M.I.T. Laboratory for Computer Science March 30, 1977

Computer Systems Research Division Request for Comments No. 141

MEASUREMENTS OF SHARING IN MULTICS

by Warren A. Montgomery

Room 510

M.I.T. Laboratory for Computer Science (formerly Project MAC)
Massachusetts Institute of Technology

545 Technology Square

Cambridge, MA 02139

This is a draft of a paper prepared for submission to the Sixth ACM Symposium
on Operating Systems Principles, to be held at Purdue University, on November
16 - 18, 1977.

This research was sponsored in part by the Advanced Research Projects Agency
(ARPA) of the Department of Defense under ARPA Order No. 2095 which was
monitored by the Office of Naval Research under contract No. N00014-75-C-0661.

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author's permission, and it should not be cited in other
publications,

Measurements of Sharing in Multics.

ABSTRACT

There are many good arguments for implementing information systems as
distributed systems. These arguments depend on the extent to which
interactions between machines 1in the distributed implementation can be
minimized. Sharing among users of a computer utility is a type of interaction
that may be difficult to provide in a distributed system. This paper defines
a number of parameters that can be used to characterize such sharing. This
paper reports measurements that were made on the M.I.T. Multics system in
order to obtain estimates of the values of these parameters for that system.
These estimates are upper bounds on the amount of sharing and show that
although Multics was designed to provide active sharing among its users, very
little sharing actually takes place. Most‘of the sharing that does take place

is sharing of system programs, such as the compilers and editors.

Key Words and Phrases: distributed systems, Multics, program behavior,

virtual memory, measurements, sharing.

CR Categories: 4.35, 4.6

l. Motivation

One of the driving forces in the development of large, central computer
systems was the high cost of computer hardware. Current trends in electronic
technology indicate, however, that hardware costs are no longer the dominant
factor in the design of an information system.

There are many reasons to implement a large information system as a
distributed system, with several independent, communicating machines. These

reasons include:

I. Increased reliability. Each machine in a distributed system would be
smaller and simpler than the single machine in an equivalent central
system. Thus the individual machines would be less likely to fail, and a
failure in one machine need not disrupt all system operations.

II. Ability to grow. Adding a new machine to a distributed system can

increase the computing power available without affecting the existing

system.

III. Distributed authority. The availability and protection of information

managed by each machine in a distributed system can be independently

controlled.

IV. Better response. The parallelism available in a distributed system

allows it to respond more rapidly than a multiplexed centralized system.
\
Communication delays also can be reduced by placing the information and

computing power physically near where they are needed.

All of the arguments for choosing a distributed organization for an
information system are dependent on the extent to which that system can be

separated into independent components. Many of the advantages of a

Measurements of Sharing Page 1 DRAFT, March 30, 1977

distributed system disappear if a significant amount of essential information
is shared by components that are implemented on separate machines.

Sharing of information by processes executing on separate machines
requires communication in order to keep the shared information consistent.
Some protocols for maintaining consistency have been developed recently, but
the problem is still poorly understood [1], [2], [3].

Current centralized systems can be divided into components, such as the
files and processes belonging to individual users of a computer utility.
However, the extent to which the components are independent 1is uncertain,
because information is shared between components. Thus, before considering a
distributed implementation for an information system, it is important to know
the nature of sharing in that system. This paper reports an attempt to
measure sharing in a large, centralized computer system, specifically, the

Multics system.

2. Definitions

Before attempting to measure sharing, it 1is necessary to have a
definition of what should be measured. A unit of sharing is called an object,
which refers to a logical unit of information. The definition of sharing that
follows is an attempt to capture the aspects of sharing that may be difficult

to provide in a distributed system.

An object is said to be shared in a time window t if it is

referenced by at least 2 different processes within the time t.

It is useful to distinguish two kinds of references to an object:
writes, which modify the contents of an object, and reads, which do not. This

distinction allows us to define two specialized kinds of sharing:

Measurements of Sharing Page 2 DRAFT, March 30, 1977

write-sharing, in which an object is shared and is also written by at least

one process, and read-sharing, in which all references to the object are

reads. Write-sharing is inherently the more difficult of the two to provide
in a distributed system, because it requires communication among the processes
that are referencing the shared object, while read-sharing does not.

The time window in the definition of sharing is a very important
parameter. This time window is an indication of the communication bandwidth
needed to provide sharing. A much higher bandwidth is needed to provide
sharing in a small time window than is needed to provide sharing in a large
time window. The shared memory of a centralized system provides a very high
bandwidth, while the bandwidth available in a distributed system is generally
lower. Thus we are most interested in examining sharing in small time
windows, which require higher bandwidth than is available in a distributed
system,

Finally, it is necessary to measure the sharing of different types of
objects separately, because different types of objects are referenced in
different ways, some of which may be more difficult to provide in a
distributed system. The types of objects considered are segments,

directories, and pages.

3. Goals

Having chosen a definition of sharing, we can now ask what parameters
best characterize the amount of sharing that takes place in a computer system.
The parameters described below appear to be most useful for this purpose.

One parameter that is definitely of interest is the percentage of all
objects of each type supported by the system that are shared in a given time

window. The magnitude of this parameter increases as the time window 1is

Measurements of Sharing Page 3 DRAFT, March 30, 1977

increased. An infinitely long time window gives the percentage of all objects
of a given type that are shared at some point in their lifetime. This
parameter can be used to decide whether or not provisions for sharing should
be made at the time that an object of that type is created. Smaller time
windows give percentages of objects involved in more active sharing.

A second parameter of interest is the percentage of all object references
that reference shared objects. This parameter provides an indication of the
number of references that may require special treatment in a distributed
system.

Another parameter that we wish to measure is the average number of
processes that share a typical object. If a shared object is implemented by a
multiple-copy strategy, then this parameter can be used to estimate the number
of copies required and the communication that may be needed to keep the copies
consistent.

As noted above, we desired to measure the extent of sharing in a large,
centralized system. The Multics system is a good selection for these
measurements for several reasons: |

The Multics system was designed to provide extensive facilities for
controlled sharing, more so than other commercially available computer
systems. Thus an examination of Multics should provide an upper bound on the
amount of sharing in current systems.

Multics also provides a good programming environment for the development
of programs to obtain and analyze data on sharing.

The reported experiments were performed on the M.I.T. Multics system.

However, the measurement tools developed could easily be used on other Multics

sites.

Measurements of Sharing Page 4 DRAFT, March 30, 1977

4. Measurement Techniques

Knowledge of the parameters described above would allow us to estimate
the storage capacity and communication bandwidth needed to provide sharing ig
a distributed system. Unfortunately, the Multics system does not provide the
information necessary to measure these parameters directly: they must be
indirectly measured or estimated. This section outlines the feasible
measurements, and how these measurements relate to the’parameters described
above. It also provides a brief description of the virtual memory management
algorithms used in the Multics system, which yield some data on the use of
objects by processes. More detailed descriptions of these algorithms and the
data bases that they maintain appear in [4] and [5].

The measurements of sharing were made by observing "snapshots" of the
M.I.T. Multics System. A snapshot is a copy of the state of the system at
some instant in time. Two methods were used to obtain such snapshots:
copying the data bases of interest from a running system, and extracting them
from the system dumps generated at the time of a crash. The data obtained
from these two sources appear to be coﬁsistent.

The results presented in this report are averages of data obtained from
nine snapshots taken between January and March of 1977. For most of the
results reported, the data in individual snapshots varied less than 5% from
the reported average. The results with larger variability are noted as they
are presented in the next section. At the time of each of these snapshots,
the system was loaded with approximately 50 users, many of whom were involved
in program development, and thus were editing, compiling, or debugging
programs. Another large class of users was involved in document preparation.

The Multics supervisor provides three primitive types of objects:

Measurements of Sharing Page 5 DRAFT, March 30, 1977

A

segments, which are logical iﬁformation containers holding up to 255K 36-bit
words, directories, which form the hierarchy used to organize segments, and
pages, which are information containers holding 1024 36-bit words. Each page
is part of some segment or directory and contains part of the information
content lof that segment or directory. The Multics virtual memory mechanism
maintains detailed information about the use of segments and directories by
processes for approximately 1000 segments and directories. This information
is contained in a software-~implemented cache, known as the Active Segment
Table (AST), which is managed by an LRU algorithm. The segments and
directories that are described in this cache are referred to as active.

For each active segment, the AST contains a list of the processes that
have referenced that segment since it last became active. If two different
processes appear on the list for a particular segment, then that segment has
been shared, by the definition of sharing given above, in the length of time
that the segment has been active. Unfortunately, the length of time that a
particular segment has been active cannot be determined directly from the
available information and must be estimated. This time varies from a minimum
of about 1 minute, to several hours. The mean time is about 6 minutes.

Similar information is available for the active directories. Processes
do not in general reference directories explicitly, but a reference to a
segment implicitly references all directories above that segment in the file
system hierarchy. A directory is guaranteed to remain active as long as there
is some segment below that directory in the hierarchy that is active. For
this reason, directories remain active longer than do segments. The average

length of time that a directory was active in the system being measured was

about 25 minutes.

Measurements of Sharing Page 6 DRAFT, March 30, 1977

The amount of write-sharing of segments can be estimated by examining the
access privileges that processes have to shared segments. This information is
available in the AST. This only gives an wupper bound on the amount of
write-sharing, as a process that has write access to a segment haé not
necessarily written that segment.

There is less information available about the use of pages by processes.
An estimate of the sharing of pages can be made by considering a page to be
shared if the segment or directory of which that page is part is shared, that
is, all pages of shared segments and directories are considered to be shared.
This estimate 1is again an upper bound, as most segments and directories have
more than one page, and all processes that reference a segment or directory do
not reference all of its pages.

We can easily estimate the magnitude of two of the sharing parameters
described in the previous section from the data described above. The data
give the percentage of objects that ‘are shared, and the average number of
processes that share an object. A good estimate of the percentage of object

references that reference shared objects cannot, however, be obtained from the

available data.

5. Results

This section presents the results of the sharing measurements discussed
above. As previously noted, the data reported are averages for nine
snapshots, each of which yields results very close to the reported averages.
These results are analyzed to determine the causes of any unexpected results,
and to determine the implications of all results for the implementation of a

distributed Multics-like system.

Measurements of Sharing Page 7 DRAFT, March 30, 1977

5.1. The Sharing of Segments and Directories

Table 1 shows the total numbers and percentages of the active segments
and directories that were shared in all nine snapshots. The table shows that
about 59% of the active directories were shared, while only 12% of the

segments were shared.

Table 1

Sharing of Active Segments and Directories.

Unshared Shared
Segments 5026 (88%) 705 (12%)
Directories 1034 (41%) 1525 (59%)

One reason for the larger proportion of shared directories is that each
reference to a segment implicitly references all of the directories above that
segment in the file system hierarchy. Thus a directory is shared if some
segment below it is shared, or if two different segments below it are
referenced by different processes.

Another reason for the high proportion of shared directories is the
presence of system processes, which perform such functions as making backup

copies of recently modified segments, and creating processes for users. These
system processes reference many directories, but do so very infrequently. A
later section of this report discusses the effects of such system processes on

our measurements.

Measurements of Sharing Page 8 DRAFT, March 30, 1977

" 4

5.2. Read-Sharing and Write—Sharing_g£ Segments

Table 2 gives the numbers and percentages of active segments that were

read-shared or write-shared.

Table 2

Read-Sharing and Write-Sharing of Segments

Read-Shared 613 (10.6%)

Write-Shared 92 (1.6%)

These figures suggest that very little write-sharing of segments takes
place. Most of the write-shared segments were in fact being used to implement
system supported higher level dat# structures, such as mailboxes. These
segments are referenced only by system supplied programs. These programs
synchronize their writes with a simple protocol that could be implemented

easily in a distributed system.

5.3. The Effect of System Processes and Segments

The measurements of sharing presented above include all of the processes,
segments, and directories in the Multics system. We would like to be able to
examine sharing of objects by wuser controlled processes separately from
sharing due to the system processes mentioned above. A significant amount of
the sharing due to system processes could probably be avoided in a distributed
system by duplicating the system processes at each site. Thus the separation
of the sharing that is solely due to the interaction of user-controlled
processes is important.

It is also interesting to examine the sharing of user-created objects

separate from that of system objects such as system programs or subroutine

Measurements of Sharing Page 9 DRAFT, March 30, 1977

libraries. Many system objects are very rarely modified, and therefore could
easily be duplicated at each site in a distributed system; or they are
directly related to the functioning of the machine, and thus would not be
shared across site boundaries in a distributed system.

Table 3 gives the results of performing some of the measurements reported
in Tables 1 and 2 on the same system (a) with the effect of system processes
removed, and (b) with both the system processes and system segments and
directories removed. The table gives the total numbers and percentages of
read-shared and write-shared active segments and of active directories in the
nine snapshots. The table gives three sets of figures, one for each of the
restricted cases mentioned above, and a summary of the results reported in

Tables 1 and 2 for comparison.

Table 3
The Effect of System Processes and System Objects on Sharing Measurements

All Processes, User Processes, User Processes,

All Objects All Objects User Objects
Read-Sharing of Segments 613 (10.6%) 585 (11.6%) 66 (2.0%)
Write~-Sharing of Segments 92 (1.6%) 33 (0.6%) 6 (0.2%)
Sharing of Directories 1525 (59%) 693 (31%) 564 (24%)

These figures show that the system processes are responsible for a
substantial proportion of the sharing of directories, and most of the write
sharing of segments. One system process known as the Initializer references a
large number of directories that are referenced by only one other process.

Thus removing the effects of the Initializer process greatly decreases the

Measurements of Sharing Page 10 DRAFT, March 30, 1977

apparent directory sharing.

The figures above also show that most of the read-shared segments are
system segments. Each process references a large number of system programs.

The segments that contain these programs account for most of the read-sharing.

5.4. The Average Number of Processes that Share an Object

The figures presented so far suggest that sharing of segments may not - be
very important in Multics. The percentages of shared segments seen here
suggest that relatively rarely is a particular segment shared. It is
possible, however, that the shared segments are much more heavily used than
the unshared segments and are therefore very important. One way to estimate
such an effect is to measure the number of processes that share each active
segment and directory, and to compute the average. Table 4a gives this

average for segments and directories for the three cases indicated in Table 3.

Table 4a

The Average Number of Processes that Share an Average Segment or Directory.

Segments Directories
All Processes, All Objects 2.6 4.3
User Processes, All Objects 2.6 3.6
User Processes, User Objects 1.1 2.3

The figures in Table 4a suggest that the shared segments are shared by
many processes. Although few segments and directories are shared, the average
number of processes that share a segment or directory is large. This fact is

even more apparent if we compute the average number of processes that share a

Measurements of Sharing Page 11 DRAFT, March 30, 1977

shared segment or directory. (The averages in Table 4a are for all segments

and directories, shared or unshared.) These figures appear in Table 4b.

Table 4b

The Average Number of Processes that Share a Shared Segment or Directory.

Segments Directories
All Processes, All Objects 13.9 6.6
User Processes, All Objects 13.8 6.7
User Processes, User Objects 3.6 3.1

Figure 1 shows a histogram of the data from one snapshot used to derive
the average for all processes sharing all segments. The figure shows the
number of segments that were shared by exactly N processes as N varies from 1
to 45, Notice that most of the segments are unshared or shared by only 2
processes, while a few are shared by most of the processes on the system.

These few are the segments that contain the most popular system programs.

Measurements of Sharing Page 12 DRAFT, March 30, 1977

-

N
1 (555)
2 (19)
3 (9)
4 (6)
5 (3)
6 (1)
7 (4)
8 (3)
9 (2)
10 (1)
11 (1)
12 (0)
13 (2)
14 (0)
15 (0)
16 (0)
17 (0)
18 (0)
19 (1)
20 (0)
21 (0)
22 (0)
23 (0)
24 (0)
25 (2)
26 (0)
27 (0)
28 (0)
29 (0)
30 (2)
31 (0)
32 (0)
33 (0)
34 (0)
35 (0)
36 (0)
37 (0)
38 (2)
39 (1)
40 (0)
41 (1)
42 (1)
43 (0)
46 (1)
45+ (8)

Measurements of Sharing

Figure 1

The Number of Segments Shared by Exactly N Processes

XXXXXXXXXXXXXXXXXXXXXXXXXXXX){XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*

XXXXXXXXXXXXXXXXXXX
XXXXXXXXX

XXXXXX

XXX

X

XXXX

XXX

XX

X

X

XX

ol

XXXXXXXX

Page 13

DRAFT,

March 30,

1977

5.5. Sharing of Pages

As previously noted, information on the sharing of pages by processes is
not directly available, and must be estimated based on the use of segments and
directories. The three-level memory hierarchy used by Multics allows us to
distinguish three sets of pages for which sharing parameters can be estimated.
Each 1level of the memory hierarchy is managed by a page replacement algorithm
that closely approximates LRU, so as to keep the 'most recently referenced
pages in the lowest levels of the hierarchy. 1In the snapshots analyzed in
this report, all pages in main memory (core) had been referenced within the
last 0.5 second, and all pages in the second level of the hierarchy, the
paging device (PD), had been referenced in the last 4 minutes. Pages in the
third level (disk) had not been referenced in the last 4 minutes. These time
intervals should not be confused with the time window of sharing, which is the
same for segments and directories as for their pages. These intervals
indicate the time at which a page was last referenced by some process, but not
the sharing of a page by two or more processes.

Table 5 reports upper bounds on the amount of read-sharing and
write-sharing of pages referenced in the 1last 0.5 second, and of those
referenced in the 1last four minutes. The table shows that 361 pages were
referenced in the last 0.5 second and were read-shared, which represents 29%
of all of the pages that were referenced in the last 0.5 second.

The data reported are averages of data obtained from nine snapshots. The
data obtained from some of these snapshots varied considerably from these
averages. (The percentage of pages referenced in the last 0.5 second that

were read-shared, for example, varied between 15% and 57%.) This variability

Measurements of Sharing Page 14 DRAFT, March 30, 1977

can be explained by the fact that the references observed in any 0.5 second
interval may not be typical of all references made in the system. This
interval is small compared to the length of time that processes are blocked
while waiting for interactions with users, and thus few processes actually

make references in the 0.5 second interval from which the data is taken.

Table 5

Sharing of Pages

Referenced in Last 0.5 Second Referenced in Last 4 Minutes

Read-Shared 361 (29%) 2897 (22%)
Write-Shared 12 (1.3%) 113 (0.8%)

Notice that the pages more recently referenced are more likely to be
shared. We expect that shared pages are more frequently referenced, as they
are referenced by more than one process.

We can also compute the average number of processes that share a page at
each level of the memory hierarchy. This is done by computing the sum for
each memory level of the number of processes that share each page at that
level (estimated, again, on the basis of what we know of the sharing of the
corresponding directory or segment), and dividing that sum by the number of

pages at that 1level to obtain the average. Table 6 presents the average

computed for pages in each level of the memory hierarchy.

Measurements of Sharing Page 15 DRAFT, March 30, 1977

Table 6

The Average Number of Processes Sharing a Page.

Pages of Segments Pages of Directories
Core Pages 6.6 28.8
PD Pages 5.2 17.1
Disk Pages 2.3 5.7

Notice that the number of processes that share a page is highest in the
fastest portion of the memory hierarchy. This is because the chance that a
page will be referenced increases with the number of processes that share that
page, and thus shared pages compete more effectively for space on the paging
device and in core.

Note that the figures in this table are much higher than those for the
average number of processes sharing segments or directories reported in Table
4a. This difference is due to the fact that shared segments and directories
tend to have more pages in general than unshared segments and directories.
Therefore, with the method used to estimate the sharing of pages, a higher

proportion of pages than of segments or directories are counted as shared.

6. Conclusions

The results in the previous section show that very 1little sharing of
user-created objects takes place among user-controlled processes on the M.I.T.
Multics system. This fact suggests that it may be possible to implement a
Multics-like system in a distributed environment where sharing of memory pages

is not possible.

Measurements of Sharing Page 16 DRAFT, March 30, 1977

There is very little write~sharing of segments. Most of the write-shared
segments are referenced only by system programs, which use simple protocols to
synchronize their writes.

Although a higher proportion of directories than of segments are shared,
it 1is wunlikely that shared directories would cause as much trouble in a
distributed system as would shared segments. The difficulty of implementing a
shared object in a distributed system is related to the size of that object
and the frequency of updates. For the system being measured, the average size
of an active segment (8.6 pages) was much larger than the average size of a
directory (3.9). More importantly, although implicit references to
directories are quite frequent, updates to directories are very rare.

Another point to consider is that the supervisor implements updates to
directories, and thus takes care of synchronizing those updates. A different
synchronization mechanism would be needed in a distributed system, where
several copies of a directory may exist on different machines. However, only
a few system programs need be aware of how this synchronization is performed.
The users and user-written programs do not need to know the details of the
protocols used to synchronize updates.

Processes reference segments with machine instructions and not calls to
the supervisor. The supervisor makes no attempt to synchronize updates to a
segment. Instead, the processes that write-share a segment depend on the fact
that they are sharing the same copy of the segment, and use hardware
instructions that act on the segment to perform synchronization. A different
synchronization strategy would be required in a distributed system, and all
programs that use write-shared segments would have to be modified to adopt the

new strategy. This problem does not arise in a more conventional file system

Measurements of Sharing Page 17 DRAFT, March 30, 1977

where all references to files are performed by calls to the supervisor, and
not by machine instructions.

Although very little sharing of user-created objects takes place in the
M.I.T. Multics system, the results reported show that many system segments are
intensely shared. Copies of these frequently referenced system segments would
have to be maintained at each site in a distributed system in order to achieve
satisfactory performance. While the cost of storage is rapidly decreasing,

the extra storage required to hold the copies may be a significant expense.

References

1. Alsberg, P.A., Belford, G.G., Day, J.D., Enrique, G. Multi-copy
resiliency techniques. University of 1Illinois, Center for Advanced
Computation Document No. 202 (May 1976).

2. Johnson, P.R., and Thomas, R.H. The maintenance of duplicate databases.
Arpanet Network Working Group RFC No. 677 (January 1975).

3. Thomas, R.H. A solution to the update problem for multiple copy data
bases which uses distributed control. Bolt Beranek and Newman, Inc.
Technical Report No. 3340 (July 1976).

4. Bensoussan, A., Clingen, C.T., and Daley, R.C. The Multics virtual
memory: concepts and design. Comm. ACM 15, 4 (May 1972), 308-318.

5. Organick, E.I. The Multics System: An Examination of its Structure. MIT
Press, Cambridge, Mass, 1972.

Measurements of Sharing Page 18 DRAFT, March 30, 1977

