M.LT. Laboré{ory for Computer Science February 22, 1978

Comﬁuter Systems Research Division ' Request for Comments No. 158

A Message vBased. Model! of a Distributed Data Base System
By Warren Mont gofnery |

The problem of maintaining the consistency of a shared data base that is being manipulated by
asynchronous, ‘independent, transactions has been extensively studied [1,2,3,4] Mo;t of this research
has made the assumption that the data base consists of passi\}e objects which are vshared by the
processes performing the transactions. These processes can access the objects in any order.
Although t_he communication network used in a distributed system may 'c0ns-train the order in which
accessés made by different processes will be performed, the constraints were not used in these
studies. This research has developed elaborate locking strategies to insure that concurrent updating

does not resuit in inconsistency.

This report takes an alternative view in which each data object in the data base is accessible
to only a single process, and processes communicate by sending and receiving messages, possibly
consisting of the data objects thémselves. In this way, the communication paths are made explicit.
The meaning of the notion of consistency in this system is explored, and strategies for performing
concqrrent transactions while maintaining consistency are developed. As an Vex‘ample, a simple
distributed banking system is presented and implemented as a consistent message-based sysfem.

1) Data Base Consistency.

A data base consists of a set of i_m.representing a collection ;)f information. In general, the
information in a data base is redundant such that one can make assertions about the items in a data
base that should always be true, due to this redundan§y. An example of $uch an assertion is that the
sum of all of the stets of a corporation is always equal to the sum of all liabilities. A data base is

said to be consistent if it satisfies all such assertions.

This note is an informal working paper of the MLT. Laboratory for Computer Science, Computer
Systems Research Division. It should not be reproduced without the author’s permission, and it should
not be cited in other publications. :

-2- February 22, 1978

‘The operations to be performed on data bases are known as ti'.ans'acﬁom?. Each transaction
obtains the values of 'a set of input items, and updates a set of output items. A transaction that
updates several different items may temporarily put the data ba;f»e in an.inconsistent state before all

.of‘ th.ose updates‘ are completed. If the consistency assertions are to be maintained, theﬁ such
inconsistent states must not be visible to other transactions on thé data base. This effect can b§
achieved by forcing the transactions to be atomie, in that either all or'noqe of the updates performed

by a particular transactions are reflected in the values of the data items seen by othér transactions.

In order to insure that transactions are atomic, a locking protocol must be enforced so that a
process performing a transaction does not see the inconsistent states that m‘ay occur during the
execution of other transactions. Several papers [1,2,3], discuss fhe problem of controlliing the

concurrent execution of transactions so that each sees a consistent version of the data base.

Gray et. al. [1] give definitions for four different levels of consistency and discuss locking
strategies to achieve each. The notion of cpnsistency used in this paper corresp't‘)nds to their level 3,
which is the most‘diffi;ult to achieve (in terms of the restrictions needed on concurrent execution),
and appears to be desirable for most applications.! The sequencing con;traints required to aghieve
this level of consistence are presented in several forms. In one form, they éan be stated as a
: requirement that the ordering <<< on the transactions, where Ty << Ty it T; accesses some object A
before TZ access A, and either TyorT, modifies A, be exténdible (by transitive closure) to a partial
order. Thus the result of running some set of transactions concurrently is always the same as that of

running the same set sequentially, in some order consistent with the <<< ordering.

1. While the authors claim that forcing all transactions to see level 0 or level | consistency allows
transactions to be constructed to see higher levels of consistency, and may save locking overhead by
allowing many transactions to run at the lower levels of consistency, they also point that output
values produced by a transaction reflect the level of consistency that that transaction saw. These
low-level consistency values are propagated by any transaction that reads them, so that transactions
desiring a high level of consistency can never read values produced by those observing a lower level.
Thus low level of consistency transactions would appear to have very limited use.

-3- February 22, 1978

The locking strategies developed are efficient, in that they allow the data base to be
constructed so that a high degree of concurrency may be obtained with little locking overhead. The

extension of these strategies to a distributed database, however',y is not clear.

A second paper [2] gives a ge;\eral discussion of the problem of .controlling concurrent
transactions. This paper gives a model fdr distributed data bases in which the data is partitioned
among sites and each transﬁction is pefformed by a process that migrates among the sites that hold
the values that' it accesses. Each site‘ is responsibl_e for' controlling the execution of transactions at
that site, and thé sites communicate only when a transaction is moved and when a transaction is
completed. The authors describe a class of control algorithms that work by assigning an order to the
transactions to be processed and use that order to resolve conflicts between processes attemp'ting to
access the same data, possibly by aborting and ‘restafting them. ':The. necessity of restarting some
transaction that has compléted a substantial amount of processing is undesirable, but seems

unavoidable in this model of concurrency control.

A third paper{3), gi‘ves a method of analyzing the set of transactions to be p’er-formed on a
data base to determine the amount of locking needed. The data base is assuﬁed to be replicated at
several sites, each of which performs atomic transactions on its local copy and distributes the
rgsulting updates as atomic actions to be performed by other sites. The fact that each transaction is
performed atomically at some site using copies of the data items . available at that site, and the
knowledée of the complete set of transactions that are performed by the entire system are used to
greatly reduce the locking required to insure consistency. Although the system is claimed to be
applicable to data bases in which each site contains only a partial copy of the data base, a transaction

that requires access to a'set of items for which there is no single site that has copies of all of them

appears to cause difficulties,

These papers have all been based on a model of a data base in which the data objects are
shared by the processes representing the transactions. The fact that two of these transactions may
s.hare concurrent access to objects that represent the same data items leads to the requirement that

the transactions be ordered (by locking) so that each sees a consistent version of the data base.

P

-4 - February 22, 1978

‘Modeling the data base system as a message-based system, in which each object is accessible to only
One process, and objects are exchanged by messege passing, may be much more desirable for a

'distrib.uted data base system.

First, a process-in a distributed system can only reference directly objects that are ' maintained
locally. If two processes at different sites are to share; an item, then this sharing' must be
implemented by some form of message bassing. fhe messages that must be passed between
processes in order to implement sharing could be combined with those needed to synchronize
references, thereby reducing the number or size of messages needed. A common pattern of sharing is
one in which a great many processes reference an object, but do so very mfrequently Thus even if
updates are much less frequent than references that are not updates, several updates may occur
between two references by a particular process. Such a pattern of sharing can be most efficiently
implemented by supplying new values of the object to a process making infrequenf references at each

reference, not at each update.

Although the models discussed so far consider the communication between sites to be
-unconstrained, many communicat?on networks now built or under development constrain inter-site
communication and impose some order on many inter-site messages. Nearly all communication
networks enforce the constraint that messages flowing between two sites are totally ordered, such

that messages arrive and are processed in the order in which they were sent.

In addition, some network topologies allow a message to be broadcast Alo a set of sites as an
atomic transmission, such that the reception of a broadcast message by all destinations is consistently
ordered with the reception ef other messages sent to those destinations. A model of a distributed
data base system which includes these constraints may allow substanhally simpler and more efficient

synchromzahon of transactions.

()

-5- ‘ February 22, 1978

i) The Meaning of Consistency in a Message-Based System.

If a data base is expressed as a message based system, in which the objects that, represent

data items are accessible to only one procéss at a time, then the requirements for consistency are

somewhat different. We need not require that the consistency assertions always hold on all of the
itéms, wherever they may be, because no transaction or outside observer can obtain the value of an
item wiihoul sending messages to a process in possession of an 6bject that represents that item, and
receiving a value as a reply. We need only. require that thebview of the data base séen by processes
carrying out transactions (which consists of responses to requests for values of items), be consistent.
Before goingA into the deiafls of consiétenéy in guch a system, | will present a sample message-based

system as a framework for the discussion.

What 1 will present here is a methbd of describing a distributed a‘pplication as a collection of
processes communicating only through message passing. Each process has a number of ports through
which it can send or receive messages to or from the ports of other processes. Ports are in
that they send or recejve messages consisting of objects of some abstract data type. Ports are also
désignated as either input borts or oﬁtput ports depending on Whether they send or receive

messages.

A distributed application is implemented as a netWork of such processes constructed
connecting each output port of each process to some input port of some process. Several outputs can
be connected to a single input, and the streams of values produced by those outputs are merged.
Each input port has a queue of messages to be processed. Ports that are connected must match in

type. If the application has external input or produces external results, some of the input or output
ports of the processes are left unconnected and are designated to receive or produce these external

inputs or results.

Each process performs atomic processing steps known as stomic process steps. ! Each such

1. Atomic process steps are the basic unit of computation which can be performéd atomically with
respect to other process steps taking place in the system. Several such atomic steps may be needed
to implement a single transaction.

5}/&

e

ey

-6- ' February 22, 1978

step consutﬁes? some set of inputs to that process and produces some set of outputs. The process ‘
steps that can be pérformed by a single process are individuaﬂy specified as consuming values from
input ports to that process and producing results at output ports Each process may perform a
number of different kinds of atomic steps. All process steps performed by a single process share the
objects. local to that process and thus the results of an atomic step can depend on both the input
values to that step and on the steps previously performed by that process (which may have had side

effects on the local variables of that process).

This descriptive system is similar to the actors formalism of Hewitt [5] The imﬁortant
distinctions between this model and actors are the presence of multiple, typed input ports to each
process (actor) and the ability to specify certain atomic steps which consume messages from several
ports. These were included because they appear to be common needs in the construction of
distributed systems and simplify the task of describing applications. The specification of a process is
very similar to the behavioral spe‘ci'fic‘ations used by Hewitt, in that each kind of process step can be
viewed as a different behavior for a process (selected by the messages received at that step), and
each step can be specified by the messages that it produces and the change in the internal st;te of

the process.

We 'can.‘ now use this system to describe a distributed data base. Initially, l assumé that the
data is partitioned among a collection of sites, and that each item is represented by a single ob;ecl
appearing at a single site. Duplication of data for rehabtldy could be handled at a lower level than the
level of description used here, using g‘n algorithm like that developed by Alsberg [6), or Thomas (7}
A fatef section of this report considers a more general scheme for incorporating duplicated data into

this model.

Three kinds of processes will be used to describe the data base system:

Data managers, each of which maintasins some portlon of the data base as
objects in its internal state.

-7- ' February 22, 1978

Transaction procésses, which formulate requests to the data managers in
order to carry out transactions.

Communication processes, which convey messages between the transaction
processes and the data managers. '

Thé requirement for data base consistency expressed abové can be restated in terms of
ordering the atomic process steps of the data managers that carry out paﬂs of transactions. Each
transaction causes a set of atomic steps to be performed by the manager processes for the items
accessed by that transaction. Each of the steps performed by the managers is performed for some
transaction. Each data manager M, views the.transactions as occurring in some order defined by the
order in which the atomic stéps for those transactions occurred in M. Thus for each rﬁanager, we
have an order <; on the transactions, such that Ty < To iff both Ty and T include process steps of M;
and a process step related to LB precedéd a process step for T,, and one of these two steps caused
a change in the internal state of M. The data base syst}emremailns consistent if the transitive closure

of the union of all <; is a partial order on the transactions.

The communications processes will constrain the concurrent execution of transactions so as to
insure that this partial order is consistent Sy constraining the order in which messages are delivered
to the managers, and thus the order of execution of the process steps related to individual
transactions. It is in general hard to insure consistency without gbbal knowledge of the transactions
in progress, however we wil»l show that for some clas#es of transactions a simple interconnection of

the communication processes, and simple protocols can be used to. insure consistency.

In order to study ihe internal structure of a transaction, we need ‘a model for what the
transaction does. For this purpose, I adopt a model similar to the L-U graph of SDD-1{3] which I will
call an activity graph. A transaction can be viewed as a mapping from a set of input items to a set of
output items. In this mapping, not all of the outputs depend on each input. The activity graph of a
transact’.ion is a directed graph whose nodes are the data items read or written by that !ransaction,

and with‘ directed arc between each input item, and each output that depends on that input.

-8- . February 22, 1978

One common class of transactions for which the coordination problem is simplified are those
which to not have cross—inanager dependencies. That is, the accesses to the data base made by each
manager in-performing such a transaction do not depend on data oblained from other managers. Such
transactions can be recognized i)y the fact that their activity graphs have no arcs leading from an
item represented by an object controlled by one manager, to an item represented by an object

controlled by another manager.

This kind of transaction can be implemented using only one atomic step of each manager, in
which the par'i of the transaction pertaining to items local to that manager is performed. The
transaction process for this kind of transaction has one atomic step that emits a set of requests for
the managers. If the transaction returns a value, the requests to ihg managers cause values to be
sent back to the transaction process, and a second atomic step of the transaction process uses these
values to obtain the returned value of the transaction. Figure 1 illustrates the process structure for
this kind of transaction. We have not yet consideied the structure of the comi'nunication processes
that route the requests to ihé managers. Figure_Z shows an execution of such a transaction. The
figbre shows the aiomic sie;;s of the transa:ciion process and the manager processes.‘ with a directed
arc between a step that produces a message and one that consumes it. The steps have three part
names consisting of the name of the transaction, the name of the process and the particular kind of

process step invoked. (Recall that processes can have several different kinds of steps.)

This class of transaction includes all "retrieval” transactions that do not modify the data base.

The activity graph of a retrieval transaction contains no arcs, as no items are modified.

The ordering requirement for a set of transactions with no cross-manager dependencies is
that the ordering on the transactions perceived by each manager (baéed on the order in which it
receives its requests) is mutually consistent with those perceived by all other managers. The

requests sent by a transaction process are sent as an atomic transmission. The atomic transmissions

are partially ordered, such that two transmissions that include requests sent to the same manager are
ordered. The order in which requests are delivered to the managers is consistent with the order of

the atomic transmissions that sent those requests.

~’

-9- | February 22, 1978
‘ Figure 1
- A Transaction With No Cross-Manager Dependencies

Trahsaction Process Communication Processes | Managers

T T T

One way in which the ordering constraints needed for atomic transmissions can be .enforced is
through the use of timestamps {7). Each transaction process could send one message, containing all
requests, to a communications process. THis communication process could assign a unique timestamp
to the transaction, and associate that timestamp with all of .thé requests. For each manager, we could
haye a communi;:ation process that received the requests for that manager and passed them on in
timestamp order. The protocol needed by the communication processes to enforce proper ordering is

complicated and expensive.

Some communication networks enforce the needed synchronization easily. An ether net [8]
allows a message to be broadcast to a set of receivers as one atomic transmission. An ether net
being .used to connect the transaction processes to the managers can be modeled as a single
communication process, which receives a message containing all of o tr_ansaction’s requests from a

transaction process, and distributes these requests to the managers in one step. A ring network

-10 - . February 22, 1978

Figure 2

An Execution of a vTra‘nsaction with No Cross-Manager Dependencies

. /Wj!equcct

T.Ml.AccessT T.Mz.AccessT . T.MN.AccessT

<L

T.Py.Analyze '

imposes a similar constraint.l' These communications strategies can be simulated in software, if not

present in the communication hardware.

Using only one communication process to route requests to the managers may overly restrict
'concurrency if the commupication medium is not sequential. Rather than use a single communication
process, we can use a hierarchy of communications processes to distribute the requests. In this cﬁse,
a transaction process sends a messagé containing its requests to some communication process that is
above (in the hierarchy) all of the managers that are destinations of those requests. On receiving a
‘message containing a collection of requests, a communication process determines which requests
should be sent to each of its children in the hierarchy in order for each request to reach i?s eventual

destination. Each request is forwarded to the correct child, again packaging all requests going to the

1. A common problem with broadcast transmissions is that some recipients may miss a broadcast,
because of lack of buffering. This could be remedied by sequencing all broadcast transmissions,
having several sites keep a log of recent broadcasts, detecting lost broadcasts and having a node
request a lost broadcast from one of the logs, and preventing a node from issuing new broadcasts
until it has heard all old ones. The details of the implementation of reliable broadcasts are still under
investigation, ' .

T | February 22, 1978

same child in a single message.

Two transactions that reference overlapping sets of items are sequenced by the
- communication process that is above all of the items referenced by both transactions. This sequencing
insures that all of the requests of a transaction are delivered to the managers in ‘as if théy were a

single atomic transmission.

Figure- 3 gives an illustration of such a hierarchy. There are three .manager processes, and
two communication processes in the hierarchy. Three transaction processes are shown, each of which
sends its requests to the communication process that is above all of the needed managers in the

hierarchy.

Figure 3

A Hierarchical Commﬁnication NetWork

-12-. February 22, 1978

" The class of transactions discussed so far require no distributed locking in .that no tra.ns"actior'\
is prohib.ited from using or updating the data base while computation is - being perfonﬁed at some
remote sitv'e.1 Transactions performing updates that depend on the value of data items represehted by
objects under the control of several different managers do inherently require some form of locking.
These updates cannot be computed before the inputs have been obtained. The items being updated
must effectively be locked at the same time that the input items are obtained, so that accesses to the
updated items made by other trlansa.ctions do not occur before the updates are made. This locking can
be described in this system by a transaction process that executes a pair of steps, one which emits
messagés that request the values of all inputs to thé transaction being implemented and lock all output
items, and one which receives the requested inputs and produces the eventual outputs. This locking
prevents any other accesses to thosé items until the second step of the transaction process produces

new values for the updated items.

The three different types of requests (perform local access, lock item, and update), require
different treatment by the communication processes in order to minimize the restriction of
concurrency by locking. An update message should be delivered to the appropriate manager as
quickly as possible, as the lock that it Will release may be holding up other transactions. Local access
reduests should also be delivered promptly, as they may be holding up a transaction that also holds a

lock.

Sending a lock request for an item is not the same as locking that item. A lock request must
be sent in the same atomic transmission with other requests for values or local accesses needed to
complete the transaction. The communication processes, however, operate asynchronously and could
choose to deliver the lock request last. If the transaction does not require the previous value of the
item being loc'ked, then the new value for that item can be computed before the lock request is
delivered. This allows transactions that accesses the item which is the target of the lock request, but

do not otherwise interfere with the locking transaction to perform accesses to that item while the

1. . The sequential processing of messages by the managers may restrict concurrency. This
restriction can be avoided by assigning fewer data objects to each manager and using more manager
processes. ' :

-13 - : February 22, 1978

locking transaction is executing, and they appear as.if they occurred before the locking transaction.

As an example, consider the transactions and hierarchy 6(Figure 3. Let TA,C be C = f(A),
where f is a complicatéd function reqﬁiring a.great deal of computation. TA,C must send a message to
Cy reduesting the vélue of C and a lock on A Cy must deliver the value request to M before the
transaction can continue. C; could, however, follow a "lazy” forwarding scheme for lock requests,
such that a lock request is not forwarded to the next manager or communication process until some
other request for the same destination has been produced. This would cause the lock request to be
held by C; until some other request for C; is produced. A transaction TA,B involving only A'and B
" could be performed concurrently with the computation of f(C) by TA,C- When this value is computed

and sent by TA,C' the update request "forces” the lock request through the hierarchy.

i) An Example, A Distributed Bank Account System.

As an example of a consistent distributed data base system, consider a distributed data base
containing all of the accounts. belonging to a single bank (including both customer accounts and
internal accounts representing such quantities as tHe cash in tellers’ dr-awers or loans from }he
Federal Reserve).. The data base is partitioned with a part located at each branch of the bank, and the
only consistency assertion that must be rﬁaintained is that the sum of all of the balances at ali of the
branches must always be zero. We wish'to provide for two kinds of transactions, one which moves
data from one account to another, and one which obtains a set of balances and performs some
function on them, returning the result to the user.. An example of such a transaction is one that sums

some set of balances.

Both of these two kinds of transactions have no cross-manager dependencies. The value
obtaining transaction dbes not modify the data base, and so it can be implemented by a transaction
process with two steps, one of which requests the values of the desired items, and another that
applies a function to the requested values. The money moving transactions also have no cross

manager dependencies, as the new value for each of the balances touched depends only on the

-14- February 22, 1978

previous value and the amount moved.]

The value-obtaining transactions could in practice take a long time to complete. Consider, for
example a transaction that obtained all balances and summed them in order to check consistency. It
would be desirable if such a long running transaction did not unnecessarily délay other transactions,
yet proceeded steadily, without being aborted to allow other transactions to run. The hierarchical

model described in this memo provides an effective solution to this problem.

If the manager p}ocesses each have control of a relatively small part of the data base, then
the effort to obtain all 'values under the control of any one manager is relatively small.. A particular
transaction is only delayed until the requests previously sent to the managers that it accesses have
been processed. Thus only a small part of a long running value obtaining transaction must be
performed in order to allow later transactions that access the same values to proceed. In a system
with a limited number of real processors beinﬁ multiplexed among the manager processes, a priority
scheme could be adopted to give priority to managers with requests. pending from high-priority

transactions.

IV) Possible Extensions and Directions for Further Work.

The method of describing distributed database systems presented here is not quite as general
as that of Stearns [2]. The mode! presented here requires that the set.of pbjects that a transaction
will read or write be known.in advance, before it has accessed any data values. While it is anticipated
that most transactions are of this form, and other researchers have made the same assumption [3), a

method of dealing with transactions that must view some data values before knowing the set that it

1. This example is perhaps oversimplified, as most banks also require that balances of savings and
checking accounts do not become negative. If the money-moving transaction is constructed to enforce
this constraint, a cross-manager dependency is introduced because new value of the credited balance
depends on the old value of the debited balance. In practice, a loose consistency constraint requiring
each transfer from a customer account to be preceded by a request for the balance on that account,
and limiting the amount that can be moved in one transfer is generally sufficient. This could be done
entirely by the transaction process submitting the money moving transactions, thus giving the user the
illusion that the movement takes place in one step. A manager that discovers transaction that takes
too much out of an account could also initiate a "backup” transaction to undo the offending transaction.

-15 - " February 22, 1978

updates is needed.

1f the uncertainty about the input or output sets of such a transaction is small, it could be
modeled by requesting values or locks for all possible inputs and outputs.' A more general scheme

would be needed for a transaction with greater uncertainty.

‘A second ‘unﬁnswered question about tﬁis system is its reliability. The reliab‘ility question is
.considered in greater detail in a companion report. Techniques have been developed to allow
information to bel recorded safely, such that it is not lost during a-.crash. Communication protocols can
be cqnstructed to reliably deliver a stream of messages from one vproce_ss to another. One
fundamental problem that cannot effectively be solved is allowing a manager to release a lock aft’er a
failure has.occurred, and not cause inconsistency. By rleducing- ‘he need for locking in this system, we
have reduced fhe chance that a failure can occur with a lock set. The other réport gives a strategy

for dealing with failures that occur with locks set.

Another related area for investigation is the ability to change the communication paths used,
by changing the interconnection of communic>ation processes, to avoid a failed site. Such changes must
be done carefully, so that the requests held by the failed site are not l'ost, and are properly

sequenced with other requests.

This feport presents a model for distributed data base systems in which the data base is not
redundantly stored. The extension of this model to a redundantly stored data base appears to be
straightforward, and simpler than some others. Suppose that some of the da_ta items are represented
by - duplicated objects, with the copies under control of different managers. Thus in ‘addition to
synchronizing the transactions, we must insure that the copies remain identical. This can be done by
requiring that any .transaction that modifies a value must send requests to all managers that hold

copies of that value. Any copy of a duplicated value may be used as input to a transaction.

Y

-16 - , "~ February 22, 1978

In order to modufy a redundantly stored item, a transaction may need to send requesls to
many managers In the hierarchical communication system, this reqmres that such a transaction send
|ts requests to a communication process high up in the hierarchy. Thus updating redundantly stored
data is expensive, both because of the number 9f messages that must be sent, and because it may
requiref‘additional synchronization. Accessing a redundantly stored object, lhowever, Is equivalent to
accessing one of the copies. If a n'umber of copies are available, the copy used by a particular

transaction can be chosen to minimize the communication and synchronization costs.

The performance of a data base system built on this model depends heavily on the assignment
of data objects to managers and the communication network. If few, large managers are used,
concurr'ency. is réduced, but few cross-manager dependencies occur, requiring little locking. 1If many
small managers are used, the amount of locking needed increases, but so does the pote,ntial. for
concurrency. Finding a good partit_ior'u the data base for a particular set of transactions is an

interesting research problem.

V) Conclusion_s

Viewing. a distributed system as a collection of processes communicating through message
» passing appears to be use‘ful way to gain insights into the efficient structuring of applications. Duri‘ng
the next few months, | iﬁtend to continue to investigate the Qnanswered questions in the previous
section in order to arrive at general algorithms for structuring distributed applications. Any comments

on these ideas or their extensions would be greatly appreciated.

AN

[y

(2]

(3]

(4]

(5)

(6]
%

(8]

-17 - February 22, 1978

References

Gray, JN, Lorie, RA,, Putzoly, GR, and Traiger, LL,, "Granularity of Locks and Degrees of
Consustency in a Shared Data Base", IBM Research Report RJ 1654 September, 1975 :

Stearns, R, et al, "Concurrency control for database systems,” IEEE Symposium of Foundations
of Computer Science CH1133-8 C, October, 1976, pp. 19-32.

Rothnie, J.B...Bernstein, P.A., Goodman, N, and Papadimitriou, C.A., "The Redundant Update
Methodology of SDD-1: A System for Distributed Databases,” Computer Corporation of
America Technical Report, February, 1977.

Eswaran, Gray, Lorie, Traiger, "The Notions of Consistency and Predtcate Locks in a Database
System,” CACM 19, 11, November, 1976. :

Hewitt, C, "Viewing Control Structur‘es as Patterns of Passing Messages,” M.LT. Artiéicial
Intelligence Laboratory, Al. Memo #410, December, 1976.

Alsberg, P.A, Belford, G.G, Day, JD. Grapa, E, "Multi-Copy Resillency Techniques,” CAC
Document # 202 May, 1976.

Johnson, P.R. and RH. Thomas, "The Maintenance of Duplicate Databases,” ARPANET NWG/RFC
4677, January 1975.

Metcaife, RM, et al., "Ethernet: Distributed Packet Switching for Local Computer Networks,”
CACM19, No. 7, pp. 395-404, July, 1976, .

