o

M.I.T. Laboratory for Computer Science January 19, 1978

Computer Systems Research Division Request for Comments No. 154

NAMING OF OBJECTS IN A DISTRIBUTED AUTONOMOUS COMPUTER SYSTEM
Ph.D. Thesis Proposal

by David P. Reed

The problem of naming objects in a distributed computer system where each node
of the distributed system is under autonomous control is considered. I argue
that in order to deal with the problems of autonomy, unreliability, and delay,
the basic naming mechanism used in each node must be able to deal with
multiple copies of objects and reversible bindings. In addition, the naming
mechanism must be able to allow the evolution of objects (especially program
objects) over time. 1 propose to investigate a naming mechanism based on a

concept I call object-families that takes into account these issues.

Introduction

A current trend in the construction of computer systems is the
construction of systems made up of multiple separate computers connected to
each other through a data communication network. Although this construction
may have advantages in terms of cost, reliability, extemnsibility, etc., the

maln reason for this construction seems to be the relative autonomy of each

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the authors permission and it should not be cited in other
publications.



individual system from each other that can be achieved while at the same time

allowing a high degree of resource sharing.

A key mechanism for achieving effective sharing of resources among a set
of computers 1s the naming mechanism used to access the resources. 1In a
single, central computer system the sharing of resources is aided by the
presence of a universal naming mechanism usually provided at the operating
system level as part of the file system. In a distributed system, where each
individual computer node has a high degree of autonomy, whatever naming
mechanisﬁ is used will need to reflect the autonomous nature of the individual

systems.

I have identified three basic issues that impact on the design of a
naming mechanism to be used in a distributed system consisting of a set of
autonomous computers. They are the use of names to achieve sharing and
communications among users via the system, the use of multiple copies of data
and programs in the system, and the need for reversibility in the bindings
between objects in the system. Before discussing these issues in detail, T
will present a model distributed system that incorporates the ideas of
distribution I am trying to capture. Then I will discuss each of the issues
in turn. Finally, I outline the basic ideas of an approach to the problems of

naming in a distributed system.

Distributed System Model

For the purposes of the research proposed here, I will consider a fairly
general model of a distributed system. The kind of distributed system I will

consider might be called a "distributed programming system," to distinguish it

-



from other special purpose kinds of systems, such as distributed database
management systems or distributed command and control systems. The basic
distinctions are that a distributed programming system provides a diverse user
community with diverse needs with a common means to share and communicate
programs and data, and that it 1s not possible to restrict in advance the

modes of sharing among users.

I will assume that the distributed system consists of a number of
computers, called nodes, and an underlying communications system that allows
each node to communicate data with each other node. All of the nodes are
computers of identical architecture, although the scale, performance, and I/0
complement of the nodes may vary widely. The main reason for this uniformity
of architecture is to facilitate sharing of all kinds of data and programs by
copying through the computer system. Of course, the naming architecture of

every node must be the one that I will develop. (1)

Each node of the distributed system is under autonomous control. That
is, each system is under the control of a distinct person, the owner, who has
the right to completely control the uses to which the resources of his machine
are put. Thus the owner may or may not let others use the processor or memory
of his system for execution of their programs, he may or may not allow
programs entered into his system to be shared with users on other systems, and
he may in fact arbitrarily choose to revoke the use of resources that he has
previously granted for the use of others in the distributed system. He may
also set his own schedule for his machine’s availability, and choose his own

desired level of cost/reliability/speed tradeoff.

(1) At this point, I have eliminated from consideration the problems of
retrofitting the research I propose onto existing heterogeneous computer
networks -- an important problem, but one that is much too complex to tackle

nowe.
- 3 -



Autonomy stops where maliciousness begins, however. The owner of a
system, as part of being a member of the distributed system, must agree to a
certain set of protocols that his system must follow in its relations with
other systems. These protocols, of course, must be carefully designed 1in
order not to infringe upon his autonomy. The inter-system naming mechanism is

such a protocol.

All components will also be subject to reasonably likely failures. In
particular, the communications system may fail in whole or in part, making
communications between particular pairs of nodes occasionally fail. Each node
may crash (not too different from the owner shutting the system down), and
individual programs, data, or other services provided by a node may vanish or
fail. Another goal to be satisfied by the protocols used between nodes in the
distributed system are that they should be robust in the face of these kinds

of failures.

The distributed system I will consider is object oriented. By this T
mean that the system has facilities for constructing new abstract data types
in the manner suggested by SIMULA classes, CLU clusters, or ALPHARD forms. An
abstract data type consists of a set of objects together with associated
operations that are allowed on the objects. In my model system, the obijects
of the defined type are implemented (stored) as objects of another type (the
representing type), and the operations on the object are implemented by a set
of programs called the type manager that have the special privilege of being
able to access the representation of objects of the managed type directly.
Other programs can deal with the managed type only through the operations

provided by the type manager.



The restriction of the interface provided by objects managed by type
managers increases the opportunity for the protocols between the nodes of the
distributed system to be aware of the "equivalence" of distinct things by
masking non-essential detail of the implementation. An important example of
this "equivalence" is the idea of an upward-compatible object manager. The
supplier of the object manager for a type may choose to improve his
implementation of objects of a particular type, without changing the
representation form (by using better algorithms, or providing additional
operations not present in earlier implementations). Changes to object
managers of this form can be made transparent to users of the objects -- a new
manager can replace the old with no disruption of function. In a distributed

programming system, this mode of communication of programs will be important.

In any system where sharing of information is provided, security and
protection should be considered. The basic problem in security and protection
in a distributed system is to decide what security policy best suits the
nature of the interactions within the system. I consider this a separable
problem from the problem of naming, and will consider it only secondarily.
Several mechanisms for implementing protection mechanisms in a distributed
system are well-known, such as encryption, physical isolation, etc. ?here are
two kinds of protection that should eventually be considered in a distributed
programming system. The first is protection from attacks at the intersystem
interface. I include in this class all attacks involving interception and
interference with communications, and also all attacks that involve modifying
the architecture of a foreign node so that it violates the basic agreement to
use common protocols. The second kind of security involves the protection of

data that has been shared with a foreign node by copying into that node. Some



of the mechanisms for providing autonomy provide also solutions that can help
with this problem, such as prevention of copying a program or data base from

one machine to another, requiring it to be used on its home machine.

I am assuming an underlying universal naming scheme that allows each node
in the distributed system to uniformly name each other node, and allows each
node independently to create objects without name conflicts arising. An
underlying naming scheme where each object on a node is named by a
concatenation of the node’s unique identifier, andvan identifier unique within

that node will suffice to satisfy these requirements.

Naming and Sharing

In central computer systems, a major function of naming 1is to allow the
sharing of data objects, such as programs and data bases. Sharing is a kind
of communications function among different human users and their program
agents. The view of communication through a shared mutable data object, such
as a file, 1s quite different from the view of communication as a telephone
line between a pair of communicators. The sender of information through a
shared object does not have to know who will eventually use the informationm,
and the receiver of information does not have to know who supplies the
information. The decoupling of senders from receivers is an important idea,
and one that we would like to retain as much as possible in a distributed

system.

In a distributed system, the general case of sharing of mutable obiects
so easily obtained through shared memory in a central system is quite

difficult and expensive to obtain. The basic problem is that a change to an

-’



object cannot be propagated immediately to all users of that object because of
communications delays. It 1is possible to turn this disadvantage to an
advantage, however, because on closer inspection of the uses of shared objects
in a central system, we find that immediate propagation of changes to an

object to all users causes trouble in most cases.

The sharing mechanisms provided by a distributed system must be tailored
to the distributed environment. An example of a sharing technique that is
important in distributed systems is the use of multiple, duplicate copies of

an object. Multiple copies are discussed in the next section.

A powerful tool in managing the sharing of objects in a distributed
system is an abillity to name each elément of the sequence of values that a
mutable object assumes through time. The term I prefer to use for the
elements in the value-history of an object is version. With the ability to
name Iindividual versions of an object, the problem of synchronization of
accesses to data bases 1s easler to formulate. Synchronization is simply
ensuring that the correct version of each object is accessed in achieving the

desired result.

Having given the individual versions of an object names, one can allow

multiple versions to co-exist within the system.

Multiple Copies

A natural result of distribution is the need for multiple copies of an obfject.

There are four basic reasons for this.

1) Autonomy. If a user on machine M1 wishes to offer to a user on

machine M2 a program or data base, the user of M2 may want to copy



2)

3)

4)

the program or data base because he knows that Ml does not want to
provide the resources for storing or executing the program state or
data base on behalf of M2, or Ml may not always be up when M2 wants
the resource.

Robustness. A user offering a service in a robust way may want to
prevent the bad effects of an isolated local communications failure
or machine failure, by providing, throughout the network on
cooperating machines, multiple copies of the programs and data that
make up his service.

Quick response. If a user wishes to apply a program to some data and
each is on a separate machine, it may be much more efficient in
terms of communications time to ship the program to the data or the
data to the program (or even have both rendezvous in the middle),
rather than having the program access the data bit by bit through
the network. If the program is run on the data several times, 1t is
advantageous to do the shipping of program or data only once,
resulting in a semi-permanent second copy of program or data.
Orderly evolution. One example of orderly evolution is a shared
program module, maintained by some individual, who releases new
versions as he improves his module. As a user of the module, one
would like to have the current version (if possible), but updates to
the module should not interfere with executions of the module in
progress at the time the update is performed. Thus there may be the
copy that is in use, and also the copy that is current. If the
modules have "equivalent" behavior (i.e. the maintainer improved its
speed but not its interface), such an update may not be a

"side-effect" in the traditional sense, yet it has multiple copies.

- 8 -



I should note here that my view of updates, noted above, also

results in multiple copies.

For these four reasons, there may be several "equivalent" copies of an
object at any particular moment in the system. A new process that wants to
transact with the object may be willing to deal with any one of several copies
-~ it is part of the job of the naming system to provide access to some
particular copy. An especially important case of the multiple copy problem is
allowing a system to access a copy of an object already on that system rather
than going out to the object’s owner system to get a new copy on each access.
This case is analogous to encachement of data in primary memory or registers

in a central computer system.

Reversible Bindings

The use of object references within objects in a computer system raises a
number of binding-time problems. Typically, when an object such as a program
module is constructed by a user, the objects named are specified by
human-level names. There are two immediately obvious times to resolve the
human-level name to a specific version of the named object. One can resolve
the name when the module is created, or when it is used. Resolving the name
when it is created has the drawback that the object can never refer to more

recent versions of an object than the version referred to when the object 1is
created. On the other hand, resolving the name when it is used has the
drawback that the version chosen may be not comparable to the version intended
by the pfogrammer. Even worse, if a program uses a name several times,
resolving each use independently at the time it 1s used can cause the behavior

to be wrong if distinct versions are used.

-9 -



Thus, even in a central system, the problem of how late to bind a human
name to a particular version is difficult. In a distributed system,
differences of binding time may have a strong performance effect and a strong
effect on autonomy and robustness as well. Consider a shared program module,
for example. If it is possible to copy program modules from system to system,
the most efficient version to access will always be the local copy on the
local computer system. If we always try to resolve the shared module name at
each use, the cost of always obtaining the most recent copy may be high in
terms of network bandwidth and delay. Further, getting the latest version may
be handicapped by finding the home system of that copy to be down for
maintanence or a crash at the moment, thus making the local system dependent

on a large portion of the net for its operation.

On the other hand, if there is no local copy of the shared module at the
moment, having a name that was resolved too early can be a handicap for the
same reason. If the system that houses the version to which the name is hound
is down, it is not possible to perfofm the service, even if there are
equivalent versions on other systems that have been provided against just such

a possibility.

An approach to the problem of when to bind names in a distributed system
is what might be called "reversible binding". For each resolved name, it may
be discovered at some later time that the object referred to has disappeared
-~ either because the object is at a host that is down, or because some
autonomous holder of the object has deleted it. The disappearance of an
object may eventually cause some kind of program exception when the object is
used. At the time of the exception it may well be possible to reevaluate the

original name to obtain an equivalent version of the object. The mechanism of

- 10 -



reversing a binding and then re-evaluating it requires that the original
naming information be available at the time the binding is re-evaluated. Thus
a name for an object will contain a "hard reference" -- the evaluated binding,

and a "soft reference" -- the unevaluated binding information.

An important problem in doing binding reversal is limiting its impact on
the correctness of the running programs. This problem is tied to the notion
of an "equivalent" object. Equivalence is highly context dependent. In an
object based system, however, there are several important cases where
transparent reversal of bindings is possible. One case is the substitution of
a different version of a type manager that supports the same representation
and at least the same set of operations as the original. Another is the
substitution of a different instance of a multiple-copy object that supports

simultaneous updates, such as that of Thomas [19].

Object Families and Reversible Pointers

The two basic concepts I introduce to help in the management of objects
in the distributed system are object families and reversible pointers. An
object family is a group of related objects that a user thinks are
"equivalent". Basically, an object family consists of a number of versions of
an object that are related by evolution over time (the successive values of a
cell, for a simple example), and within each version, a number of instances of
that version, perhaps differing in representation or location within the

system but not in behavior.

- 11 -



In order to model updates, within an object family there is one distinct
version (which may consist of several different objects) that 1is designated to
be the current version. Performing a update on an object involves creating a
version of the object and designating it to be the current version. This

mechanism 1s a variant of the approach taken by Stearns, et al. [181.

At least one of the objects in the current version of an object family 1is
known to a part of the distributed system called the family controller for the
object family. The family controller 1is part of the type manager for the
abstract type containing the object. The family controller may be
distributed, allowing updates to the object family to be handled robustly,
perhaps by a mechanism such as that of Thomas [19]. Tt 1is possible to create
copies of the current version, but not have them known to the family
controller. A version is identified by a unique version number, and it is
possible to ask the family controller at any time whether an object 1s a copy

of a "current" object.

All objects behave like the tokens of Henderson’s Binding Model f1n1.
They are created without a contained value, and then the value is stored.
Once the value has been set, they may be read, but not modified further. Any
read attempted before the value is stored will wait until the value has heen
stored. An improvement on this notion assoclates with an object before the
store has been finished a timeout and a "previous value" that will be assigned
to the object if the timeout is exceeded before the object is completely
filled in. This mechanism provides for robustness in the case that the
program that is to fill in the object fails before doing so. The timeout and

previous value are managed by the family controller.

- 12 -

-’



Two notions of autonomy are incorporated into the structure of object
families. First, there is a notion of copiability restrictions that are
enforced by a family controller. Basically, some object families may be
restricted to not have copies in certain nodes in the system. The second
notion is that any object in a family may be deleted at any time by the node
that holds it. The reason might be lack of resources, or the fact that the
object has become old enough so that it is obsolete (no other systems are

likely to reference the object).

To aid in the orderly deletion of objects, a sort of timeout garbage
collection mechanism will be provided on each system. Each object will have a
"time of last use" associated with it, and a timeout period. If the time of
last use is more than the timeout period in the past, the object should be
deleted. The timeout period may be set to an appropriate value to indicate
the expected frequency of use of the object. Protecting an object from
garbage collection may be done by periodically sending a signal that updates
its time of last use. A mechanism will be provided whereby a whole structure

connected by pointers can be protected by propagating the signal.

Object families in the system are named at the human level by human level
pathnames. Since object families may be distributed, it is important that the
human level naming scheme be distributed also, in order to insure robustness.
A scheme I intend to use for the human level naming function has been
described in a separate paper discussing a mechanism for naming generic
services in a network [16]. That scheme can be fairly simply adapted to fit

in the scheme I am describing here.

- 13 -



Interobject naming in the scheme will be accomplished by using reversible
pointers. At any particular time, a reversible pointer contains two basic
components -- a hard reference that names a specific object, and a soft
reference that contains enough information to create a new hard reference 1if
the current hard reference information becomes unusable because the object
referred to 1s either deleted or unreachable. The actual form of the
information in the soft reference is a subject for further research -- it
might be a logical pathname of an object family, for example. The hard
reference in a reversible pointer may vary in its degree of specificity -- it
may refer to a particular object family, or a particular version within that
family, or a particular object within that version. If a name refers to an
object family, without further qualification, conceptually it refers to the
"current" version among all the versions contained in the family. Thus such a
name will track updates in the family. There will be information in the hard
reference for such a pointer that indicates where the current version number
is likely to be (derived from the last use), and where an object that 1is
current is likely to be found, in order to refer to the object. Such

information is advisory only, and is checked on the actual reference.

If a hard reference refers to a specific version, then it does not see
updates to the object (although the whole version may be deleted by fault or
autonomous action). If coplability restrictions allow, such a name will
probably refer to a copy of the object on a local system when it is used.

This allows the system to preserve a version of an object that otherwise would
be under autonomous control at a foreign site. 1In the hard reference will be
advisory information suggesting wheré an object of the appropriate version may

be found.

- 14 -

-’



Another mechanism I am considering is the ability to‘control the process
of pointer reveréal, by having the programs responsible for translating from
soft reference to hard reference trap to a program to be executed when the
pointer is reevaluated. This mechanism would allow a more general view of
"equivalence" to be supported by the system, since the program doing the

re~evaluation can be specific to the application and context of the reference.

Related Work

The three major themes of this work are naming of objects,
synchronization of concurrent operatibns on objects, and robustness of
networks under partial failures of communications and nodes. While there is a
reasonably large literature on each of these topic, I have not found any
attempts to tie the three areas together. Here I will try to describe those

pieces of work that come closest to mine.

The concept of naming objects with identifiers unique for all time 1s a
key concept in my work. A good example of the use of unique identifiers is
found in the implementation of the Multics storage system [2) segments. Also
related to the idea of unique identifiers is the concept of capability [4, 01.
Extending the unique naming of objects into a network context has been
suggested by me for naming the terminations of virtual connections in an

end-to-end network communications protocol [15].

The semantic model developed by Henderson for objects and structures of
objects 1is one of my basic jumping-off points for defining the types of
objects I want to implement [10]. However, this model and other models of

objects developed for object naming in programming languages do not take 1into

- 15 -



account very well the sharing of permanently stored objects among a community
of "autonomous'" (not under common authority) users. Some of the issues of
sharing permanent objects among a community of users have been discussed by
Saltzer [17). Saltzer discusses one aspect of autonomy -- that of allowing
sharing between users of programs and data in a way that was not planned for

at the time the programs and data were created.

The idea of naming distinct versions of objects -- 1.e. assigning names
to values rather than value-containers -- is also very important to my work.
This idea 1is basic to systems based on pure applicative languages such as LISP
[13]. It is also basic to the data~flow architecture of Dennis [5). The
naming of succeeding versions of objects with related but distinct unique
names 1s closely related to the idea of naming versions of files with
increasing version numbers in a file system, coupled with the convention of
never rewriting a file in place. This practice in using files is encouraged
by operating systems such as ITS [6] and TENEX [3]. Another use of this idea
is the proposal of Easton [7] eliminating the use of long-term locking on

objects by referring to successive versions by distinct version numbers.

The descriptién of time in a distributed system due to Lamport [111 is
very important. One of the major results of the thesis will be showing that
synchronization of accesses to values should be carried out with respect to
such a distributed notion of time, rather than an omniscient notion of time as

provided by locking protocols.

An important problem in handling updates and accesses to multiple objects
is that of mutual consistency. Eswaran, et al. [8] have given a careful

definition of this notion. Stearns, et al. [18] have given locking protocols

- 16 -

-’

~



that guarantee mutual consistency in a distributed system, and have also
examined the problem of preventing deadlock in such a system. An interesting
feature of Stearns’ formalism is that it is defined in terms of the creation
of distinct versions of objects rather than in terms of objects being

updatable cells.

The last theme of this thesis is maintaining correctness in the face of
failures. I have previously described a user level naming scheme for objects
that is robust in the face of certain kinds of failures [16]. Other robust
protocols that seem relevant here are in the area of achieving consistent
database transactions in the face of failures of various distributed systems.
Lampson and Sturgis [12] have described a mechanism that achieves update of
multiple copies of data in a way that is robust. T hope that the ideas T
present in the thesis will lead to a mechanism that is simpler and more easily
understood. Thomas’s [19] algorithm for distributing updates to multiple
copies has a weaker form of robustness. Alsberg [1] presents a much simpler
approach to robustness in the case of multiple copies, which sacrifices
autonomy by using a more centralized form of control. Menasce, Popek, and
Muntz [l4] present a protocol for maintaining a system-wide locking database

that is robust in the face of communications and processor failures.

Proposal

1 propose to continue investigating the use of an object naming mechanism
like the object family model above as a solution to the problems of effective
sharing, multiple copies, and reversible bindings in the context of an
autonomously managed distributed system. Among the important questions left

unanswered are the suitability of the naming mechanism for use in a purely

-17 -



intra-host environment, so that inter-object naming is done in a uniform
manner no matter where in the distributed system, and whether the proposed
mechanism has any hidden restrictions that would tend to reduce drastically

the autonomy of any host connected to the distributed system.

I propose to investigate the model more thoroughly, and describe it in
careful detail. My basic schedule is to spend the summer and fall, 1977 terms
predominantly in research developing the model in detail, and the late fall,

1977 and spring, 1978 terms describing the results of the work in a thesis.

The basic result of the research will be a paper study of the proposed
naming mechanism in the context of a distributed programming system. Some
small programming experiment may be made to clarify details of the model, but

no extensive implementation is intended as a result of the project.

- 18 -



References

[1]

[3]

[4]

[5]

[6]

(7

(8}

(9]

(10]

(11]

[12]

[13]

[14]

Alsberg, P.A., Belford, G.G., Day, J.D., Grapa, E., "Multi-Copy Resiliency
techniques," CAC Document # 202, May, 1976.

Bensoussan, A., Clingen, C.T., and Daley, R.C. "The Multics virtual
memory: concepts and design'", CACM 15 5, pp 308-318, May 1972.

Bobrow, D., et al., "TENEX - a paged time sharing system for the PDP-1n,"
Communications of the ACM 15, 3 (March 1972), pp. 135-1413.

Dennis, J.B. and Van Horn, E.G., "Programming semantics for
multiprogrammed computations," Communications of the ACM 9, 3 (March
1966), pp. 143-155.

Dennis J.B., "First Version of a Data Flow Procedure Language," M.I.T.
Laboratory for Computer Science Technical Memo, T™-61, May 1975.

Eastlake, D., et al., ITS 1.5 Reference Manual, M.I.T. Artificial
Intelligence Laboratory Memo AIM-161A, July 1969.

Easton, W.B., "Process Synchronization without Long Term Interlock,"
Proceedings of the Third ACM Symposium on Operating Systems Principles,
(Operating Systems Review 6, 1 and 2) (June 1972), pp. 95-50.

Eswaran, Gray, Lorie, Traiger, "The Notions of Consistency and Predicate
Locks in a Database System," CACM 19, 11, November, 1975.

Fabry, R.S., "Capability-based addressing,”" Communications of the ACM 17,
7 (July 1974), pp. 403-412.

Henderson, D.A., "The Binding Model: A Semantic Base for Modular
Programming Systems," MIT-LCS TR-145, February, 1975.

Lamport, L., "Time, Clocks, and the Ordering of Events in a distributed
System," Mass. Computer Assoclates Technical Report CA-7603-2911, March
1976.

Lampson, B. and Sturgis, H., '"Crash Recovery in A Distributed Data
Storage System,'" Xerox Palo Alto Research Center, ca. November, 1976.

McCarthy, J., et al., LISP
Press, Cambridge, Mass. 196

1.5 Programmer’s Manual, 2nd editiom, M.I.T.
5. '

Menasce, D.A., Popek, G.J., and Muntz, R.R., "A locking protocol for
resource coordination in distributed systems," UCLA Computer Science
Dept. SDPS-77-001, October 2, 1977.

- 19 -



[15]

[16]

[17]

[18]

[19]

Reed, D.P., "Protocols for the LCS Network," LCS~LNN #3, November, 1976.

Reed, D.P., "A Service Addressing Protocol for the Local Network," M.I.T.
Laboratory for Computer Science Local Network Note #5, December 1976.

Saltzer, J.H., "Naming in Information Systems," chapter 5 of 6.033 notes,
fall, 1976.

Stearns, R., et al., "Concurrency control for database systems," TEEE
Symposium of Foundations of Computer Science CH1133-8 C, October, 19746,
pp. 19-32.

Thomas, R. H., "A Solution to the Update Problem for Multiple Copy Data
Bases Which Uses Distributed Control," BBN Report #3340, July, 1976,

-’



