M.I.T. Laboratory for Computer Science December 19, 1977

Computer Systems Research Division Request for Comments No. 152

File Allocation in a Distributed System

by Allen W. Luniewski

As distributed systems come into being, so will distributed information
repositories. Such repositories'will consist of multiple computers, perhaps
every computer in the distributed system, geographically distributed,
communicating through a multiplexed communication network and serving their
customers through the same network. This paper addresses the issue of
allocating physical copies of the information within the repository to the
various computers (nodes) of the repository. A model is developed that
describes the allocation problem. Some problems with using this model to
solve the allocation problem are pointed out and requirements for a useful

allocation algorithm presented.

The repository consists of information collected into objects called
files. A file is a collection of information that the user of the repository
has declared to he related. The repository assumes nothing else about the
information in files. Examples of files are traditionai files, Multics

segments and ORSLA areas[Bishop]. The purpose of the information repository

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the authors permission and it should not be cited in other
publications.

is to provide both query and update access to the information within it.1

1. Why Not Complete Distribution

To be successful the repository must provide fast, reliable access to its
data for its customers. Effectively, this means that the data should be
close, in terms of delay through the network, to the requestor of the data.
This would seem to indicate that a copy of a file should be placed at every
node of the repository‘that uses it -~ complete distribution. Although a
simple allocation policy, this solution is not necessarily optimal or even
feasible. There are at least two objections to complete distribution - one

economic and one performance related.

Keeping a copy of each file at every node that uses it requires enormous
amounts of storage at each node - enough to hold a copy of all of the
information in the repository that the node uses. Such a policy might be
feasible for a repository consisting of only a few nodes or a repository with
a limited amount of information, however for larger numbers of nodes, or
repositories with more information, this is not economically feasible (memory
is cheap but not free). Thus, from an economic point of view, the number of

copies of files should be minimized.

l The term "database system'" is not used here since the repository attaches no
intrinsic meaning to the information content of what it stores. An analogy to
the repository is the file system in more traditional, centralized computer
systems (thus the term "file").

The performance question concerns updates to the information in the
repository. Complete distribution leads to minimal access time (since each
node has a local copy to reference), but update times may become unacceptable.
Since the repository is responsible for keeping all coples of a file
consistent,l an update incurs all of the problems associated with multiple
copy file systems (see for instance [Thomas]). All solutions to the
multi-copy problem incur some overhead, related to the number of copies, thus
degrading the responsiveness of the repository to updates. Thus update
performance considerations lead to the minimization of the number of copies

while access time constraints lead to maximizing the number of copies.

Considering all three of these factors the conclusion is that allocating
a copy of every file at every node, complete distribution, is not the most
desirable policy,2 and, rather, what is wanted is an allocation with a minimal

number of copies that provides adequate response to accesses.
2. A Mathematical Formulation

In [Chu] Wesley Chu presented a model of file allocation in a distributed
computer system. His model attempts to minimize storage and transmission
costs subject to delay and storage constraints. This section presents a

model, inspired by Chu’s work and similar to Casey’s [Casey], that attempts to

1 The possibility of having files that are not kept up to date but, rather,
are only periodically updated is not considered here. Such actions are
envisioned as happening at a higher level in the system where the semantic
content of files can be of help in doing this.

2 This is not to‘say that for certain files such an allocation policy might
not be most desirable.

minimize expected delay subject to the storage capacity constraint of nodes
and constraints on maximum acceptable delay. This model differs from Chu’s in
that delay is the factor of concern and not money and differs from Casey’s in

that all files rather than just one are examined.

The cost (objective) function will be taken to be the system wide
expected delay in accessing or updating a file. The cost function, which is

to be minimized, is given by:

C= i,zj (uij*min (aijk(x)*xkj)""miﬂ (Cij(X)*Vij)), i a node, j a file.
X, =1 Xy, ™1
kj k]

where Uy is the usage rate of the j“th file by the i‘th node, aijk(x) is the
expected delay in accessing file j, which is at node k, by node i given the
allocation (X}.l Xy4 1s 1 1f file j is allocated at node i and 0 otherwise,
vij is tﬁe update rate of the j“th file by the 1i“th node and qj(X) is the
cost, in delay, of node i updating the j“th file given the file allocation

{X}. The goal is to find an allocation {X} to minimize C given the other

parameters, subject to given constraints (below).

The parameters aijk and 1) reflect delays due to the queueing of requests
at nodes in the network and aue to transmission delays within the network
(e.g. delays at packet switches in -a packet switched net or delays due to
collisions in an ethernet). In addition, cij(X) reflects the cost to perform
an update given that there are Nj copies of the j“th file (e.g. Nj' %&ij).

These two parameters are hard to evaluate, or express simply2 (and, in fact,

1 {X} = the set of all xij'

A model that more closely approximates the real system would treat them as

they represent the complexity of real systems). In his paper Chu analyzed the
term aijk(x)*xkj under the assumption, among others related to queuing delays,
that there is only one copy of the file in the network and found an expression
for it in terms of sums of products of the xij‘ A similar expression should

be derivable for cij(x)*vij'

There are three constraints on choosing the xij' First, there must be at

least one copy of every file:

% X532 1 for all j.

Second, the storage capacity of each node is bounded by bi bits:

?i: x; 4*L y<b, for all 1.
where Lj is the length, in bits, of the j“th file. Finally the delays, for
accesses and updates, that each node experiences should be bounded in a node
dependent fashion (by Aij and Uij respectively):

mzx aijk(x)*xkjg Aij for all 1, J.

*
cij(X) vijs Uij for all i, j.
The first comstraint reflects access time constraints and the second reflects
update time constraints. These four constraints restrict the ways in which

{X)} can be chosen while trying to minimize C.

Modifications to this model are possible. For instance a constraint

bounding the number of copies allowed for a file may be useful when it is

known in advance that multiple copy updates are extremely expensive.1 A more

time varying random variables. Such a model would be a stochastic integer
programming problem.

1 This information is implicit in the magnitude of the cij'S, however
specifically including these constraints serves to reduce; perhaps

realistic model than the one presented here can be obtained by using a
probabilistic programming model. In one such case, the access time and update
time bound constraints would not be regarded as absolute bounds, but, rather,
would be constrained to hold with given probabilities (the idea being tﬁat
processes should usually experience low delay but an occasional long delay is
acceptable for most users). One could also envision constraining files to
always (never) lie on certain nodes (such constraints might arise as a result
of security requirements on the files). Another possibility is to ignore
storage constraints of nodes. 1In this case the problem becomes easier since
it is possible to allocate the copies of one file without worrying about the
allocation of other files -~ the linear program becomes uncoupled with respect
to the files. Many such modifications are possible; this model has been

chosen as it reflects the essence of the allocation problem.
3. Problems with a Mathematical Approach

There are four problems that make the use of the model in the previous
section to solve the file allocation problem impractical. This section will
point out these problems. Solutions are not presented as the solutions

represent research problems of varying difficulty.

dramatically, the collection of {X} that must be examined. (In the jargon of
the trade, this constraint serves as a cutting-plane).

l This is true only if one assumes that the delays to access files located at
a particular node are independent of the overall allocation of files. 1In
effect this assumes that queuing delays in the network are independent of the
allocation of files, at least to a first approximation.

-

‘-i

The model presented in the previous section is an integer 0-1 programming
problem; that is, the unknowns, Xiy» are constrained to take on only the
values 0 or 1. In {Eswaran] it is shown that the linear 0-1 integer
programming problem is NP-complete in the size of {X}. The model presented in
the last section is at least this hard since it is non-linear (i.e. the cost
function and/or the constraints are not linear in the xij)' A consequence of
being NP-complete is that no algorithm, except for enumeration of all possible
solutions, is known for solving the model for the xij‘. As the model contains
a very large number of variables (= #_of nodes*#_of files), solving it for the

optimal solution is impractical in all but trivial cases. |

Even if one assumes that solving the model is practical in a
computational sense, one is still faced with the distributed, on-going nature
of the computation. It is an on-going computation since files are constantly
being created and destroyed. In general this means that the optimal
allocation of files changes every time that a file is created (or destroyed)
and, as a result, the "correct" location of all files must constantly be
reevaluated and files constantly moved around in order to maintain optimum
response. As this calculation is probably difficult, and the movement of
files potentially expensive, it is impractical to always have the optimal
allocation. It is a distributed computation since various parts of the
repository know only some of the model’s parameters. For instance, a node
probably only Fnows its own access/update rates and not those of other nodes.

In addition the allocation decisions of one node (e.g. picking some of the

1 An interesting possibility is that the subclass of 0-1 problems described by

this model is not NP-complete and that, in fact, good algorithms for solving
them may exist.

xij) effect the "optimal” decision of other nodes. For instance node A may
decide to allocate file ! at node B and this may prevent node C from
allocating file 2 at node B due to storage limitations at B. Thus in order to
perform the calculation, either (1) all of the parameters must be collected on
one node in order to allow that node to perform the calculation or, (2) a
method of computing the solution must be devised that allows each node to work
on the part of the problem that it knows about or, (3) an algorithm that
allows collaboration among the nodes must be devised. The first possibility
introduces centralized control, the second may be hard to find due to the
intertwined nature of the computation (e.g. inter-file and inter-node
dependency, principally through the aijk(x) and cij(X)) while the third may be
difficult to find since it must produce an optimal solution even though nodes

involved in the computation may fail.

The last two questions concern the parameters of the model. The
preceding discussion has assumed that all of the parameters of the model are
known. However, in general, they are not known - only estimates of them can
be knoﬁn. Thus error is introduced in the estimation of {X} that may result
in not only a sub-optimal allocation but also a very poor one! Unfortunately
the situation is even worse than this - not only are the parameters unknown
but they are also time varying and it is the time varying nature of the
parameters that is important. For instance as (uij} and {vij} change they
reflect the time varying demand for files. If the parameters were static it
would be easy to monitor file usage for a few days, accepting the potentially
large overhead to do so accurately, and then place files in their correct

place in the repository. In practice, however, the pattern of requests for a

file ({uij) and {vij}) varies over time. There are short term variations due
to high demand from a user and more long term variations due to changes in the

overall patterns of access. Ideally, both types of variation should be

handled by the allocation process.
4, The Desired Algorithm

The issues raised in the last section lead to one common conclusion - the
explicit solution of the integer programming model is not practtcal; Instead
what is wanted is an algorithm that does "well" in some (as of now undefined)
sense. This algorithm should be distributable - individual nodes must be able
to decide on the "proper" location of files in a manner that is as independent
as possible of other nodes. It must provide a low overhead solution in terms
of storage, delay and CPU time (thus recording the entire access history of a
file is not a reasonable algorithm even though such an algorithm should permit
very good allocation decisions to be made). Lastly the algorithm must respond
to the time varying nature of accesses. Reéponse to long term variations is
essential, but response to short term variations should probably be considered
a secondary goal since it may be hard to provide and higher level encachement

of files may alleviate the problem.

In addition a decision algorithm is needed to decide whether or not to
use the new allocation calculated by the allocation algorithm. This decision
algorithm must weigh the cost, under some model, of moving files to arrive at
the better allocation verses the potential savings of the new allocation.

This decision is hard since there is8 a risk involved - the data that caused

the new predicted optimal allocation may have been of a transient nature and

did not reflect future demand where as the current allocation does so.

5. Conclusion

This paper has discussed the problem of allocating files in a distributed
information repository. Such a repository should provide fast, reliable
service to its users. A O-l integer programming model for allocating files
within the repository was presented. It has been argued that explicit
solution of the model should not be undertaken. Rather, the model should be
used as a guide in evaluating and discovering algorithms to do the allocation.
Finally, the requirement for a distributable, low-overhead algorithm for file
allocation that results in adequate response to user requests was presented.
The search for such an algorithm should prove to be a useful and interesting

research problem.

10

BIBLIOGRAPHY

[Bishop] Bishop, Peter B., "Computer Systems with a Very large Address Space
and Garbage Collection", M.I.T. Laboratory for Computer Science Technical

Report 178, May 1977.

[Casey] Casey, R.G., "Allocation of Copies of a File in an Information
Network", Proceedings AFIPS 1972 SJCC, Vol. 40.

[Chu] Chu, Wesley W., "Optimal File Allocation in a Multicomputer Information
Center", IFIPS Conference Proceedings, 1968,

(Eswaran] Eswaran, Kapali P., "Placement of Records in a File and File
Allocation in a Computer Network", IFIPS Conference Proceedings, 1974.

[Saltzer] Saltzer, J.H., "Comments on Murphy’s Left Handed Least Unlikely Last
Optimal File Allocation Algorithm with Examples", Datamatics, 13(l April

1977), pp.7-11.

(Thomas] Thomas, R.H., "A Solution to the Update Problem for Multiple Copy
Data Bases Which Use Distributed Control", BBN Report #3340, July, 1976.

11

