M.I.T. LABORATORY FOR COMPUTER SCIENCE July 28, 1977

Computer Systems Research Division Request for Comments No. 147

DISTRIBUTED COMPUTER SYSTEMS: Research Proposal Submitted to ARPA
From Liba Svobodova

Enclosed is the section on distributed computer systems of the
continuation proposal that the laboratory will submit to ARPA for the 1978
calendar year. The version written by our group was augmented by the intro-
duction part written by Mike Dertouzos. Notice that the proposed research
on distributed computer systems is expected to involve more than just our

group, though our group probably will be the one most intensely involved.

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author's permission and it should not be cited in other
publications.

3. DISTRIBUTED COMPUTER SYSTEMS.

3.1 Introduction and Our Approach

The exploratory research in distributed computer systems during 1977 has
led to the generation of a three-year plan of attack for this very important
area. It has also resulted in a first-cut model of a distributed information
processing system and is the identification and assessment of problems that
may arise in a distributed computer environment.

At the outset, distributed systems are important because people and
organizational units within and outside the DOD are geographically
distributed. As a result, data is collected, stored and accessed in
geographically distributed nodes. These nodes either are already or are
rapidly becoming interconnected through appropriate networks because of their
need to share and axchange information. The result is currently a chaotic
conflict between the desire for iocal autonomy exhibited by each node and the
desire for coherence necessitated by the inter-node communications. At one
practical extreme of system design, coherence may be minimal, e.g. by
communicating sequences of bits between nodes without attaching any meaning to
these sequences; this is indeed relatively easy and permits local autonomy,
but makes almost impossible meaningful inter-node transactions. At the other
idealistic and currently unrealizable extreme, the interconnected nodes
resemble efficient models of our current inter-organizational transactions (by
phone, visit or mail) and permit, for example, content oriented querries such
as "who has the answer to the question ‘how many ships are within one hour of
harbor A“?". Between these two extremes, and much closer tb the former, lie
today’s networks such as the ARPANET, where mail and message systems and file
transfers are meaningful exchanges beyond simple sequences of bits. In our

view, the distributed systems of the future must move considerably further

away from this extreme toward the more idealistic extreme implied above. This
is necessary not in order to increase convenience but in order to simply make
pessible the orderly evolution of distributed systems that are efficient,
reliable and expandable.

Our three-year plan is based on the following five points:
1) Assumptions: The basic assumptions are:

l. Local Autonomy -- each node entails data and processes that are

local and need not or should not be known to others. Besides our
natural tendency toward local autonomy, this assumption seems to be
necessary as an isolator of complexity leading to a more complex
interconnected whole.

2. Data Intensive Nodes -- we distinguish as important the distributed

systems where messages concerning local data form the dominant
traffic, in contrast to active processes that orginate in one node
and are run into another.

3. Nodes may be Dissimilar -- although a certain basic level of

coherence is necessary if they are to inter-communicate.

2) Distributed System Model and Primitives: Central to our research is the

identification of semantic entities that make possible the operation of a wide
clan of distributed systems. We are interested in a "minimax" model, i.e. in
a relatively small set of primitives and a simple uniform structure that cover
a wide gauge of distributed system applications. If we were doing this
research on programming languages rather than on distributed systems, we would
expect to come up with assignment, arithmetic operations, decision,
repetition, input/output, and procedures -- the common characteristics of all

programming languages.

3) Applications Test: This i1s a set of several distributed system

application areas which will be case-studied in detail. Our familiarization
with these specific applications serves three purposes - i) stimulus for Point
2, above; ii) test bed for candidate structures arising from Point 2, above;
and iii) potential computerization of these applications through our approach.
Although we have identified several such applications, we seek ARPA’s help in
sharpening up and making more useful our candidate list.

4) Prototype System Development: Once a model and adequate primitives have

been identified we wish to embark on the design and implementation of a
prototype system that realizes this model. THis system could be an underlying
operating system at each node or a front end associated with each node that
interconnects that node to the front ends of other nodes. Our desire to
implement a prototype system is two-fold 1) to test the validity and
feasibility of our theories; and i11) to reshape our‘theories as is always the
case with large-system-experimentation. The LCS net or ARPANET could be used
for a feasibility demonstration, as we get underway with this effort. If we
were doing research in programming langﬁages instead of distributed systems,
then this activity would correspond to the design and implementation of a
specific language.

5) Defensive Programming: While it is still too early to be certain, we

believe that error handling, alternative strategy selection and in general the
confrontation of problems by each node and by. the software modules within each
node will be the rule rathern than the exception in distributed systems.
Accordingly, we wish to explore the development of a systematic programming
discipline that is based on this assumption. During the first year of our
research we propose to concentrate on Polnts 2 and 3, above, since they form

the backbone of subsequent developments. It is our expectation that during

the second and third year we will embark on Point 4, while refining Points 2
and 3, and on Point 5, if it proves feasible.

The importance of this research area is well known to the ARPA IPTO and
need not be stressed here. Within our Laboratory, one fourth of our faculty
have expressed interest, and inter-faculty seminars have already begun to

further refine our proposed course of actione.

3.2 State of the Art and Uniqueness of Approach

The area of "distributed systems" has become a popular source of systems
research projects. This trend has been supported mainly by the rapidly
falling cost of computing hardware. However, many research efforts in this
area seem to miss the most important aspect of the revolution in hardware
costs: the steadily decreasing entry cost of acquiring and operating a
free-standing, complete computer system encourages lower-level units within a
large organization to acquire their own computers that consequently will
operate somewhat independently and autonomously from one another. The
administrative autonomy is really the driving force that leads to acquisition
of such local computers dedicated to the applications of a particular
organizational unit. However, it is necessary to anticipate that these
autonomous computer systems will have to be ét least loosely coupled into a
cooperating confederacy that serves as the information system of the
organization.

As we have already stated, the basic technical problem in these emerging
systems is to provide coherence in communication among the nodes in a computer
network while these nodes retain their administrative autonomy. Technically,
autonomy appears as a force producing incoherence: one must assume that
operating schedules, loading policy, level of concern for security,

availability, and reliability, update level of hardware and software, and even

~’/

choice of hardware and software systems will tend to vary from node to node
with a minimum of central control. Further, individual nodes may for various
reasons occasionally completely disconnect themselves from the confederacy,
and operate in isolation for a while before reconnecting. Yet to the extent
that agreement and cooperation are beneficial, there will be need for
communication of signals, exchange of data, mutual assistance agreements, and
a wide variety of other internode interaction. We hypothesize that
one-at—a-time ad hoc arrangements will be inadequate, because of their
potential large number and the programming cost in dealing with each node on a
different basis.

The most serious problem affecting the current work in the field of
distributed processing is the lack of a global concept, a model of an
application class within which individual issues could be studied separately
yet with the awareness of how they are related to the concept in its entirety.
As a result, much of the current and earlier work in the area appears overly
complex and abstract since it attempts to solve a problem for any imaginable
situation, while other work appears superficial since it solves problems
without considering related problems that strongly influence the feasibility
of the solution. An example of the former case is some of the work on
maintaining consistency in a distributed data base with multiple copies
(mutual consistency problem). By insisting on immediate and continuous
propagation of changes to all copies, very complex algorithms have been
invented [Ellis, 1976; Thomas, 1976], yet the real world has been operating
well without complete consistency and may not really justify so complex a
mechanism. In the latter category, a typical example is the work on optimal
distribution of a data base in a computer network. The usual considerations

are the cost of the communication and the cost of storage within a computer

network knowing the intensity of requests emanating from individual network
nodes [Akoka, 1977; Levine, 1975]. The problem of maintaining consistency of
the data base is usually not included in such models, yet it is a crucial
issue that may decide the very feasibility of distributing a data base, and,
if feasible, will have definitely an effect on performance of the data base
system. Mutual consistency of multiple copies is only a part of this problen,
and, as discussed above, the mutual consistency requirement can probably be
quite relaxed. However, it is necessary to consider the problem of internal
consistency of the data base in case where a single transaction involves
several pieces of the data base which are located at different nodes. The
information in these separate pieces of the data base may be related in a
variety of ways, e.g. subject to the constraint that the sum of all balances
in a bank should always be zero. Simultaneous transactions may interfere in
such a way that the internal consistency constraint may be violated. This
problem arises even in centralized shared data bases [Eswaran, 1976; Gray, <
1975]}; in distributed shared data bases, its difficulty is magnified because
of the errors in the communication subsystem and failures of the involved
nodes. Most of the published work that addresses the problem of internal
consistency of a distributed data base concentrates on algorithms that perform
well despite unpredictable communication delays or that can be proven correct
(assuming perfect operation of all components involved) [Stearns, 1976;
Rothnie, 1977; Ellis, 1976]. These algorithms are not easily extended to
cover more realistic situations where components are allowed to fail, or
simply become unavailable as a result of exercising local autonomy.

The assumption of autonomy of the nodes that compose a distributed system
is the most important ingredient that distinguishes our work from other work

on distributed computer systems. As we have already alluded, though the

ARPANET is a network of autonomous computer systems, it provides a low level
of coherence; specifically, it supports exchange of messages in the form of
bit streams. The interpretation of the semantic content of the messages is
left to the particular application, and though there exist standard protocols
for special applications such as exchange of mail or remotely submitted batch
jobs, these protocols had to be invented separately for each application. 1In
our model of a distributed system, we envision autonomous nodes manipulating
and exchanging objects that have unique and universal meaning. Some work
related to our model of a distributed system with local autonomy is in
progress at Xerox PARC, but there the requirement of autonomy is not
explicitly recognized. Also, Xerox PARC is focusing on a very specific
application -- office automation. We believe that the problem of autonomy has
to be handled more systematically, by making it an explicit and application
independent requirement that will guide the development of our model of
distributed processing.

This model which is the core of our proposed research, is essential for
avoiding the typical mistakes in this area, where protocols and mechanisms are
devised to solve isolated or hypothetical problems. It is expected that the
analyses of specific applications will produce a model where the
communications and synchronization requirements are a small subset of the

primitives that are needed for a general distributed system.

3.3 Relevance to the Department of Defense

Geographical distribution of computer units appears frequently and
naturally in many applications within the DOD, in advanced command and control
systems at one end of the scale, and in administrative data base systems at
the other end. 1In the past, advantages of distributed systems led to a

conception of computer networks that, because of the lack of understanding of

the problems involved, have failed to support coherent distributed processing.
The goal of the proposed research is to further expand our understanding of
the involved problems and to develop tools that will help avoid such mistakes.

We feel that it is not necessary to repeat the argument concerning
decentralized vs. centralized computational resources. Distributed processing
has become a pressing issue, because on one hand there is such a need for it,
while on the other hand a good design methodology has not yet been developed.
We believe that the specific issues that distinguish our proposed work from
other work in this area are particularly relevant to the computational and
information processing problems within the DOD. The degree of autonomy within
DOD organizational units will have to be reflected in the computerized
information systems of these units. As explained in the next section, the
concept of local autonomy is particularly relevant to command and control
systems. Since there are many different situations within the DOD that
require or will soon require support of a distributed computer system, it is
important to have a unified design base, and a methodology that is applicable
to a broad class of problems, rather than resorting to the invention of a new
approach for each application. The model that we plan to construct is
intended to fullfil this need. The set of applications that we propose to
study will include several specific DOD applications. Thus the DOD

organizations immediately affected can build directly on this model.

3.4 Proposed Work

We envision a distributed system as a facility consisting of virtually
autonomous computer systems, where the distribution is based on the structure
and requirements of the containing system, be it a command and control system
involving geographically moving objects or a DOD or civilian organization.

The requirement of autonomy of individual network nodes has been presented

earlier as a consequence of the natural administrative structure of an
organization. Autonomy is also important in complex control systems where it
can be viewed as a means for making possible increased levels of complexity
and isolating potential failures. Earlier, we also stated that distributed
systems are geographically distributed as a consequence of the geographical
distribution of people and organizations. We have also assumed that the
transactions between machines in the distributed system are mostly data
intensive. This assumption is based on the existing and historic trends in
inter-organizational and intra-organizational information transactions. It is
also necessary to acknowledge that geographical distribution combined with an
inherently asynchronous mode of operation creates delays that may represent
significant costs. Tradeoffs between delays and the timeliness of information
play an important role in the engineering of distributed systems.

Autonomy, as discussed earlier, is a natural force producing incoherence.
A troublesome consequence of autonomy is that potential nodes of a distributed
system may actually be represented by different incompatible hardware, and,
even more disturbing, a substantial amount of incompatible software. We would
like to emphasize that if the individual nodes have developed in a completely
uncontrolled way, there is probably little hope for achieving deeper coherence
without substantially redesigning the software. Though we do not propose to
solve the general problem of heterogeneity, we'do not require that all nodes

be fully compatible at the hardware and at the lowest software levels.

However, there must exist some minimal level of coherence in the information
understood and the operations supported by individual nodes, so that higher
levels may be built without concern about the actual implementation of that

level.

In the case where the potential nodes of a distributed system have
evolved without such a level of coherence as a goal, it may be possible to
manage heterogeneity by encapsulating heterogeneous nodes in a formation where
all the communications with the other nodes are handled by a special front end
processor. These encapsulated nodes then appear to be homogeneous. The
encapsulation will still represent a major software development effort, where
the part of the front end that interfaces to the encapsulated system will have
to be designed especially for each individual system -~ we cannot foresee
emergence of a design methodology for this encapsulation step. Thus, though
the model to be developed will be capable of dealing with heterogeneity, we do
not consider in our proposal construction of distributed systems out of
autonomous computer systems that have not been prepared for such integration.
An interesting question that we intend to explore involves the critical
hardware and software features for achieving a specific level of coherence and
the permissible variations in the hardware and software of individual nodes in
what appears to be a coherent system.

The above encapsulation provides an interesting handle on some of the
problems arising from a node’s local autonomy. Specifically, a part of the
front end system could be made a part of the communication network rather than
being encapsulated in the node. This part could serve as a local answering
service that is always operational even though the computer system within the
node is down for maintenance or is disconnected for security reasons. This
would allow remote nodes to distinguish between the case where messages are
not deliverable because of a broken connection or other problems in the
communication network and the case where the node’s computer system is

unavailable.

3.4.1 Model of Distributed Processing

The first step in our proposed research is to develop a semantic
framework within which the system engineering issues can be properly assessed
and solved.

We assume that the basic information entity in a system is an object,
where an object is a program or a data structure that has a unique meaning.
Specifically, we do not consider an object to be just a block of bits that be
interpreted in several different ways, as is the case with low-level network
protocols. A node can use an object from another node only if it understands
the meaning of that object. Significantly, there exists a set of primitive
objects that are understood by all nodes, and that represents the minimal
level of required coherence. To allow for the diversity of hardware, the
representation of these objects may be different in each machine; thus we have
to use the concept of an abstract object.

Our earlier research reviewed several models of computation that seem
applicable to the distributed processing problem. They‘are as follows:

i. Actor-like message passing semantics

ii. Data flow semantics

iii. CLU-like abstraction mechanisms.

The first two models emphasize exchange of information in asynchronous
systems, but they also employ abstraction mechanisms [Hewitt, 1976; Dennis,
1975]. CLU puts emphasis on use of data abstractions [Liskov, 1977]; it seems
to provide a better model for dealing with the definition and implementation
of objects as discussed above. None of these models in their present form is
adequate as a semantic basis for distributed systems, where it is necessary to
deal with multiple instances and migration of objects among nodes. Most

importantly, the model must be able to deal with a variety of errors in a

physical distributed systme, i.e. it must incorporate the notion of robustness

in a system composed of autonomous nodes.

3.4.1.1 Autonomy

One of the issues that we have found ourselves constantly being
confronted with is the meaning of local autonomy. We understand autonomy of
an intuitive level, but since it is such a key concept in our definition of
distributed systems, we expect to formally define it as a part of our

distributed system model.

3.4.1.2 Obijects

Technical issues that are central to the problem of engineering
distributed systems are naming, accessing, and protection of objects. Data
abstractions provide a convenient model for dealing with situations where
multiple copies of an object are provided to increase reliability. In such
cases it 1s suitable to have just a single instance of the abstract object.

The fact that there are multiple representations of that object is hidden in

the implementation of the abstraction. This means that the type manager
assumes the responsibility for locating and coordinating the multiple
representations. In a distributed system, we feel that it will be necessary
to incorporate the notion of cost into the semantics of an object. We expect
that the various representations will not always be exact replicas, but
possibly will represent different time instances of the object. A decision
has to be made as to which of these instances must be used or is sufficient in
given circumstances. This decision may be influenced by cost considerations
or by the fact that some of the object instances are not accessible at the
time of request because of the availability of the node at which the

particular instance is located.

At the representation level, the critical issue seems to be how to use an
object that is represented at another node. There are basically three
possibilities:

1) send a request to operate on the requested object to the site of the
object,

2) create a copy of the requested object at the requesting node (the
original site of the object retains the responsibility for the
object),

3) move the requested object to the requesting node (the responsibility

for the object is passed on to the requesting node).

These choices raise a number of difficult questions regarding performance,
integrity of the object representation, responsibility for the object, as well
as naming and locating the object.

The problem of naming objects is closely connected to the issue of
movability of objects. An object may contain other (abstract) objects as part
of its representation. These contained objects most probably would be
specified by low level names (e.g. segment numbers). In addition, an object
may refer by name to objects that are not part of its representation, but that
are related (perhaps temporarily) to this object in some way (e.g. procedure
parameters). Such names may have to be understandable to the user, and thus
could be relatively high level names (e.g. character-string file names). In
any case, if an object is copied onto another node, proper interpretation of
the names embedded in the object becomes necessary.

Another important consideration is whether these contained objects have
to be represented at the same node as the containing object, or whether they
can be remote. Specifically, if an object is copied, either it is necessary

to also copy all the contained objects or it may be possible to defer action

until the particular contained object is actually needed, in which case it can
be either copied or operated upon at the remote node. The design choices at
this level strongly influence the low level support mechanisms that the system
must provide for locating, manipulating, and protecting objects. Autonomy
plays an important part here, since it is not possible to rely on later

availability of the original site of the copied object to resolve the names of

the contained objects.

3.4.1.3 Reliability

Physical distribution of computational tasks and information is both a
means for achieving robustness and a source of new reliability problems
requiring new solutions. While in a centralized system it is possible, as a
last resort, to shut down the whole system to prevent further damage to work
in progress, this option has to be excluded in a system of autonomous
machines. Distributed systems have been used to provide fault tolerance in
real time control applications; however, such systems, though they employ
distributed control, are much more tightly coupled than the systems addressed
in this proposal.

Earlier we introduced the notion of Defensive Programming. We feel that
handling errors in a distributed system is an extremely important topic, but
also a very difficult one. Similar attempts for centralized systems have been
largely unsuccessful. Rather than trying to deal with evey imaginable error,
a more productive approach may be to constrain the number of failure modes
that the system must understand and tolerate. An important key to this
problem is that individual nodes are isolated from each other except for a
well defined "thin wire" communication channel. Errors caused by one node can
propagate to another node only through this communication channel. By

systematic testing of requests and replies from other nodes, a node may be

able to defend itself against such errors. Also, it is possible to conjecture
that individual nodes will be smaller and simpler than present multi-user
computer systems that serve large communities with diverse needs and
interests; as a result of this scaling, it may be possible to make the nodes
internally fault tolerant by using proper methodologies and mechanisms and
verifying that the mechanisms operate correctly.

It can be assumed that the most common failure in a distributed system is
that one of the processes involved in a communication does not respond any
more. Communication protocols have been designed that are prepared to deal
with this type of failure [Reed, 1976]. However, more work is necessary in
the design of robust synchronization primitives that control access to
distributed shared resources. Immutability of low level objects, which is one
of the key concepts in data flow models, may turn out to be a crucial
requirement for robust implementation of &istributed data bases [Lampson,
1976]. Immutability means that once an object is created, it cannot be
changed. To change some of the characteristics of an object, a new object
with these characteristics must be created after which the old object is
destroyed. Combining this approach with the abstraction mechanism, the
abstract object can be viewed as mutable (a necessary assumption from the
point of a human user), while the low level objects in the representation are
immutable; the abstract object is changed by creating a new representation.
The immutability aspect may have a strong impact on the low level memory
management techniques; this is again an area that has to be explored.

One of the techniques for improving reliability is redundancy. One
example of the application of redundancy is providing multiple copies of
objects on different storage media, or, as an extension, in different nodes of

a distributed system. In some fault tolerant real time systems, redundancy is

employed at a different level: results of a computation are checked by
performing the same computation several times on different processors, or even
using different input information -- and consequently a different procedure to
process the input information. A similar approach has been suggested as a way
for achieving fault tolerant software [Randell, 1975]. Specifically, this
approach requires that each function be programmed in several different ways.
Different versions are tried successively, until either one is found that
passes an acceptance test, or an error is reported. Thus this approach
creates a function abstraction with multiplé representations. Multiple
representations of function abstractions and multiple representations of data
abstractions are very closely interrelated: different representations of a
data object will require different procedures to manipulate the
representation.

This approach is more natural to a distributed system than a centralized
system. Because of the expected autonomy and heterogeneity, the same type of
service provided on different systems will most probably have a different
implementation. In addition, since different copies will rum on different
hardware, the potential of this approach extends from providing software fault

tolerance to the level of fault tolerant service.

3.4.2 Application Test

It is essential that models and mechanisms that we develop be applicable
to real distributed processing problems. Our earlier research led us to a
general class of applications such as a message passing system and a
distributed data base management system. It has become apparent that these
classes are still too abstract to provide good guldance for our research. We
feel that it is absolutely necessary to study in depth a set of specific

situations that would be best supported by a distributed computer system to

determine the real needs and characteristics of these systems. Some possible
examples of distributed system applications are:

- Navy payroll and personnel files

. Distributed inventory, e.g. in Defense Supply Agency

» Interconnection of airline reservation systems

+ Specialized databases (e.g. medical histories, crime records).
We welcome and request ARPA IPTOS help in refining this list of applications.

Part of our early work will be directed at identifying a minimal group of
specific applications that cover a broad range of present and forseeable
needs. Each application will be studied in depth, using as sources available
documentation, publications, and interviews with people familiar with the
present form of a respective operation, and possibly with people responsible
for planning a distributed system for that application. We envision that a
careful study of our analysis of several different applications will reveal
common denominators that can serve as a basis for our model. Once a candidate
model has been developed it should be tried on at least some of the test
applications individually, to determine if it is possible to separate the
application specific support from the common mechanisms, and to see how these
two levels interact.

Although we do believe that most of the present and future needs in
distributed systems have a common core, it is conceivable that this is true
only at a very low level, such as passing uninterpreted bit packets. If this
is the case, then we shall divide applications into classes and look for more

substantial commonalities within each class.

3.5 1977 Accomplishments

Our exploration in the area of distributed systems clarified a number of

important and so far mostly neglected issues. Work on some specific problems

has been in progress and we forsee that some of it will produce applicable
results before the end of 1977. The naming problem has been studied at the
hardware architecture level where names are special forms of capabilities and
at the human oriented level where names are character strings denoting generic
services. The latter work involves development of a semantic model (based on
actor semantics) that provides graceful recovery from communication failures
and remote node failures [Reed, 1977]. In this model, an available instance
of a service is located automatically given its generic name; if this
particular instance fails in any way, the system will find another one,
reconstructing in this process the necessary linkage information.

One of the important properties that decides the feasibility or
preferability of different schemes for dealing with remote objects is the
degree to which objects are shared by two or more nodes. This means not just
how many nodes have access to an object, but how frequently the object is
requested, and especially modified, simultaneously by two or more nodes.
Measurements were conducted on the Multics system to determine the current
extent of information sharing among Multics users. The results indicate that
most of the "sharing" involves the operating system software that will have to
be replicated in each node [Montgomery, 1977].

If the nodes are incompatible at the hardware level (below the minimal
level of coherence), at some point it will be necessary to translate data
(object representation, returned values) between the underlying machines.
Several different schemes have been studied, with tagging being the most
natural support in a system using data abstractions [Levine, 1977].

The work on protocols for our local network has addressed the problem of
providing a robust substrate for a distributed system, specifically,

initiation and maintenance of error-free connection between processes in

different nodes, recovery from a broken connection, and flow control [Reed,
1976] . Further work in this direction will include a performance study of the
flow control and the error control, and design of higher level protocols, such
as the protocol for naming and use of generic services that was discussed
earlier in this section.

Finally, the search for and preliminary analysis of suitable applications

is planned to begin before the end of 1977.

3.6 Milestone for 1978

The study of applications will occupy us throughout 1978, and will lead
us into more depth as suitable models begin to emerge. The technical issues
underlying these models will be illuminated and feasible solutions will be
studied. By the end of 1978 we should have:

1) a set of well documented case studies on the chosen distributed
system applications;

2) one or more models suitable for these applications, and

3) identification of and at least partial solutions of the associated
technical problems.

We believe that our Laboratory has the necessary qualifications for this
ambitious project, because of its expertise in design methodology; in the
practical development of complex systems; and in computer communication
networks. Our past projects have helped us develop insights into the
relationship between applications and computer systems that support such

applications -- that should be invaluable to the proposed research.

REFERENCES :

Akoka, J., and Chen, P., "Optimization of Distributed Database Systems and
Computer Networks,'" M.I.T. Alfred P. Sloan School of Management, WP

Dennis, J.B., "First Version of a Data Flow Procedure Language," M.I.T.
Laboratory for Computer Science Technical Memo TM-61, May, 1975.

Ellis, C.A., "The Duplicate Database Problem," M.I.T. Laboratory for Computer
Science, Computer Systems Research Division, Request for Comments No.
112, May, 1976.

Eswaran, K.P., et al., "The Notions of Consistency and Predicate Locks in a
Database System," Comm. of ACM 19, 11, November, 1976, pp. 624-633.

Gray, J.N., et al., "Granularity of Locks and Degrees of Consistency in a
Shared Data Base," IBM Research Laboratory, RJ 1654, September, 1975.

Hewitt, C., "Viewing Control Structures as Patterns of Passing Messages,"
M.I.T. Artificial Intelligence Laboratory, A.I. Memo 410, December, 1976.
Accepted for publication in A.I. Journal.

Lampson, Be., and Sturgis, H., '"Crash Recovery in a Distributed Data Storage
System," to be published in the Comm. of ACM.

Levin, K.D., and Morgan, H.L., "Optimizing Distributed Databases - A Framework
for Research," Proc. AFIPS NCC, 1975.

Levine, P.H., "Facilitating Interprocess Communications in a Heterogeneous
Network Environment," S.M. thesis, Department of Electrical Engineering
and Computer Science, M.I.T., June, 1977.

Liskov, B.H., et al., "Abstraction Mechanisms in CLU," to appear in Comm. of
ACM 20, 7 (July, 1977).

Montgomery, W., "Measurements of Sharing in Multics," to appear in the Sixth
ACM Symposium on Operating Systems Principles, November, 1977.

Randell, D., "System Structure for Software Fault Tolerance," IEEE Trans. on
Software Engineering, SE-1, June 2, 1975.

Reed, D.P., "Protocols for the LCS Network,'" M.I.T. Laboratory for Computer
Science, Computer Systems Research Division, Local Network Note No. 3,
November, 1976.

Reed, D.P., "A Protocol for Addressing Services in the Local Net," M.I.T.
Laboratory for Computer Science, Computer Systems Research Division,
Local Network Note No. 5, February, 1977.

'

Rothnie, J.B., et al., "The Redundant Update Methodology of SDD-1: A System
for Distributed Databases," Computer Corporation of America, Report
CCA-77-02, February, 1977.

Stearns, R.E. et al., "Concurrency Control for Database Systems," extended
abstract, IEEE Symposium on Foundations of Computer Science, CHI1133-8 C,
October, 1976, pp. 19-32.

Thomas, R.H., "A Solution to the Update Problem for Multiple Copy Data Bases
which Use Distributed Control," Bolt Beranek and Newman Report No. 3340,
July, 1976.

