M.I.T. LABORATORY FOR COMPUTER SCIENCE July 20, 1977
Computer Systems Research Division Request for Comments No. 345 /Y[

THE CONCEPT OF UTILITY IN A MODEL OF A DISTRIBUTED SYSTEM
by Liba Svobodova

The attached report was conceived during the fall 1976 when we were
trying to formulate an informal model of a distributed system to serve
as a framework for our research. Since then we have moved on to more
specific topics, thus this memo is somewhat out of date. It is being
published now mostly so that the documentation of the early stages of our

research on distributed systems will be as complete as possible.

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author's permission and it should not be cited in other

publications.

-2

In RFC 128, Jerry Saltzer projected two different images of a '"distributed
system' :

1) A system that looks to its users and behaves at its interfaces as though it
were a monolithic central system, but is actually engineered from physically
or geographically distributed pieces.

2) A system whose external image is "this computer is self-contained, but is
prepared to be a cooperating member of a set of similarly cooperating

computers' .

In the first image, a system, coherent by definition, is partitioned internally
into loosely coupled functions that can be physically and geographically
separated. The other approach starts with self-contained systems that are
prepared to cooperate in a manner that produces an image of a coherent system
on a certain defined level.*

To the two discussed images of the nature of the system that should serve
as a vehicle for our research, I would like to add a third one, with the
necessary acknowledgement that these interpretations are not mutually exclusive.
I want to argue that we should not completely reject the notion of a computa-
tional "utility'" as a special type of node (or a set of nodes) in a distributed
system. Thus, the third image is a system where totally self-contained
computers can be, if desired, connected to a large utility. This may look
like another version of '"distributed Multics', but I believe that this model
has more general application and appeal.

The utility extends the functional capébilities of individual computers
connected to it. We may talk about an information utility that stores,
maintains, and retrieves shareable information, or a processing utility that
provides services requiring special hardware (and related software) that
cannot be justified to be a part of individual member systems. The function
of the information utility is to supply information (programs or data) to
requesting system members, whereas the function of the processing utility is

to process information (programs or data) supplied by the system members.

(*) While the latter approach implies integration rather than distribution,
the suggested name '"Research in Integrated Systems' (RFC 128) does not fully
capture the essence of this approach. A "system'" is integrated by definition:
a system is "a set of arrangements of things so related as to form a unity or
organic whole'" (Webster's Dictionary). What we are really addressing is
research in "integration of computer systems',

~/

-3-

The purpose of the information utility is to manage information used or
usable by all or a majority of system members. This may include software tools
such as language processors and text processing and formatting programs,
libraries of scientific programs, or general information data files such as a
Library of Congress index, encyclopedic data, or general information specific
to the application for which the system members agree to cooperate. The
information utility is an important support to members with a relatively small
amount of information storage. On the other hand, individual members may
decide (if permitted) to maintain copies of frequently used utility programs
and data files in their own storage. However, the utility is still important
as a backup and as the source of new versions of programs and data stored by
the utility.

It can be argued that to handle the use of information in the described
way, it is not necessary to have special utility nodes. The utility functions
described above could be distributed over the individual system members.
However, to get hold of information that belongs to a specific member of the
system, this member must be:

1) operating

2) connected to the system

3) willing to cooperate.

While the member may be willing to share some specific information at any time,
it may want (and, to maintain true autonomy, must be allowed) to disconnect
itself completely from the system, possibly for the purpose of doing some
sensitive work. But if the information has been placed into a utility-like
repository, it can be used by other members without having to wait for the
owner to start cooperating. Further, techniques for achieving robustness

of a shared distributed data base assume a degree of trust among the distinct
nodes supporting the data base that may not be achievable if all nodes are
allowed to retain full autonomy.

The purpose of the processing utility is to manage sharing of compu~
tational resources needed but not owned by individual system members.
Included in the processing utility might be special processors such as an
FFT module, or a super fast processor f[or computation bound applications
(for example, numerical solutions of complex models), or special I/0 devices
(fast line printers, graph plotters). Also, the processing utility may

provide services that do require special software, but not hardware. Such

request

Tedee

user
eply

r
pa
N

coherent

system

Figure 1: User's view of his self-contained system extended
by the utility.

request

user reply

private

resources

shareable

utility

Figure 2: Logical division of resources in the extended system.

request

user reply

private
resources

local part
of shareable
utility

remote
shareable

utility

Figure 3: Physical and geographical distribution of the utility.

-5-

software could be placed into the information utility, but that means that
the members qualified to use it could obtain their own copies. If a program
belongs to the processing utility, a system member can only cause an execution
of this program, possibly with input data supplied by the requesting member.

There are several ways to view this type of system. The utility was
already described as an extension of an otherwise self-contained computer. To
the user, this combination represents a coherent system (Figure 1). Logically,
however, the functions and services available in this system are divided into
those that are private to the system member and those that are a part of
independently maintained utility (Figure 2), Further, while the utility is
assumed to have the quality of an integral system, it can be both physically
and geographically distributed (Figure 3). Multiple copies of files, possibly
in different geographical locations, may be necessary to guarantee sufficient
bandwidth between the community of the system members and the information
utility. The utility has to be robust; this argues for a distributed arrange-
ment. Finally, the physical distribution of the utility can be accompanied
by the distribution of control. Consequently, individual parts of the utility
could be under the same administration as individual members of the system;
the utility would be integrated from contributions (software and hardware) of
individual members.

The utility does not necessarily eliminate the need for direct communica-
tion between individual members. In general, it should be possible for a
member to provide information to other cooperating members without placing
it into the repository of the utility. Now we have an image of a two-level*
distributed system. One level consists of self-contained cooperating computers,
the second level is the modular utility, where individual modules too may
be capable of operating as self-contained systems should the need arise
(Figure 4). The direct cooperating of system members might be necessary

for processing and distribution of dynamically changing information. The
utility is more suited as a repository of more static information, but it

guarantees high availability.**

(*) This by no means imply hierarchical structuring. The levels as used here
are abstractions of two possibly independent, possibly overlapping, or perhaps
even inseparable subsystems.

(**) Possible application (?): an airline reservations system (operating as a
utility for all airports and ticket offices) combined with airline operations
system (direct communication among relevant airports and planes).

\ e,

\\\
member
systems

:/, o e . —
f
;
) ‘ UTILITY
“\
utillty level 2 %
modules j
: a /
';‘ = ;)‘f:
D S— S <]
ot “j?’
\ -
N,
AN level 1
_\‘\\
«\u‘
\.\W‘ ” g
lyh‘““'m.,,, + M#M«
",

"

v,

[DS, *
o s iy o e A

Figure 4: Two-level distributed system:

Level 1: network of cooperating member systems
Level 2: modular utility

-7~

In summary, the outlined model of a distributed system consists of two
levels with the following characteristics:

- The utility that looks like a single coherent system, but

exhibits functional distribution in structure.

- The network of self-contained systems that may agree to
cooperate in creating a coherent system at some level but
will not lose their autonomy by joining such effort. In
addition to direct communications among members, each member
can independently use the utility.

The utility concept in a distributed system addresses the important
problem of availability, as already mentioned in connection with the infor-
mation utility, The utility stands for those facilities that will be
available to the system members independently of which system members are
in the cooperating mode (that is, willing to communicate information to and
perform tasks on behalf of other members) at any point of time. Thus far,
the utility has been assumed to represent a clearly identifiable and separable
compound of hardware and software. Functionally, however, the utility is an
abstraction that, when implemented, might be unseparable from what was described
in the preceeding paragraph as level 1, The two-level model is offered here
as a means of focusing attention on the fact that different parts of a system
may be used differently and will have to conform to different rules., Speci-
fically, the level of cooperation supported by system members might be
different from (more limited than) what is required from the utility. Similarly,
the cooperation rules in the network of self-contained member systems do not
have to be uniform. That is, the network could consist of clusters govermned

by different rules. In this sense, the utility is just a special cluster.

Distribution and Coherence

Two very important notions permeate discussion of what is and how to
design a distributed system. One is the "level of distribution', the other
is the "level of coherence'". By '"level of distribution" I do not mean the
physical distances, but the type and character of modules that are to be the
basic building blocks of the system. Level of coherence then is the level

at which the system modules can communicate and cooperate without having to

-8-

consider their internal differences.* 1In the discussed model, the modules

are collections of hardware and software that are cither completely self- -~
contained, or at least highly autonomous (utility modules). The level of A
coherence desired in the system may be inherently defined by the type of

modules used. However, in a system where the modules are self-contained

computers, coherence can be achieved by software and the level is therefore

variable.

The most primitive level of coherence in a network of self-contained
systems is the exchange of messages in the form of bit strings. A slightly
more advanced level is where it is also possible to communicate the semantic
content of inter-system messages. The next level then deals with the naming
and the use of services. Possible schemes of interest are:

a) programs and data from several different system members or from the
information utility can be combined to form a single computational
job executed using the hardware resources of the requesting member,

b) a system member executes a computational job partly on its own
hardware, and partly by using the services of the processing utility.

c) several system members (with appropriate programs and data) can be

involved in an execution of a single computational job,

Though the experience has proved that it is possible to achieve some
level of coherence in a network of systems that were not originally prepared
for it, it is clear that more involved cooperation requires preparation
affecting both the software and the hardware design. An interesting question
is what features are critical to what level of coherence and what are the
permissible variations in the hardware and software of future members of a
distributed system. It should be noted that compatibility of all system
members on the machine programming level is not a sufficient prerequisite for
building a distributed system. In fact, it does not have to be a prerequisite
at all, provided that programs and data can be sent to a system member in some

(possibly higher level) form that the member understands.

(*) Note that according to this definition, practically any computer system
can be claimed to be a distributed system, and unfortunately, this is what
frequently happens. However, since '"distribution' can be applied in many
different ways, what we see as a misuse of the term "distributed system" or
"distributed processing'' is probably unavoidable. Thus rather than assuming
that everybody has the same or at least a similar image of distributed system, —
in any research concerning distributed systems, it must be stated explicitely
what the level of distribution and the level of coherence are.

Now, a preparation for future integration into a coherent distributed
system is not just a question of the initial design. The possibility of
diversifying member systems is important to supporting the sense of local
autonomy. However, unless the owners of computer systems clearly understand
what features make future integration possible, local "improvements' may
override the initial preparation at any level above the level of hardware com-
patibility. Though this is more a sociological issue, it does require recog-

nition and support on the technological level.

Protection Considerations

It is widely believed that distributed systems provide a better environ-
ment for maintaining privacy and enforcing protection rules. 1In support of
this claim, two factors should be considered:

1) the actual physical separation of independent or loosely coupled

processes, and

2) as a possible side effect of such separation, a reduction in the

software complexity.

A distributed system facilitates physical separation of processes that
might be mutually harmful, yet allows interprocess communication. A distributed
system may be arranged such that each physical module supports only cooperating
processes with no conflict of interests., Potentially harmful processes do not
communicate through shared memory, but through hardware interface; the possi-
bilities of interaction reduce to those supported by the interprocess communi-
cations protocol.

The functions of an operating system can be divided into three categories:

- create an effective and convenient enviromment for the user,

- supervise allocation of the system resources to the system users,

-logically isolate and protect the processes and the proprietary

information of individual system users.

Sharing in a computer system takes place on two levels: information sharing,
which is an important part of the user environment, and hardware resource
sharing (including sharing of copies of programs and data in the main memory)
which in general is imposed by economy considerations., Functions of the
second and the third class handle mostly this second type of sharing. Dis-

tribution reduces the level of hardware resource sharing, and consequently may

-10-

reduce the complexity of software for resource allocation, scheduling, and
protection. Lower software complexity then could make the system provably
secure.

The question of the extent to which the discussed type of distributed
system simplifies the protection problems or enlarges the set of solvable
protection problems cannot be answered without thorough research, but some
possible trends can be outlined.

As the most severe measure, a self-contained member can be guaranteed
privacy by physically detaching it from the rest of the system. While a
member is connected to the system, its local supervisor is fully responsible
for protecting private information from the other members in the system. A
member system does not have to allow any foreign programs to execute on its
hardware. Private information of member A can be obtained by requesting
member B only if the supervisor of member A agrees to and arranges for a
transfer of the requested information to member B. Of course, the supervisor
of each member system should be verified to ensure that no request from
another system member can upset the receiving member.

Now we can envision several different situations. Each self-contained
member may be a personal computer, a shared computer which is dedicated
solely to one person at a time, a shared uniprogrammed computer, or a
multiprogrammed computer. In the first case, all information stored in a
computer belongs to the same person, who is the only agent who potentially
has direct access to this information. The second case is similar - a user
can have his own disk pack, that, when connected to a compatible computer
system, turns this system into a personal computer. Any meaningful coopera-
tion with this type of system can be difficult, though, since not only the
member system must be operational, but it must be being used by the right
user. Here the concept of utility gains in importance. 1In the uniprogrammed
system, the information storage media are shared by several users. Each of
the users may potentially gain access to all information stored in his member
system if not prevented by the protection mechanism. In a multiprogrammed
system, the possibility of protection violation is increased because of
coexistence of programs and data belonging to different users in primary
memory. However, it can be anticipated that even if individual members are
multiprogrammed, their correctness may be verifiable, since they will be
much smaller and much less complex than present computer systems that have

to serve large communities with diverse needs and interests.

-11-

The utility is responsible for protection of its own resources, including
information entrusted to it by individual members of the system. A simpli-
fying situation is a utility that does not have to execute programs supplied
by individual system members. However, execution of members' programs may be
a type of service desired from the utility. An information utility provides
services in the form of information retrieval, deposit, and modification. A
retrieval may result in a transfer of a very large file where only a few
specific data items from this file are actually needed. It may be preferable,
and sometimes even necessary, to perform the selection of needed data
within the utility. Since the selection algorithm could be user dependent,
the utility would have to execute programs supplied by individual members on
its own hardware. A processing utility also provides services in the form of
executing special programs on special hardware with data supplied by the
requesting member. Undoubtedly, there will be situations when it will be
desired to run programs developed by individual members on this special
hardware.

Thus, the utility as a whole has to be able to run both the trusted
utility programs and potentially harmful programs supplied by individual
members. Within the utility, however, execution of these two types of
programs can be physically separated. Further, the same type of arrangement,
protection by physical isolation, may be also desirable within the class of
utility functions. The resulting model of a utility is then a collection of
functional modules where each module is a distinct physical entity (a processor
with its own memory and appropriate software) dedicated to a specific class of

functions.

Summary

This memo has outlined several ideas that I feel might be worth investi-
gating. First is the idea of the utility as a facility functionally distin-
guishable from the member systems. The utility does not have to be a centrally
controlled system. In fact, the parts of the utility could be controlled by
individual system members. The distinction between utility and member to
member cooperation is drawn on the basis of availability. As stated earlier,
the utility stands for those facilities that will be available to the system
members independently of which system members are in the cooperating mode.

It is not clear, however, if this abstract two-level view of distributed

-12-

processing has a deeper significance, in particular, if it is necessary or
at least useful to distinguish these two levels in a design of a distributed
system.

The distribution of processing tasks over the nodes of a distributed
system is a problem that has not yet received sufficient attention. Several
possible types of operation were outlined earlier. In one situation,
all necessary programs and data are assembled and processed in one node. In
another situation, programs involved in an operation are executed at their
local sites. These two situations are of course extremes - a single opera-
tion can combine both mdodes, The factors that effect the feasibility or
preferability of a particular mode include performance and security. In the
performance category, it is necessary to consider the processing capacity of
a node and the time needed to assemble all necessary programs and data, as
opposed to the overhead of synchronizing programs being executed at different
nodes and the processing capacity of nodes that are requested to serve several
member systems simultaneously. A utility program may be too large to be
executable by a member system, and so popular that its execution on a utility
node will represent a bottleneck. It may be possible to consider a strategy
such that part of the processing is done locally by the member system.

Another topic for research is the claim that proper distribution is an
effective mechanism for achieving protection. Finally, it has been observed
that a functional distribution reduces the design cost as well as the cost of
maintenance and growth. This issue should be further investigated, with the
goal of developing a design methodology that specifies the required modulari-

zation on the hardware level.

