M.I.T. Laboratory for Computer Science June 9, 1977

Computer Systems Research Division Request for Comments No. 143

DRAFT OF FINAL KERNEL DESIGN TASK REPORT
by David D. Clark

We are now preparing a final report on the kernel design project, which
will be submitted to Honeywell and published as a technical report. Part of
this report is a summary of all tasks that were a part of this project. This
RFC is a draft of that summary.

Please read any sections that describe work you did. Let me know if I
have misrepresented or omitted any of your results. Also, let me know if I

have failed to include any task.

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author's permission and it should not be cited in other

publications.



)



I. Studies of Formalisms for System Specification

At the beginning of this project, we invested a certain amount of effort
in exploring known techniques for expressing the specification of operating
systems. While we did not intend, as part of our research, to construct a
formal specification for the Multics operating system, it was important for us
to understand enough about the construction of specifications to see how our
work would relate to this task. We experimented with three different
specification languages: the Vienna Definition Language, a stylized English,
and a special language developed here and locally known as GSPL, a PL/l-like
language with data structures based on LISP. In an attempt to discover the
relevance of structured programming to our project, structured representations
of two parts of the system, page control and traffic control, were developed.
These preliminary experimentations proved very valuable in developing the
group insight. The structured representation of page control in GSPL forms an

appendix to technical report TR 127 by B. Greenberg.
II. Analysis of Original System

Before we could begin to perform any organized rearrangement of the
kernel of Multics, it was necessary to have a clear idea of what was contained
in the kernel of the system as it existed at the beginning of our project. To
this end, the programs that constituted the supervisor of the existing system
were analyzed in several ways. First, we gathered together the functional
specification for every entry point into the supervisor. The resulting
notebook constituted a first cut at a functional specification of the Multics
kernel. Second, all of the segments that constituted this supervisor of the

system were categorized by function and by source language. The results of



this preliminary assessment, and a comparison with the system of today, are
summarized in the earlier portion of this final report. The preliminary

assessment is reported in RFC 37.

I1I. Formulation of Criteria for Inclusion of Modules within the Kernel

There are a variety of forces that have caused modules to be moved into
the Multics supervisor. Some of these modules are obviously related to
maintenance of system security, others have something to do with system
security, but might be removable at least in part, and others exist in the
supervisor for reasons such as efficiency or convenience, and are not related
to maintenance of system security in any way. We believed that the size of
the supervisor could be markedly reduced by dissecting a large number of
system modules and removing them, either partially or wholly, from the
supervisor. Before we could begin such a removal process, however, it was
necessary to determine exactly what criteria we would use to justify the
inclusion or exclusion of a module from the kernel. We began by studying a
number of specific parts of the current system and identifying the trade-offs
related to removing these particular parts out of the kernel. One study in
particular was performed of page control. We identified three levels of
security with which we might be concerned, protection of information from
direct release or modification, denial of service, and confinement of user
computation to protect against leakage by means of a "trojan horse" attack.
In general, we adopted the principle that protection against confinement was
not easily achievable in today’s environment, and that protection against
denial of service was achievable and important, but that denial of service was

less important than direct unauthorized release or modification of data.



IV. Analysis of Flaws in the Multics System

In an attempt to understand the sorts of problem that lead to potential
violations of security, our group periodically collected and documented every
known way to penetrate the Multics system. While the list of uncorrected bugs
was not circulated, we periodically issued a report which analyzed bugs after
a repair had been installed in the system. These analyses are of a very
pragmatic nature, but yield considerable insight into the sort of problem that
must be solved in practice if a secure system is to exist. These reports were

published as RFC 5, RFC 46, RFC 47, RFC 59, and RFC 92.
V. Performance Benchmark for the Multics System

One of our concerns in this project was that the performance of the
system should not be significantly degraded by the modifications that we
proposed. We had anticipated using the standard Multics benchmark developed
at the MIT Information Processing Center to evaluate our modified versions of
the system, but we discovered that this benchmark was too time consuming and
not sufficiently precise for our purposes. For this reason we invested some
effort in producing a variant of this benchmark that ran more quickly than the
standard version and whose results were more repeatable. We produced a
version of the benchmark that started and stopped the calibration tasks in
such a way that the resulting running conditions were much more repeatable
than in the standard benchmark. This modified benchmark was used to produce

the performance results reported earlier in this report.

We also invested some effort in designing a version of the benchmark that
provided the test load on the Multics system by logging in interactive

processes over the ARPANET, as opposed to the absentee jobs used by the



standard benchmark. The advantage of interactive processes is that they
exercise the system in a fashion more similar to the way the system is
actually used. This latter project was never completed. It appeared that the
need for an evaluator of this complexity and precision was not required, since
the majority of the projects that we performed were not carried through to an
implementatién which was sufficiently tuned to yield more than very rough
performance information. We did perform a variety of small projects as a part
of this task, including experimental observation of various classes of users
on the system, in order to develop an empirical model of the arrival pattern
of user commands. This work is reported in an undergraduate thesis by H.

Rodriguez, entitled '"Measuring User Characteristics on the Multics System".
VI. Removal of the Dynamic Linker from the Kernel

Our preliminary analysis of the Multics kernel indicated that a
significant volume of the kernel consisted of programs that did not need to be
in the kernel for reasons of security, but were there for reasons of
efficiency or tradition. It was important to determine whether or not it was
practical to remove these modules bodily from the kernel. In most cases it
was clear that some small percentage of the algorithm did require supervisor
privilege, and there was some fear that this residue would complicate the
outright extraction of the algorithm. The first such task which we undertook
was the removal of the dynamic linker from the kernel. The dynamic linker,
which translates at run time between symbolic names and segment numbers, was
an obvious candidate for removal for four reasons. First, the linker did not
implement any concept related to the protection of the system or needed to
support the protection mechanisms. Its function is entirely related to the

execution of user written code. Second, In view of the function implemented



by the linker, it seemed reasonable to suspect that the linker did not need
any of the privilege granted to typical modules of the security kernel.

Third, the linker was a very complex program. Even though its function was
easy to describe, the details of its implementation required the use of
intricate and sophisticated language constructs that made the reading and
auditing of the program an almost impossible task. Finally, the linker, by
its very nature, handles data directly accessible to the users of the system.
Such data could contain, purposely or not, inconsistencies capable of causing
the linker to malfunction or perform unexpected operations. It seemed much
harder to verify the correct operation of a program when that program could be
presented with an arbitrary input than to verify correct operation when a
"correct" input was guaranteed. Thus, very sophisticated machinery would be
required to verify the consistency of user databases and thus insure proper
operation of the linker. Inclusion of such machinery, if possible, would only
increase the complexity of the linker. The alternative of removing the linker
from the kernel would insure automatically that no malfunction of the linker

would ever subvert the protection mechanism of the system.

Since this project was one of our earliest, the design was carried
through to an implementation in order to increase our confidence that the
techniques we were proposing in principle would work in practice. The
completed implementation also allowed us to make some preliminary performance
studies, since there was some concern that removal of algorithms from the
kernel might significantly degrade the performance of the system. The
conclusions drawn from this project were that the outright removal of certain
algorithms from the kernel was indeed feasible and practical, that no drastic

performance degredation need be expected in practice, and that the flexibility



of the system was in fact enahnced by this extraction, since the user now had
the option of replacing the linker with an alternative program of his own
choice. One useful byproduct of this study was the conclusion that kernel
intervention is not required when control is being transfered between one user
domain and another, even if those two domains are mutually untrusting. This
is a most interesting conclusion, which was not at all obvious at the

beginning of the project.

The results of this project are reported in detail in technical report TR
132, by P. Janson, and in "Dynamic Linking and Environment Initialization in a
Multi-Domain Process", Proceeding of 5th Symposium on Operating Systems

Principles, ACM Operating Systems Review 9, November 1975.

VII. Minimizing the Naming Facilities Requiring Protection

This project involved identifying another component of the existing
Multics kerpel that could be removed bodily into the user environment.
Multics provides a very sophisticated naming environment that users may use to
keep track of their files. One set of names available to the user, file
system names, are global in scope and can be used by any user to identify a
shared file. Since these names are shared among users, it is not obvious how
their management could be removed from the kernel. However, there are other
sorts of names, reference names, private to each user, which provide an
efficient way of naming a file already identified using a file system name.
Since the management of reference names is private to each user, it seemed

reasonable to remove their management from the kernel.

Removing the reference name manager from the kernel required that a

kernel data base, the known segment table, be split into a private and a



common part, and that the supervisor learn to lie convincingly on occasion
about the existence of certain file system directories. This project was also
carried through to an implementation, primarily because we anticipated
demonstrating a performance improvement, and a drastic reduction in the
complexity of the algorithm once we eliminated the constraints imposed on the
algorithm by the necessity of its shared operation in the kernel. The result
was a reduction by a factor of five in the kernel code required to manage the
address space of a process, and an increase in performance. A new and simpler

kernel interface was an additional by-product.

The results of this research are represented in technical report TR 156

by R. Bratt.
VIII. Removal of the Global Naming Hierarchy from the Kernel

The previous task description discussed the existence of a global naming
environment, the Multics file system. Since this naming environment is shared
among all the users, it was not at all obvious that this name management
mechanism could be removed from the kernel. However, it appeared that the
file system could at least be partitioned into two parts, a single-layer
catalog of segments, indexed by unique id, and a higher level name management
mechanism which performed no function except the mapping between user provided
names and unique id’s. If such a division could be perfofmed, then it would
be possible to imagine removing this higher level from the kernel, and
providing a different copy of this management package for users in each
different security compartment. While this would segregate the users into
disjoint classes that would be incapable of refering to each others files,

such a segregation might be acceptable in many applications. Even if it were



not possible to remove this name management algorithm from the kenel, the
partitioning of the algorithm into two components would presumably increase
the modularity of the system, which would enhance the auditibility of the
kernel. This project was initiated, but not completed. It was clear that
this was a very major upheaval to the functionality of Multics, in addition to
being a major upheaval to the structure of the existing code. We felt that
for our purposes the effort required to perform this surgery would not be
appropriate, given the requirement that we conform to the current Multics
specification. In a new system, which was being designed with the goals of
auditibility in mind, we would strongly urge that this structure be
considered, and if Multics were being completely redesigned, we think that it

would be quite valuable to evaluate this structure for inclusion.
IX. Study of Multics System Initialization

If one is to certify that a system works correctly, one must begin by -
verifying the "initial state" of that system. For this reason, it was very
important to understand how the Multics system initialized itself. The
current initialization procedure is relatively unstructured in the sense that
we found it very difficult to understand how one might verify its operation.
Essentially, initialization proceeded in a number of very small incremental
steps, each of which augmented the environment of the programs which followed
it. This means that each program runs in a slightly different environment
than its predecessor. It is characterizing this large number of different
environments which makes verification of program correctness so difficult.
The reason for this large number of incremental steps performed during every
initialization is that each of these steps could be tailored to reflect the

particular physical configuration of the hardware available for this



particular start up of the system. Thus, a single Multics tape containing the
initialization programs could be generated which would bring up a running
Multics on any configuration, in contrast to other systems which require the

generation of a tape specific to a particular configuration.

We proposed an alternative structure for Multics initialization that
continued to achieve this goal, but which we considered to be much more
amenable to verification. Our strategy divided initialization into two
phases. 1In the first phase, we loaded into memory a bit string which
constituted a version of Multics capable of running on any configuration. In
order to do this, it was necessary to demonstrate that there was a minimal set
of hardware and software which constituted a subset of every viable
configuration. Once we had defined this minimal configuration, then it was
possible to generate a version of Multics which used just these resources.
The generation of this minimal Multics was done, not at the time the system
was initialized, but at the time the tape was generated. Generating the
minimal Multics at tape generation time makes validating the generation
programs much simpler, since the programs can run on a full fleged Multics,
rather than run in the environment that they are attempting to create. The
second phase of initialization consisted of a series of dynamic
reconfigurations which modified the minimal Multics to take advantage of the
particular hardware and software available at this site. Dynamic
reconfiguration has always been an essential part of Multics, and many of the
reconfigurations required for this purpose already existed in this system. It
was necessary to demonstrate that certain supervisor tables, such as the
traffic control and segment management data bases, could be grown, and

implementations were performed to prove this particular claim. Although this



initialization strategy was not completely implemented, we are very confident
that it is easily amenable to validation, since it conforms in its structure
to the principles of layering, which appear to be powerful principles in

operating system structuring.

The results of this work are reported in technical report TR 180 by A.

Luniewski.

X. Restructuring of Page Control

The Multics kernel is implemented as code which is distributed among all
the processes in the system. That is, a user desiring a particular service of
the supervisor executes the relevant supervisor code in his own process.

There is an alternative structure, in which the supervisor is implemented as
separate processes that communicate with the user using interprocess
communication mechanisms. This structure, in certain cases, has the advantage
that it isolates as a sequential process an algorithm which by its nature
wants to be sequential, and is forced to an unnatural structure by being
executed, potentially in parallel, by several user processes. We were very

anxious to explore the use of this strategy within the Multics kernel.

The part of the supervisor that we chose as a testbed for this experiment

was the low level memory management algorithm, commonly called page control.

When a user references a page not in core, the page must be fetched from
secondary storage into an empty location in main memory. 1In order to perform
this move, it may be first necessary to create an empty space in main memory
by removing some other page. This removal algorithm has traditionally been
run at the time of a page fault, but there is no strong necessity that it be

run then. Our belief was that the removal algorithm could be more sensibly

10

-’



structured as a separate process, running in parallel with user processes,
with no function other than to identify and remove from main memory pages not
recently used. By segregating this algorithm in a separate process, the user
process is no longer concerned, at fault time, with the problem of queuing
disk writes, and waiting for their completion. Rather, the users process
performs a very simple operation: it requests an empty piece of maiﬁ memory,
abandoning the processor if one is not available, and then performs a read

operation from secondary storage into this location.

A redesign of page control also allowed us to explore the implications of
recoding an assembly language program in PL/l. The page control algorithms
had been coded in assembly language for efficiency, and we were anxious to
find out exactly what the impact was of using a higher level language. The
redesigned page control was implemented, since we were interested in
investigating the performance characteristics of the system and since we
wanted to‘confirm, by actually running the system, that we had identified all
interactions between these algorithms now isolated in separate processes, and
the higher levels of the supervisor still running in user processes. In fact,
these connections between the core removal process and the higher levels of
the supervisor turn out to be some of the stickiest problems associated with
this version of the algorithm. The problem is that higher level algorithms
occasionally request that particular pages they specify be removed from
primary memory, and this explicit request from above does not fit neatly into
the otherwise clean pattern of the core removal algorithm. The alternative of
having these explicit removal operations performed by the user process implies
that more than one process can be removing pages from memory at the same time,

which in turn implies that the data bases describing the contents of memory

11



are being updated by more than one process. This eliminates much of the
cleanliness of a multiprocess inplementation, since locking must still be used

to insure the integrity of the data base.

The results of this implementation, especially the conclusions we draw
concerning performance of the algorithm in a high level language, are reported
in the earlier part of this report. Details of this project are reported in

technical report TR 171 by A. Huber, and in RFC 135 by R. Mabee.
XI. Efficient Processes for the Kernel

As discussed in the previous task description, it appeared that
structuring some of the supervisor around separate processes was convenient
and appropriate. It was clear, however, that the mechanisms then existing in
Multics for the creation and scheduling of processes were somewhat unwieldy
for this particular sort of application. We saw many places in the system in
which a process could be used if it did not carry with it the full price tag
of the user process. 1In particular we concluded that a process that could
take page faults, but could perform no other modifications on its environment,
such as adding a new segment to its address space, would be an effective and
economical compromise for system processes. We performed an implementation of
such a process, in order to demonstrate that its operation was compatible with
the Multics structure, and we used this process in a variety of ways. 1t was
utilized heavily in the design of page control discussed above. It was also
used to demonstrate that processes could be used in Multics to handle 1/0
interrupts. Currently in Multics, the code which responds to an interrupt
runs in a very unusual and limited environment, with restrictions such as it

cannot call a locking primitive or perform any other action which might

12



conceivable abandon the processor. If an interrupt could be translated into a
wakeup, these problem would vanish. It was clear that the immediate
translation of an interrupt into a wakeup was an obvious and crucial idea in
the correct structuring of the system. We demonstrated the utility of these
fast processes by modifying the teletype interrupt handler so that it ran in
such a process. We also explored the use of such a process‘for handling other
1/0 interrupts, such as the interrupts necessary to operate our connection to
the ARPANET. Although we performed no implementation for interrupt handlers
other than the teletype handler, we believe that the use of processes in this
way is generally applicable, since the typewriter handler is a very complex
piece of code which demonstrates most of the problems relevant to interrupt
handlers. 1In the discussion of task XVI below, we demonstrate a structure to
the system which provides these efficient processes in a clean and

understandable way.
XII. Multiple Processes in the User Ring

Another related experiment involving the use of multiple processes was
the restructuring of the user ring computation so that it could run in a
multiprocess environment. While there are a variety of advantages to a
multiprocess user environment, such as being able to suspend several commands
and then restart them in an order different from the order in which they were

suspended, the principal impact on the kernel, as opposed to the user, of

multiple processes, has to do with handling of the Multics quit signal. The
quit signal currently propagates its way through the Multics kernel in a most
astonishing and intricate pattern, starting out in an interrupt handler, being
translated into a special call to the traffic controller, which in turn

generates a special interrupt in the target process, which may cause that

13



process to run in order to be interrupted. If we understood how to structure
the user computations so that the quit was nothing but a wakeup to a separate
user process, then the mechanism in the kernel would be much reduced, since
the only operation the kernel would perform would be the immediate translation
of a quit signal into a wakeup, which is exactly the same action that the
kernel would presumably take on any I/0 interrupt. We explored the proper
structure of the user computation as a number of processes, and produced a
running implementation, although the results of this research were never
published as an RFC. A related document, however, is discussed below in task

XVIII.

XIII, Study of Error Recovery

One of the most disruptive events in a system supervisor is the
occurrence of an error. An error may be so severe as to cause suspension of
all system operation, but even in this context it is necessary to bring the
system to an orderly halt so no more information than necessary is lost. If
an error is not so severe, it may still be necessary to reflect the occurrence
of this error to some module other than the module which actually discovers
the error. It turns out that these error reporting paths are the most
intractible communication paths in the system when one attempts to modularize
the various functions of the supervisor. Typically, an error is detected at a
very low level in the supervisor, and is reported to some higher level,
thereby providing a reversed direction communication channel from low to high
in violation of the layering strategy. During the course of this project we
performed a variety of studies to try to understand how Multics should recover
from errors, and whether steps taken to insure the reliable recovery of errors

might in fact compromise system security. The first project was a study of

14



the Burroughs 7700 operating system, since we were giveﬁ to believe that this
system was highly resilient in the face of errors, and could continue
operating without disruption of the user computation. In fact, we concluded
after a study of the system listings that the level of recovery provided by
the Burroughs system did not markedly exceed that which Multics itself
displayed. A more detailed analyses of the various sorts of errors to be
expected in the Multics system was performed as part of this project, although

the documentation of this report is still in draft form.

A related project which addressed the question of upward communication

across layers is described in task XVI.
XIV. Removal of Answering Service from kernel

The Answering Service is that collection of modules that manage the
system accounting, authenticate users logging into the system, and keep track
of the allocation of typewriter channels and user processes. As currently
structured, the Answering Service is a very large collection of code, all of
which must be included in the security perimeter of the system. It was our
belief that the algorithms could be structured in such a way that only a small
portion of the algorithms required kernel privileges. In fact, we felt that
functions traditionally performed as part of the kernel, such as user
authentication, could be performed by the user process itself. 1In order to
investigate these beliefs, we developed an alternative structure for the
Answvering Service that attempted to minimize the kernel functions related to
user authentication and accounting. The result of this design was a version
of the system with increased flexibility, since users were now permitted to

create authenticated and accountible processes at will, but which at the same

15



time reduced the size of the kernel dramatically, as reported in the earlier
portion of this document. A byproduct of this research was increased insight
into the relationship between process creation, as currently performed when a
user logs in, and the crossing from one protection domain to another, as is
often discussed in systems with protection boundaries more general than the

Multics ring structure.

A demonstration of this algorithm was implemented. The results are

reported in technical report TR 163 by W. Montgomery.
XV. Organization of the Virtual Memory Mechanism of a Computer System

One of the most important results of our research is a method for
producing modular, structured software to support the virtual memory mechanism
of a computer system. This material is discussed at length in the first part

of this report, and is summarized only briefly here.

The concept of type extension we proposed as the basis for organizing a
virtual memory mechanism. A virtual memory mechanism should be regarded as
implementing abstract information containers (e.g. segments) out of physical
information containers (e.g. core blocks and disk records). Further, we
showed how one could implement the programs and the address space of the

mechanicm itself without violating modularity and structure. We illustrated

the use of the method by applying it to the redesign of the virtual memory

mechanism of Multics.

This work is summarized in the earlier part of this paper and in the
Laboratory for Computer Science Annual Report for the period ending June 1976,

and is discussed in detail in technical report TR 167, by P. Janson.

16



XVI. Processor Multiplexing in a Layered Operating System

In the original system, there existed a very intractable entanglement
between the virtual memory manager and the processor manager. An important
project was to disentangle these two modules, and to produce a structure for
the processor manager which was consistent with the principles of layering and

type extension developed in the project discussed in the previous section.

The general nature of the entanglement was as follows. The virtual
memory manager depended on the processor manager in a number of ways. First,
of- course, it depended on the processor manager to provide the interpreter for
the code of the virtual memory manager. Second, and more explicit, the
virtual memory manager called upon the processor manager to suspend the
execution of a process that was waiting for a page to be moved from secondary
to primary memory. The processor manager, in turn, depended on the virtual
memory manager to move to and from memory the pages that containing the
description of processes that were about to be run. This unfortunate
circularity was eliminated in our redesign by separating the processor manager
into two levels. The bottom level was implemented without employing the
functions of the virtual memory manager. It executed using only information
permanently fixed in primary memory. On top of this layer, the bottom levels
of the virtual memory manager ran. The virtual memory manager could call upon
this lower level to switch execution from one process to another in order to
suspend a process waiting for a page. On top of this bottom layer virtual
memory manager, a second layer of processor management was then provided.

This upper layer had available to it a virtual memory, and could therefore
store the state of a large number of processes, whereas the bottom layer

processor manager, since it was restricted to storage permanently allocated in

17



main memory, could store a state of only a fixed and rather small number of
processes. By multiplexing these fixed slots among the larger number of
descriptions managed by the top layer processor manager, the effect could be
achieved of multiplexing an unbounded number of processes among the available

hardware processors.

One additional result of this thesis was a discussion of the problem of
upward signalling: the passing of a message from a lower level to a higher
level of the system in such a way that the layering dependencies are not
violated. The problem arises in this case when, as a result of an event
detected by the bottom layer traffic controller, a process must be readied for
execution whose state is known only at the higher level. A solution to this
problem is proposed which does not make the lower layer processor manager

dependent on the uper layer.

This research is discussed in the earlier part of this report, and is

presented in detail in technical report TR 164 by D. P. Reed.

XVII. Separation of Page Control and Segment Control

From the beginning of this project it was clear that one area of great
confusion and complexity within the Multics system was the Active Segment
Table and the large number of modules which manipulate it. The structure of
the Active Segment Table is dictated by the needs of several layers in the
memory management system, from page control at the bottom to directory control
at the top. An extensive study was launched of the Active Segment Table and

the file system in an attempt to understand what the underlying cause of this

18



entanglement was. A major conclusion of this study was that resource control,
in particular the management of storage system quota, was at the root of a

great deal of the confusion.

Given the general principles of layering and type extension discussed
earlier, it seemed appropriate to attempt to apply them in detail to this area
of the system. The particular project undertaken was the separation of the
bottom two layers of the virtual memory manager, page control, which moves
pages of information to and from main memory, and segment control, which
manages the aggregation of pages into segments. These two modules were the
primary villans causing the entanglement manifested in the A¢tive Segment
Table. The root of the problem was, as expected, resource management, in
particular the "quota problem'". Much of the structure of the Active Segment
Table was being provided so that the low level page manager could implement
resource management decisions which reflected policies being specified
dynamically by higher level managers. The solution to this problem was to
remodularize page control and segment control as three modules rather than
two. The bottom layer continued to manage the movement of pages into and out
of memory. The top layer provided the abstraction of an active segment, and
provided the interface to the yet higher layers. The second layer provided an
intermediate abstraction, which lumped pages together for the purpose of
resource control. The result of this particular modularization was a clean
isolation of those variables in the Active Segment Table into categories which

were referenced by one and only one layer.

This work is reported in technical report TR 177 by A. Mason.

19



XVIII. Provision of "Breakproof" Environment for User Programming

As various parts of the operating environment are removed from the
kernel, the question arises as to where they should be put. If they are
placed in the same ring as the executing programs of the user, then they can
be destroyed by a programming error of the user. It would be very nice if the
removal of programs from the kernel did not lead to a reduced robustness of

the programming environment.

This project used the Multics ring mechanism to create an environment
which was not a part of the kernel but was still protected from the user.
This environment could be used to contain programs private to but still
protected from the individual user. We defined a consistent set of programs
to constitute this environment, which including the command processor and the
error recovery mechanism. The result was a program development and execution

environment which was considerably more robust than the current system.

This mechanism was implemented, because we felt we needed operational
experience with this subdivision of the user environment into two parts. Much
of the Multics environment was easily transformable into this new
configuration, although certain components of the system were less tractable
than others. The question of how error messages should be signaled in this
multi-domain environment was a source of considerable study. There was a
slight performance loss in this enviromment, due.to increased page faults from

duplication of stacks and related segments in both domains.

This work is reported in technical report TR 175 by H.J. Goldberg.

20



XIX. Control of Intermodule Dependencies in a Virtual Memory Subsystem

As discussed above in task XV, the techniques of type extension and
layering appear to be very important in producing a structured kernmel. This
project was a case study of the virtual memory management algorithms of an
abstract system resembling Multics, with the intention of applying these
principles in such a way that both the number of modules and the number of
interconnections between these modules is minimized. The central thesis of
this research is that the various operations performed by the layers of the
virtual memory manager can be characterized as being of one of two sorts: one
that associates and disassociates two computational objects, the other that
fetches attributes of a computational object given its name. Decomposition of
the virtual memory manager in this way reveals the kind of dependencies that
result when one module remembers the name of an object. More strongly, this
case study decomposition suggests that if the system provides a primitive
mechanism to perform each of these two operations, this pair of operations can
be used by several different layers of the virtual memory manager. Such reuse

is an especially effective way to reduce the number of modules in a system.

The representation of the operations used in this research is modeled on
the LISP concepts of atomic element and property list. The LISP paradigm
provides a convenient and suggestive model for the primitive operations

performed in this decomposition of a virtual memory manager.

This research is reported in technical report TR 174 by D. Hunt.

21



XX. New Mechanism for Process Coordination

As part of this project, we proposed a new mechanism for process
coordination called "Eventcounts'". Basically, Eventcounts are semaphore-like
coordination variables that are constrained to take on monotonically
increasing values. Coordination of parallel activities is achieved by having
a process wait for an Eventcount to attain a given value: one process signals
another by incrementing the value of an Eventcount. Any coordination problem
for which a solution has been developed using semaphores can easily be
converted to a solution using Eventcounts. In addition, many Eventcount
solutions seem to have the property that most Eventcounts are written into by
only one process; this reduction in write contention has beneficial effects on
security problems and on coordination of processes separated by a transmission
delay, as in a "distributed" computer system. Eventcounts provide a solution
to the "confined readers" problem, a version of the readers-writers
coordination problem in which readers of the information are suppose to be
confined in such a way that they can not communicate information to the
writers. Finally, for the class of synchronization problems encountered

inside an operating kernel, Eventcounts appear to lead to simple,

easy-to-verify solutions.

This work is reported in RFC 102, and in a paper entitled
"Synchronization with Eventcounts and Sequencers" to be presented at the 6th

Symposium on Operating Systems Principles by D. Reed and R. Kanodia.

XXI. Management of Multiplexed Imput/Output

One of the functions of the Multics kernel must be to control access to

multiplexed I/0 streams such as the connection to the front end processor

22



managing terminals or the connection to the ARPANET. The kernel must be
involved in the use of these streams, in order to insure that the messages of
one user are not inadvertently or maliciously observed or modified by another
user. Currently, a large bulk of very complex code is included in the kernel
to control each of these streams. This code implements many functions in
addition to the necessary kernel function of multiplexing and demultiplexing
the messages transmitted over the conmnection. To reduce the bulk of this
code, we have developed a model of the communication which takes place over a
multiplexed connection that is general enough to characterize the behavior of
the current front end processor, the current ARPANET, and various other
protocols for the ARPANET and other nets. From this model it is possible to
design modules resident in the kernel that implement the security functions
appropriate for any network that can conform to this model, rather than
creating a new control program for every network added to the system. A vast
majority of the network dependent code can be removed from the kernel and
placed instead in the user ring of the individual processes using the network

in question.

The model of this portion of the system is rather different in structure
than the models proposed to structure the virtual memory manager of the
system. The distinctions arise because the I/0 stream represents an
asynchronous parallel process whose behavior in some sense drives the kernel
modules managing the connection. This differing structure provides an
interesting test case for the generality of extended type managers as an

organizing tool in a kernel.

23



XXI1. Hardware Estimation of A Process’ Primary Memory Requirements

We completed a project to demonstrate that a process’ primary memory
requirements can be approximated by use of the miss rate on the processor’s
page table word associative memory. An experimental version of the system
demonstrated that the current working set estimator can be eliminated by the
use of this hardware measure. The working set estimator is a potentially
complex algorithm whose elimination is clearly appropriate in a simplified

kernel.

This work is reported in TM 81 by D. Gifford.

24

-



