M.I.T. Laboratory for Computer Science September 20, 1977

Computer Systems Research Division Request for Comments No. 150

Distributed Computing at PRIME

by Warren Montgomery

This report describes a distributed computing system being built by PRIME
computer company. The system is known as Computer Cells, and was described by
Dr. D. Nelson at the recent Brown workshop on distributed systems. Although

this system does not have the same goals as the LCS distributed systems

project, many of the ldeas seem relevant to our work.

1) Motivation

The economic structure of a computer manufacturer dictates that it can
produce and market most effectively machines of a particular range in size,
weight, cost, and power consumption, independent of their computing power.
Thus as technology improves, a company should try to produce more powerful
machines with the same size and cost as their previous offerings, rather than

producing smaller, cheaper machines with the same computational power. This

can be done either by using faster circuit technologies, or by introducing

more parallelism. The wuse of parallelism further divides into pipelining,

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author’s permission, and it should not be cited in other
publications.



array processing, conventional multiprocessing, and loosely~coupled
multiprocessing.

Of these alternatives, loosely-coupled multiprocessing offers the
possibility of increasing performance without major hardware or software
development. In addition, loosely-coupled multiprocessing allows the company
to offer products with a wide performance range using the same machines. This
strategy can be used in combinatioﬁ with any of the others (faster circuits or
more parallelism) to achieve additional improvements.

Loosely-coupled multiprocessing also offers all of the advantages of
distributed systems seen by CSR, although these are of secondary importance to

PRIME at this time.

2) Goals

With these ideas in mind, PRIME is designing a distributed system with
the following goals. The system will have greater computing power than is
currently available with PRIME equipment, yet should look to the user 1like a
single large machine. The system should be able to grow incrementally in
computing power, memory, file storage, or communications interfaces, without
modifications to user-level software. The interface to the system seen by a
user application should be independent of how many processors are available
(even 1if there 1is only one) or the physical attachments of I/0 devices and
file storage to individual processors. The system should be fail-soft, in
that the failure of a processor may cause tasks that were executing on that
processor to be restarted, but any application that does not need resources
available only through the failed processor shouid be executable after the
failure, possible at reduced performance. Thus the failure of a processor in

this system should be much 1like the failure of a memory board in a more

Page 2



conventional system. The system may crash because of the failure, but should

be rapidly restartable with reduced processing power.

3) Approach

Given that the individual processors in such a system are no faster than
the processors currently offered by PRIME, in order to improve performance, a
means must be available for the user to describe the parallelism in his
application. The means chosen was to allow applications to be described by a
"high-level data flow description". Each application consists of a number of
small modules, each performing some simple processing step. These modules are
interconnected with buffered pipelines. pipelines. This seems a natural
model for many business applications, and was used as the basis for the
Software Tools software developent system [l]. It is interesting to note that
when this idea was presented to the engineering department at PRIME, many
people were skeptical about the amount of parallelism in most uses of
computers. The marketing department believed, however, that many business
customers described their applications as small processing steps
interconnected by pipelines, or shared files. These applications fit the
model very well.

The execution environment seen by the applications programmer is one in
which there are a large number of small Processes interconnected by UNIX style
pipes. Each process executes a single software module which accesses files
and pipes through the I/0 statements provided by the high-level language in
which the module is coded. For example, a FORTRAN program would perform its
1/0 through READ and WRITE statements specifying certain logical units, which
had been initially connected to files or pipelines. The module is completely

ignorant of whether the I/0 is going to files or to pipes. A number of

Page 3



standard modules to perform useful functions would be provided by PRIME.

The file system seen by the modules is global to the entire system, and
each module is completely ignorant of whether the files that it uses are local
to the machine on which it executes or remote. The file system controls the
concurrent use of files by processes, by allowing the creator of a file to
specify whether the file can have only one user, one writer or n readers, one
writer and n readers, or nl writers and n2 readers. It is not intended that
files will be intensely shared.

In addition to producing the modules needed for his application, the
application designer produces a map that describes the interconnections
between modules. This map shows how the logical wunits that are read or
written by the modules are connected to pipes or files. In addition, it shows
which pipes require buffering in order to avoid deadlock.

The modules and the map form an adequate logical description of the
computation to be performed. In order to achieve maximum efficiency, the
operating system requires some further guidance in the assignment of processes
to processors, and in deciding how much buffering to provide for the pipes.
This guidance is provided by a system manager, who may not be the same person
as the application designer, and who has some global knowledge of the
applications that run on a system. He supplies a logical to physical schema
for each application that serves as a guide to the operating system in
assigning process to processors. The schema can express notions such as the
optimal amount of buffering to provide for a pipe, or that certain processes
would run more efficiently if run in the same processor as certain files, or
other processes. The schema can also express the computational load presented

by each process as a guide to the initial assignment of processes to

processors.

Page 4



With this information, and information about the current configuration,
the operating system assigns the modules of each application to available
processors and establishes the pipe and file connections. Processes are never
moved from one processor to another while they are executing, but i1if a
processor fails, all applications which used that processor are restarted, and

their processes are re-assigned to other processors.

4) Implementation

This distributed system is being built on top of the current operating
system used by PRIME. This operating system provides a segmented virtual
memory environment that is more restricted than that of Multics, in that the
number of segments is smaller and there are restrictions on which segments may
be shared among processes. A program does not in general reference a file by
making it a machine addressable segment, as is done on Multics, but instead
uses calls to the operating system to read and write files. Each process has
a number of file units, that can be used to read and write files. Some of
these units are used for standard input and output to system modules, such as
source, listing, and binary for compilers, while others are used to perform
I/0 through FORTRAN, COBOL, or other language read and write statements. The
implementation of computer cells will involve the addition of pipes to the
operating system, and the implementation of a configuration manager, which
assigns processes to processors and initializes pipe attachments.

Pipes will be implemented as saved files that can be connected to file
units and read or written just like ordinary files. An interim implementation
of pipes, which may also be provided to the user, forces applications to use a

different interface to pipes than they use to saved files, but may be more

efficient,

Page 5



The network-wide file system mentioned above has already been implemented.
PRIME’s file system is organized into "logical disks", each of which contains
a complete hierarchy and resides on a single physical disk. The logical disks
can be mounted and dismounted, just 1like 1logical volumes on Multics.
Processes running on a particular machine can be given access to files on
logical disks that are mounted on drives connected to other machines.

When a process tries to access a remote file, it is suspended and a
description of the operation to be performed is forwarded to a privileged
process known as the fi;e access manager (FAM). Each machine runs a FAM
process which serves both as an agent for remote processes using files on that
machine, and to request remote file operations from other FAMs for processes
running on that machine. Thus when a remote reference is made, the local FAM
negotiates with the remote FAM to perform the requested operation, and the
local FAM uses privilegea operations to copy data to or from the requesting
process’s address space.

Little work has been done on the configuration manager. It is expected
that initially the logical to physical schema will contain a complete
description of the assignments to be made, and that each application will have
a number of schemas. The choice of which schema to use will be made based on
which processors are currently functioning. A more elaborate configuration

manager that makes process assignments more dynamically will be implemented

eventually.

In order to allow processors to be added to such a system with minimal
incremental cost, each processor must be capable of accessing all I/0 devices,
including its paging device or operator’s terminal, through a communication
network. Thus a new processor could share devices that were already present

and attached to other processors. Preliminary study of the PRIME operating

Page 6



system suggests that adding this capability will be straightforward.
Perliminary measurements on the load that this places on the network suggest
that the network being used, which provides an 8 megabit effective data rate,

is more than adequate.

5) Relevance to LCS

Although this system does not provide the kind of distributed computing
environment proposed by LCS, the structure of this system forms an interesting
semantic model for distributed computing. The notion of autonomous processes
communicating through buffered pipelines appears to be a natural model for

many applications of distributed computing.
I am currently working of a more precise description of this model and

its relationship to others which have been proposed for distributed computing.

References

[1] Kernighan, B. W., and P. J. Plauger, Software Tools, Addison-Wesly, 1976.

Page 7





