking
advantage of a lower-~level mutual exclusion mechanism in the memory.

We will implement eventcounts in two stages. First, we define the
concept of a single manipulator eventcount, and show how a full eventcount can
be implemented as the sum of single manipulator eventcounts. Then we will
show how a single manipulator eventcount can be built using just load and
store operations on memory words without mutual exclusion.

A single manipulator eventcount is an eventcount that works correctly as
long as concurrent execution of advance operations is avoided. One can assure
this avoidance by restricting the eventcount to be manipulated by only one
process or by only one physical processor (if there is no process-switching
during advance). In a moment we will demonstrate an implementation that
allows any number of read operations to execute concurrently with the advance,

but for now let us assume that such an implementation is feasible.

- 16 -



One can then construct a multiple manipulator eventcount that can be the
subject of concurrent advances by any of N different processes (or processors)
simply by implementing the eventcount as N single manipulator eventcounts.
advance on the multiple manipulator eventcount will advance the appropriate
single manipulator eventcount. read on the multiple manipulator eventcount is
done by reading the component single manipulator eventcounts, in any order,
and summing the resulting values. Assuming single manipulator eventcounts
work as advertised, any number of processes can then advance the multiple
manipulator eventcount concurrently. In distributed systems, where a number
of systems with local shared memory are connected with communications lines,
an eventcount that can be manipulated at multiple sites can be built out of
eventcounts that can be manipulated only at their "home" site in the same way.
An advance is performed at the home site, and read is done by summing the
component eventcounts at all sites.

For the single manipulator eventcount implementation, let us assume the
least imaginable form of hardware support, namely that each bit of the
eventcount must be read and written separately. (1) We can still insure that
the advance operation is atomic by representing the eventcount in Gray code

[Kohavi,70), (2) so that incrementing an eventcount involves writing a single

bit.

(1) We describe an implementation under these conditions primarily as an
existence proof; the practical application is to convince ourselves that

eventcounts can be implemented in a minicomputer whose wordsize is too small
to contain a whole eventcount.

(2) The suggestion to use Gray code, which considerably simplified our

original single manipulator eventcount implementation, is due to Lamport
[Lamport,PC], who credits C.S. Scholten with the idea.

- 17 =



The read algorithm can only fetch each bit separately. It must take care
that the value it obtains is one that corresponds to some value reached by the
eventcount during the execution of the read operation. For this reason, the
read algorithm fetches each bit twice, first fetching each bit in the
eventcount from high-order bit (least rapidly varying) to low-order bit, and
then starting with the low-order bit and going towards the high-order bit. If
a bit that has changed during the read is encountered on the second pass, one
knows immediately two things: first, at least one advance has happened, and
second, at least one value the eventcount must have had during the time the
read was in progress. The following algorithm reads an eventcount stored in
array E, where the high-order bit is in E[l] and the low-order bit is in E[L],
putting the result in array v[1:L].

procedure read(E)

begin integer i, fence;
for i:=1 to L do vii]l:=E{i];

fence:=0;
for i:=L-1 to 1 step -1 do
if v[i]#E[i] then fence:=1i;
if fence#0 then
begin
v[fence+l] :=1;
for i:=fence+2 to L do v[i] :=0;
end;
end

The variable fence is used to point to the highest-order (lowest subscripted)
bit for which a change is detected between successive accesses. A proof of
this algorithm would take too much space in this paper, but it is fairly easy
to justify its correctness. By induction, one can show that if bits i down to
1 of E and v compare equal in the second loop, then bit i of E was never
modified between the access in the first loop and the access in the second

loop. Thus, fence points at the highest-order bit that changed during the

- 18 -



read. At the time it changed, the low order bits must have been in the
configuration of a 1 in the highest-order position, and 0 in any remaining
positions. Thus, if any bits have been changed, we just reconstruct the value
the eventcount had at the time it was changed, by filling in a 1 at position
fence+l, and zeros in the rest.

Implementation of ticket on a sequencer requires some form of mutual
exclusion. Lamport has shown one method of obtaining mutual exclusion under
our assumption that each bit is read separately [Lamport,76b] [Lamport,76c].
Such an algorithm could be used in the absence of a memory interlock feature.
We would like to discover a simpler algorithm that is specialized to the
problem of getting a value from a sequencer, rather than providing general

mutual exclusion, since we can obtain mutual exclusion at a higher level.

Conclusions

The basic result presented in this paper is a new mechanism for
synchronizing concurrent processes that is not based on mutual exclusion.
Instead, a process controls its synchrony with respect to other processes by
observing and signalling the occurrence of events in classes associated with
objects called eventcounts. Since our mechanism directly controls the
sequencing of events, it seems to be very natural for implementing parallel
computations specified in terms of the ordering of events, as suggested by
Greif {Greif,75].

Like semaphores, eventcounts serve as well-defined and namable interfaces
between processes. Such an intermediate level of naming enhances modularity,
since one need not name processes directly. In contrast to semaphores,
however, eventcounts provide a kind of broadcast mechanism that allows the
signaller of an event not to have to know how many processes to wake up when
an event happens.

-19 -



Eventcount solutions to problems of synchronization also seem to
explicitly identify the information flow paths between processes that are
inherent in the synchronization. This identification seems to help in
simplifying proof of correct synchronization, as well as enabling more
effective confinement of information in a secure system.

A final benefit arising from the avoidance of mutual exclusion where
possible is that unnecessary serialization of processes can be avoided --
especially important, since serialization can be a bottleneck in

multi-processor systems or physically distributed systems.

References

[Bell,73) Bell, D.E., and LaPadula, L.J., Secure Computer Systems: A

Mathematical Model. The MITRE Corporation, MTR-2547, Volume II
(November 1973).

[Courtois,71] Courtois, P.J., Heymans, F., and Parnas, D.L., Concurrent

control with "readers" and "writers". CACM 14, 10 (October 1971),
pp. 667-668.

(Dijkstra,68] Dijkstra, E.W., Cooperating Sequential Processes. in Programming
Languages (Ed. F. Genuys), Academic Press, New York, 1968.

{Dijkstra,71] Dijkstra, E.W., Hierarchical Ordering of Sequential Processes.
Acta Informatica 1, (1971), pp. 115-138.

[Easton,72] Easton, W.B., Process Synchronization without Long-Term Interlock.
Proceedings of the Third ACM Symposium on Operating System

Principles, (Operating Systems Review 6, 1 and 2) (June 1972), pp.
95-100.

[Greif,75] Greif, Irene, Semantics of Communicating Parallel Processes.
M.I.T. Project MAC TR-154 (September 1975).

[Habermann,72] Habermann, A. Nico, Synchronization of Communicating Processes.
CACM 15, 3, (March 1972), pp. 171-176.

[Hoare,74]) Hoare, C.A.R. Monitors: An Operating System Structuring Concept.
CACM 17, 10 (October 1974), pp. 549-557.

[Kanodia,77] Kanodia, R.K., and Reed, David P., Synchronization in Distributed
Systems. paper in preparation.

- 20 -



[Kohavi,70] Kohavi, Z., Switching and Finite Automata Theory, New York,
McGraw-Hill, 1970, pp. 12-14.

[Lamport,76a] Lamport, Leslie, Time, Clocks, and the Ordering of Events in a
Distributed System. Massachusetts Computer Associates Technical
Report CA-7603-2911 (March 29, 1976).

[(Lamport,76b] Lamport, Leslie, Synchronization of Independent Processes. Acta
Informatica 7, 1 (1976), pp. 15-34.

[Lamport,76c] Lamport, Leslie, On Concurrent Reading and Writing. submitted
to CACM.

[Lamport ,PC] Lamport, Leslie, private communication with the authors.

[Lampson,73] Lampson, Butler W., A Note on the Confinement Problem. CACM 16,
10 (October 1973), pp. 613-515,

[Patil,71] Patil, S.S., Limitations and Capabilities of Dijkstra’s Semaphore
Primitives for Coordination among Processes. M.I.T. Project MAC
Computational Structures Group Memo 57 (February 1971).

[Reed,76] Reed, David P., Processor Multiplexing in a Layered Operating
System. S.M. and E.E. thesis, M.I.T. Dept. of Electrical
Engineering and Computer Science, (June 1976). Also available as
M.I.T. Laboratory for Computer Science Technical Report TR-164.

[Schaefer,74] Schaefer, M., Quasi-synchronization of readers and writers in a
secure multi-level environment. System Development Corporation
TM-5407/003, (September 1974).

- 21 -





