M.I.T. Laboratory for Computer Science June 22, 1977

Computer Systems Research Division Request for Comments No. 144

RESPONDING TO ERRORS IN A COMPUTER SYSTEM
by Harry C. Forsdick

The attached paper reflects thoughts I had in January 1976 about
error recovery.. Since that time, I have changed my mind on the
feasibility of some of these ideas. For historical accuracy, we are
publishing this paper now, even though my feelings about the subject
have changed.

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author's permission, and it should not be cited in other
publications.

4

Responding to Errors in a Computer System January 9, 1976

by Harry C. Forsdick

I. Introduction

The subject of this paper is errors in a computer system and
the proper response by the system to them. The purpose of this
work is to develop insights about the difficulties encountered in
dealing with errors. Although it is not achieved here, the
ultimate goal is to develop a system where normal, error-prone
operations are augmented by the system's response to errors so
that the combination equals the idealized operation of the

system.

II. A Model of Errors in a Computer System

The action of a computer system can be viewed as a very
complex function which operates by calling smaller, less complex
functions. The arguments to the called function must obey
certain input assertions. The‘calling function depends on the
called function to perform the tasks associated with it -~ the
output assértion of the called function. Output assertions then
become a set of axioms upon which the calling function is based.

With this view, an error in a function is a departure from
either the set of axioms upon which the function is based or the
assertions ' about the inputs to the function. If we assume that
all parts of a system can be characterized as a function then
this statement applies to both hardware and software.

For example, the machine instruction 1load register has a

precise set of input and output assertions. Executions of the

load register instruction can be viewed as calls on a function
which alters the state of the machine. An error can occur in any
funcﬁion of a system, hardware or software. Thus it is
consistent to view a parity error in the execution of a 1load
register instriction in the same light as an access violation
error in the execution of, say, the create segment function.

Besides the uniform view of operations that functions yield,
a consistent view of data is necessary to lay the groundwork for
a treatment for errors. Object oriented systems provide such a
view: all data items in the system are assumed to possess
certain common attributes like unique identification and type.
The uniform treatment of data items in an object oriented system
provides two desirable qualities with respect to error
processing: accountability of data items and a common mechanism
for naming data items. Accountability is necessary to determine
the authority that should be informed when an error is detected
in an object. A common mechanism for naming is needed for
referring to objects in reporting errors.

So far, I have introduced two elements into an evolving
model of errors: functions and data objects. Functions can call
other functions supplying data objects as arguments. From the
viewpoint of one function in a sequence of calls, there are five

basic ways to describe how errors occur:

1. Its caller makes an error by passing it an inconsistent set
of parameters. Input assertions are not satisfied.

2. An error has occurred which the callee cannot correct. This
situation must be signalled to its caller. Output assertions
are partially satisfied.

3. The called routine causes an error but does not detect it.
Output assertions are not satisfied.

4. A routine called by the callee signals an error. Axioms are
partially satisfied.

5. A routine called by the callee causes an error, does not

detect it, but the error is detected by the callee. Axioms
are not satisfied.

These five points interact as illustrated in figure 1. Function
A calls function B supplying input arguments. Errors in the
input argument (1) from Akarg detected, this effect cannot in
general be corrected, sduﬁhé bccdrrence of an error 1is signalled
(2) by B to the calling routine A (4). Alternatively someone
could have signalled to B that an error has occurred (4) but B
could do nothing to correct the error and must signal an error
(2). Similarly someone could have returned to B without
performing its function correctly (5), B detects this but cannot
correct the error and signals an error (2). Finally, B could
have caused an error but not detected it (3) and return to A at
which point A detects B's‘failure (4).

The model of system operation has been stated in terms of a
single process executing function calls and returns, accepting
input arguments and returning computed results. A generalization
is to expand a function call into an interprocess signal or

message, the input argument into the contents of the message and

the return into an acknowledgement message. Many of the other
ideas about errors carry over into this context, however error
reporting seems to present a problem. Error reporting follows
the routine dependencies induced by a call=-return pattern. A
different characterization of dependencies that the call-return
model misses is asynchronous interprocess communication and
references to shared objects. With these dependencies, reports
of errors cannot necessarily be associated with returns. The
essence of the difference is that in a call, the calling routine
supplies the arguments and waits for the called routine to return
and report on the outcome of the operation. In a message
oriented scheme, the calling routine supplies the arguments (the
message) to the called routine which runs in a separate process.
The calling routine proceeds with its computation. Thus there is
no implicit combination of convenient path and relevant point to
return a‘report of an error. An additional departure from the
call-return image of error reporting occurs when the error report
is to be directed to a third party, adlerror handling routine.
Both of these additions tend to force error reporting to be a
much more explicit operation. Rather than being part of the
call-return mechanism, the report of an error must a distinct
operation.

Finally, a single error can take on multiple appearances,
one appearance for each level that is concerned with the
erroneous object. For example, consider a bank transaction
system running as an application program‘on a Multics-like

system. The data bases might be the ACCOUNTS file and the

4=

AUDIT_TRIAL file. The ACCOUNTS file is composed of multiple
ACCOUNT records and the AUDIT_TRAIL file is composed of multiple
TRANSACTION records. Similarly, each ACCOUNT record and
TRANSACTION record is compésed of smaller parts. At the lowest
level, an error occurring in an atomic object, like a single word
in a paged virtual memory system, might be viewed as an erroneous
bit in a word by the load register instruction. In the routine
that is searching the ACCOUNTS file for accounts with negative
balances, the same error would be viewed as an erroneous BALANCE
record. By the routine that audits the ACCOUNTS file, the error
would be viewed as a partially completed check for consistent
accounts. Recovery from the error in the page might be possible
by accessing another copg&bf¢the page. If this is impossible,
one or more atomic objecﬁs might have to be declared to be in
error -- for example, a BALANCE record which is part of an
ACCOUNT record. If the balance record is not reconstructable,
(perhaps from an AUDIT_TRAIL record) the ACCOUNT record might
have to be declared to be in error, and so on.

The multiple views of a single error suggest two
requirements of error processing: First, the semantics of
detecting, reporting and correcting errors must be matched with
the level of the view of the error. Second, a crucial task for
an error processing scheme is to find the proper authorities for
dealing with an error. These two points will receive further
attention in the sections that follow.

The error recovery problem in its most general form is

probably unsolvable. This is because the operations that are

-5

performed in processing errors are also based on axioms and input
assertions which can become invalid. While it is appropriate to
minimize the basis on which the fault tolerance mechanisms run,
it is impossible to design a mechanism that is completely immune
to errors. A uniform approach to error recovery can provide two
services that come close to a completé solution: it can limit
the probability of catastrophic failure and it can provide a
means for accepting aid from outside the system when such

catastrophic errors do occur.

III. Detecting Errors

Error detection is the actlof discovering that part of the
state of a system does not conform to one of the assertions about
the system. The design of error de;e§tion algorithms should be
based on the assertions associated with the objects in question.
Using this approach, a balance can be achieved between the
interpretation put on the object and the tests performed on the
object. This idea supports the notion that a parity check on a
single word of memory, a check sum on a collection of words in
memory and a consistency check on a directory in a file system
are just three points in a continuum of error detection
algorithms; each check attaches a different level of semantics to
logically different objects which are built out of the same raw
data.

For any single function of a system there are many

assertions that can be made about its operation. Consider the

-

add name function of a Multics-like system and possible Input

and Output assertions:
add_name(dir_name, old_entry_name, new_entry name)

Input Assertions:

1. dir_name is a legal path name and refers to an existing
directory in the file system.

2. The principal of this process has modify access to the
directory dir_name. :

3. old_entry name is a legal entry name and is the name of an
object a segment or directory in dir_name.

4. new entry name is a legal entry name and is not the name of
any existing object 1n dir_name.

5. There exists no entry name in dir_name equal to
new_entry_ name.
Qutput Assertions:

1. Referring to "dir name">"new_entry name" 1is identical to
referring to "dir name")"old entry “name."

2. The directory dir _name is at most one page longer than it
was before the operation.

3. No other logical changes are made to the directory dir_name.

4. The add_name operation will return to its call in
f(dir_name) seconds.

There are a number of different algorithms that can be used to
test the partial correctness of each of the input and output
assertions. These algorithms vary in the degree to which they
are coupled with the semantics of the assertion. An error

detection algorithm that is highly coupled with the assertion it

is testing would exactly ask whether or not the assertion is
true. A loosely coupled algorithm would ask a question which is
an approximation of the assertion. Of course the desired goal
would be to have every assertion checked by a highly coupled
algorithm. Quite often however, there is a direct relationship
between the complexity of an assertion and the cost of the
corresponding highly coupled check. Thus a goal is to design a
system so that it is inexpensive to make highly coupled checks.
For example, if path names are converted to unique identifiers
(UIDs) and UIbs are used throughout to refer to segments, then
converting both path names to UIDs and comparing yields an
inexpensive highly coupled check of the first output assertion
above. (1)

As examples of highly and‘loosély coupled checks, consider
the last output assertion above: A loosely coupled check might
be to put an uppér limit of 10 secoﬁds on the time to be taken by
any single function in the entire system; after a fdnction has
been running for 10 seconds without returning, an error would be
signalled by some time=-out mechanism in the calling routine.
This is a loosely coupled check because 10 seconds is being used
an upper limit on all values of f(dir_name). A more highly
coupled check might be to set the limit for add_name to 100

msecs (perhaps the actual upper limit of f(dir_name)) or even the

(1) I suspect that in any inherently cheap error detection
algorithm, use is made of an unverified assumption. In this
example, the unverified assumption is that the routine that
converts path names to UIDs works correctly and will not be
sensitive to possible mistakes committed by add_name.

-8-

-’

value of some function g(dir_name) that only considered the
number of pages in the directory when estimating the computation
time for - add _name. There are two points that come out of this
discussion: error detection algorithms should be highly coupled
with the assertions they are attempting to verify and systems
should be designed so that at every level, highly coupled error
detection algorithms are inexpensive to run.

The placement of error detection algorithms is critical to
the efficient operation of a system. From the standpoint of the
number of times an error check is performed, it is desirable to
concentrate error checks in the higher levels of a system. This
way, erroneous arguments are caught early and needless
computatiﬁns are avoided. In addition, the lower level routines
that are vigorously exercised by high level routines are not
incumbered by error detection logic. However, quite often it is
more expensive to verify that an argument to a low level routine
is correct at a high level than to perform the actual low level
operation. In this situation it is more appropriate to pass an
unverified argument to a lower level routine and then respond to
an error report thah to check and respond in the higher level
routine. The various arithemetic data exceptions in most
processors are examples of this reasoning. There is an essential
conflict here between wanting to perform checks at high levels
and not normally having the information available at these levels
to perform the check.

Finally, there is the problem of'undetected errors. This

can happen in at least two ways. As with normal computations, an

-9

error detection computation can fail because of a failure in one
of the axioms on which it is based. Failing in this manner is
another reason for keeping error checks as simple as possible.
In the second mode of failure, the error goes undetected because
one consistent state of the system gets transferred erroneously
into a second consistent state and the failure goes undetected.
Here the problem is due to an insufficiency in the detection
algorithm. For example, the assertion about add_name that "no
other logical changes are made to the directory dir_name" may be
very difficult to test. A routine which added not only the new
name but an additional name of its own would leave the directory
in a consistent state, but would not satisfy this assertion.
This mode of failure is more likely than the first if function
computation and error detection are independent since only one
error must occur for the second mistake to occur while two must
occur for the first. Undetected errors contribute to the

unsolvability of the general error recovery problem.

IV. Reporting Errors

An error report is a communication from one function to
another that an assertion has been violated and in addition that
the function issuing the report is incapable of correcting the
error. An error report causes a shift in the manner in which an
error is viewed. When a function chooses to report an error, it
does so because from its perspective, it cannot correct the

error. If the calling function has a sufficiently wider view of

-10-

the environment it may be able to correct the error. Otherwise,
it passes on the error report, perhaps transforming the meaning
of the report at the same time. There are five aspects of error
reporting:

* The decision to produce the message -~ error detection.

The contents of the message.
¥ The method of transferring the message back to the calling

"

program.
* The means by which the calling program receives the message.
* The manner of responding to the message -- error correction.

The middle three points are the subject of this section.

The nature of the mechanisms classified under these three
topics is greatly influenced by the overall structures of the
system. For example, the interconnectivity of the functions of
the system can present restrictions on the method of transferring
messages between functions: It is most natural to trace back the
call chain, however it may be more appropriate to notify some
authority that is not in the call chain.

In current practice, there is a wide range of techniques for
expressing the contents of a message: one bit success-failure
return values (true, false), error codes (an integer), named
error codes or alternative exits (error_table$no_access),
conditions (parity error) or alternative exits which return a
general information structure providing additional error
description. Typical contents of an error report include: a
complete description of the nature of the error, a list of the
offending objects, a description of the authority claiming that

the error exists, a description of what the reporter would like

-11=-

the report fielder to do in response to the error: verify,
correct, log, reinvoke, etc. Efficiency issues will dictate that
some elements of the report be more abbreviated and encoded than
others. Vestiges of each of the points above should be
discernable in any error message.

There are several alternative methods for transferring the
message to the fielder: via a return to the calling routine, via
a call to an error processing routine which is part of the set of
routines that handle all objects of a given type or via a message
between the reporting routine in one process and a handling
routine in another. There are several attributes required of the
mechanism to transfer error reports:

* The report should go to the proper authority, not always the
caller of the routine that is making the error report.
* The transfer of the report should be integrated with, but

distinguished from, the normal mode of transferring control
from one function to another.

The techniques for receiving error reports and the methods
for transferring them are closely related. Essential
requirements of routines that handle error reports are:

* The routine must have a means of declaring the types of
reports it is prepared to field and have meaningful default
responses to reports that it does not anticipate.

¥ The presence of a handler should not interfere with normal
computations.

There are a number of hindrances to error reporting that are

due to the structure of a system. An unfortunate distinction is

made between intraprocess and interprocess error reporting --

-12-

~

-’

unfortunate because additional complexity is introduced by the
differentiation. The distinction is made because interprocess
boundaries put constraints on the address space of the discourse
as well as the interaction of the reporter and the fielder. The
requirement that reports be machine readable (i.e. possess a
regular format and refer to objects by easily processed names)
introduces message codings which tend to lose information and

constrict the expression of messages.

V. Correcting Errors

Correcting an error is an attempt to remove the effect of
the error and to resume the computation as if the error had never
occurred. Error correction forces the objects of a system back
into a state so that the assertions upon which the proof of
correctness of the system is based are true again. In existing
systems, where error recovery is not planned for, too much
information must be fabricated to force the system back into a
consistent state. When an error occurs, much of the system state
is correct, but is ignored in favor of taking the system back to
a minimal correct state and then rebuilding to a totally correct
state. Examples of this are the Salvager system's role in

recovering from Multics system crashes and the similar function

-13-

of the Checker program in the Tenex system. Because so much
correct information is ignored, these programs must check the
entire file system for consistency rather than just the area
affected by the error.

In a strictly layered system, the higher the level of a
function, the higher the level of semantics associated with the
data structures of that function. There is a direct
correspondence between the level of a function and the complexity
of the interpretation put upon the bits in its data structures.
Similarly, the higher the level of a function, the easier it is
to nullify the effect of an error. For example, consider several
levels of a banking transaction system: the banking transaction
application program, the virtual memory and the hardware memory.
If an error occurs in one bit of the hardware memory system it
seems easier for the virtual memory to recover a redundant copy
of the page which holds the correct value of the erroneous word
than for the memory to be able to correct all single errors.
Similarly, it seems easier for the banking transaction program to
attempt an alternative or reduced computation on a value that was
inaccessible than it is for the virtual memory to recover any
erroneous word in a writable page. This example illustrates an
additional point: An essential characteristic of different
levels cooperating in error recovery is that they should all
demonstrate the same diligence in continuing the communication
about errors that they are unable to repair. This also suggests
that low level functions should only attempt correspgndingly low

level error recovery -- using techniques that are balanced with

14

the interpretation they put on data structures. With higher

level functions, higher level output assertions offer more

latitude in the ways of satisfying the same computational need.
Redundancy, independence and an alternative computation are
all integral aspedts of error correction:

* Redundancy, because error correction essentially adds
information that has been lost to a system. The added
information cannot be created out of a vacuum -- it comes from
redundant encodings of the state of the system.

* Independence, because for redundant information to be
effective, it must be isolated from the same types of errors
that effect the state information it is backing up.

¥ An alternative computation, because the function that was being
performed when the error occurred must still be performed after
the object with erroneous state has been corrected. In some
cases, the same function can be reinvoked, in others, a
different set of fuﬁctions must be used because total
correction is not possible.

The three aspects mentioned above and the assertion upon which

the recovery is based interact in the following manner:
An error has been detected, either locally or in some other
inferior function. If from an inferior function, then the
error has been reported to this level through the reporting
mechanism. The report indicates the nature of the error --
i.e., which objects are erroneous. Associated with each object
there is an assertion of its correct state. From the redundant

information stored about the object (in a manner that is

-15-

isolated from the same error that affected the object), the
state of the object is restored and an alternative computation
is performed to achieve the same function that was declared to

be in error before.

There are wide variations in the actual instances of each of
these areas of error correction. To see the whole picture, it is
instructive to consider the range of techniques that can be used
to achieve redundancy and independence; the techniques used in
alternative computations tend to be directly related to
redundancy and independence. Redundancy can range from one bit
encodings of the state of an object, to a partial replication of
an object's state, perhaps in some other organization useful for
alternative accessing methods, to complete replication of the
state of an object. 1In addition to replication of state, there
is replication of the functions that manipulate state. This
distinction recognizes that a single algorithm that causes errors
will misperform, no matter how correct its inputs. Redundancy in
the state of an object is useless without alternative functions
for performing transformations on damaged objects. For example,
doubly linked circular lists are quite often cited as robust data
structures. If one link is broken, it is always possible to
fcllow links in the other direction around the circle to the
desired element. (1) In practice, however, even though these

fields are included in the state of objects, rarely are there

(1) Of course this is not the only intended use of doubly linked
lists; 1in general, they offer easier bidirectional accessing to
neighboring elements.

-16-

alternative functions for making use of this increased robustness

and accessibility.

Explicit instances of independent redundant information are
rare in current systems; more commonly, independence falls out
of a design that is motivated by other goals. The range of
instances of independence spans the scope of common
susceptibility to errors. Disassociation can be derived from
several different techniques:

* Using different storage organizations or algorithms that are
vulnerable to different forms of errors (array storage verses
list storage).

¥ Using distributed logical and physical resources that are
isolated from common malfunctions‘(separate memory modules,
separate file systems, separate computer systems for

applications built out of multiple processes).

While total recovery is desirable, it is not always
possible. If it is determined that the effect of an error cannot
be repaired by a function, certain minimal output assertions must
be insured to be true. In this view, the output assertion of a
function is really a conjunction of several separate assertions,
some of which must always be true in all circumstances when the
function returns. Maintaining the consistency of the internal
data bases of a function and isolating or pruning away the effect
of an error are all examples of satisfying certain minimal output
assertions. For example, the function that moves a logical page

of information from a core block to a disk block in a virtual

-17-

memory system, core_to disk, might have the following (partial)

specification:

core_to_disk(page_ptr)

input assertion:

1. page ptr points to the first word of the page to be moved.

Output assertions:
1. The contents of the data in the page pointed to by
page_ptr will be moved to a disk block.
2. The page table word for the page will be transformed so
that the next reference to the page will cause a page fault.
3. The record of the core block will be moved from the used
list to the free list.
In addition, there might be the following constraints put on the
satisfaction of the output assertions: if it is impossible to
satisfy output assertion 1 then the actions described by output
assertions 2 and 3 will also not be performed; if output
assertion 1 is performed but 2 is not, then 3 will also not be
performed. This constraint is motivated by security
considerations; there are other system properties that could
generate additional minimal assertions.
With any system that is composed of separately programmed
modules, there is always the possibility that a calling routine
may not have anticipated the report of a certain class of errors.

Since there is an interpretation associated with every error

-18-

report, receiving an unanticipated report must be treated with
special care. It might be appropriate to convert the unknown
report inﬁo a report with the meaning "function not performed,
state untransformed."™ However, this is not always true in
situations where the output assertions are partially satisfied
and a partial transformation of state has been made. With this
consideration in mind, it becomes desirable to have part of an
error report specified by convention so that unknown reports can
be analyzed for appropriate recovery measures. An unknown report
that has the standafd attribute "state unchanged" can be
translated into a report with the semantics "function not
performed" -- a report with reduced, but still useful meaning.
(1)

Finally, it should be noted that when attempts are made to
recover dynamically from errors, care must be taken in repairing
inconsistencies in the system. This is because in repairing
after an error, it is quite possible that the tracks of a much
more serious error have been covered. This requires that error
reports must be well understood before attempts are made to
correct a possibly inconsistent state. For example, if a pointer
is determined to be illegal, not only must a pointer to a legal
object be found, but also the object which the good pointer
originally referenced must be found -- a much more difficult

task.

(T In addition, Ieaving an unchanged state on an error return
appears to be a desirable atftribute of a function.

-19-

VI. A Systematic Approach to Error Processing

So far, I have presented views of three rather distinet
aspects of error processing: error detection, error reporting
and error correction. It is now appropriate to consider in more
detail nhow these three parts should fit together in a systematic
manner. The ability of a system to tolerate errors is very much
like the ability of a system to authenticate all accesses to
objects: each of the actions (errors and accesses) can occur at
any level of the system. At different levels, different
semantics are associated with the actions. Thus, at all levels
of a system, there must be some logical steps devoted to
tolerating errors and authenticating accesses -- each of these
tasks must be distributed over the entire system.

Figure 2 illustrates the interaction between two levels of a
system. In this view of error processing, each level's
functionality besides including the desired logical operations,
also includes the error detection, reporting and correction
logic. Error processing starts with one level's error detection
algorithm discovering that an assertion has been violated. A
decision is made in the detection logic whether to correct the
error or to report the error to a higher level authority. If the
error 1is corrected, processing will continue at the same level as
if the error had not occurred at all. If the error cannot be
corrected by the current level, the detection logic causes the
error reporting logic to deliver a report of the error to the

proper authority. At the next level higher, reports of failures

w20~

-

-’

from lower levels are accepted by the error detection logic.
Decisions are again made whether to attempt recovery or to send
the report up to a higher level.

When an error occurs while the error processing logic is
attempting to recover from an error, there are several
alternatives that can be taken. It is possible to consider each
of the aspects of error processing as a function itself with the
ability to detect and correct errors in its own operation. Thus,
if an error occurred while reporting the existence of another
error, attempts would be made to correct the latter failure so
that the original error could be reported. There are problems
with the recursive nature of this treatment. A more practical
approach is to stop the ;ystem when an error occurs while another
error is being processed;and have an external force correct the
second error. Then the System is restarted at the point where
the error occurred in the error recovery logic. Stopping the
system is actually an errér report to a system authority that is

responsible for the global state of the system.

Finally, there are a number of design principles that I feel
are crucial to systematic error processing. These points have
been derived from developments in the rest of the paper.

* Assertion Based -- All efforts at processing errors should be
based on well stated assertions about the functions that are
being made to tolerate errors. Error processing logic will
appear at the part of the system where it has the most

relevance. This guideline discourages haphazard placement of

-21=

unjustified system interconnections and thus enhances system
modularity.

Semantically Balanced -- Error checking and correcting should
be semantically matched. Transitions between levels of
semantics should be done through the error reporting
mechanism.

Completeness -- A systematic approach to error processing
should apply to all levels and aspects of a system; this
includes the error processing mechanism itself. Errors
occurring in the error recovery mechanism are viewed as
catastrophic errors that need a special form of recovery, for
example aid from an outside agent. An outside agent should
only fix the most recent problem and then return control to
the error recovery mechanism. Most error recovery will occur
within the system itself rather than in some alternative
system that may not be as diligent in upholding the goals of
the main system. Completeness also enhances the ability of
the error processing mechanisms té’extend out to application

programs wWhose error recovery requirements are not necessarily

known to the inner system.

Accountability of State -- Each part of a system's state
belongs to an authority that is responsible for the integrity
of that piece of state. The pieces of state can be thought of

as objects and the authorities as object managers. The

-22-

authority of an object must be easily identifiable. An idea
that has been suggested, but not developed here is that error
reports must not only be transmitted from level to level, but
also from authority to authority.

Independent Redundancy -- An essential aspect of error
correction is redundancy. For a redundant encoding of an
object's state to be of use, it must be both stored in memory
that is isolated from the memory of the original stored state
and encoded in a manner that is functionally orthogonal to the
original state.

Flexible Bindings -- The fragility of objects usually can be
traced to breaks in bindings between various generalities of
names. Functions should be written so that bindings that are
necessary for correct operation are not so tight that they are
violated because of the smallest of errors; in addition, for
every binding that is made, the information that was used to
establish the binding should be saved as redundant versions of
the binding.

Error Reporting Matched to Shape of System -- Detecting and
correcting errors, when confined to a single function, is a
relatively easily comprehended task. Complexity arises when
an error cannot be fixed at one level and must be reported to
another function. To handle all of the interrelationships
that arise, an error reporting mechanism must be able to back
track all forward paths of communication in the system. This
not only includes call-return communication channels, but also

interprocess messages and general shared data bases.

-23-

¥Ii. Further Work
This paper has presented an approach to processing errors in

a computer system. A number of ideas have been presented -- some

in sketchy detail. Further work needs to be done at least in the

following areas:

* A Non-Hierarchic View. Many of the arguments in this paper
were presented with the view that the only communication that
occurs in a system is hierarchically structured. In real
systems, there are several other forms of communication:
interprocess communication and shared data bases, for example.
Forms of error reporting that reverse the direction of these
forms of communication are needed; the strictly hierarchic
arguments of this paper need to be rethought.

¥ Authorities of System State. More development on the idea of
framing error reporting around authorities is needed. Just as
there is a hierarchic structure induced by the patterns of
calls and returns on functions, there might be a structure
present between several interrelated authorities that do not
explicitly call each other, but rather share a common data
base.

* Assertions. I have been vague and loose in my
characterization of assertions. Further work on the

expression (form) of assertions and techniques for generating

-2l

assertions (content) is needed. An assertion must be abstract
enough to serve as a brief description of the function of a
module as well as detailed enough so that appropriate tests
can be constructed to verify that the function has been
performed correctly.

Inexpensive Error Detection Algorithms. The one aspect of
error processing that enters into the normal path of
computations is the detection of errors. Cheap methods of
error detection algorithms that are highly coupled with the
assertions they are verifying should be investigated. The
other two areas, error reporting and correcting, are used
infrequently enough so that less optimized computations will
suffice.

Example Applications. The ideas suggested in this paper
should be tried out on several example applications. My hope
is that a unified approach to error processing would apply
equally well to parts of a centralized system like the Traffic
Controller in Multics as to parts of a distributed system like
a network file system or communicaﬁion channel protocol.
Entendability. The error recovery requirements of application
programs should be explored. In addition, there are probably
some restrictions that must be enforced to insure that
application programs that are unverified with respect to

maintaining the integrity of error recovery.

-25=

"Call B"

Figure 1

Patterns of Errors

Figure 2:

Function 2

d = detection
reporting
= correction

0o R
11l

Function 1

Interaction of Error Detection, Reporting and Correction

