\

M.I.T. Laboratory for Computer Science March 16, 1978

Computer Systems Research Division Request for Comments No. 161

PERFORMANCE PROBLEMS IN DISTRIBUTED SYSTEMS
by Liba Svobodova ’

This paper will be presented at CIPS '78, the conference of the Canadian
Information Processing Society. The conference takes place at the University
of Alberta, Edmonton, Alberta, in May 1978. I had very little time to put
this paper together, and as a result, it is rather shallow. Although this is
the final form as far as this particular conference is concerned, I would

appreciate comments, since I may do some additional work in this direction.

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced

without the author's permission, and it should not be cited in other
publications.

N

PERFORMANCE PROBLEMS IN DISTRIBUTED SYSTEMS
Liba Svobodova
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

There is a strong indication that for many applications distributed
computer systems will replace conventional computer systems built around 2
large central processor, and that new applications will emerge based on
distributed information processing. This move towards distributed processing
has become feasible mainly because of the rapidly dropping cost of computer
hardware and the increasing power and flexibility of mini and microcomputers.
Lower cost of computer hardware also ought to have an impact on the evaluation
of computer system performance, making utilization of hardware resources a
much less important factor than it has been so far. Performance related
efforts should concentrate on the aspects visible to the user, that is,

response time, reliability and availability.

Due to the distributed nature of these new systems, new problems are
introduced that require new measurement and analytical approaches. A primary
problem in distributed processing is proper partitioning of computations and
data bases among the processors in the system. Correspondingly, measurement
tools need to be distributed, based on the characteristics of the measured
process. This paper discusses some of the problems in detail and examines how
the conventional computer performance evaluation tools and techniques need to

be expanded to serve the requirements of distributed systems.

Introduction

Analysis and evaluation of computer systems has become progressively more
difficult as more sophisticated systems were introduced, and more emphasis put
on interactive use. Today, computer performance evaluation is a demanding
field that requires a deep understanding of many factors and their mutual
interaction: the inner system mechanisms, both hardware and software, the
processing requirements, the operating environment, but also users’ habits,
preferences, and adaptability to system changes, and the effects of poor
performance on the user’s productivity and well-being. To a great degree,
computer performance evaluation is still an art. Yet, significant progress -’
has been made in understanding the performance problems and developing

techniques and tools to aid in performance evaluation.

However, as the techniques and tools evolve to solve cxisting problems,
new problems cmerge due to evolution of computer systems. For several years,
there has been an indication that the natural evolution leads towards
distributed systems. The primary new problem in this type of systems is how
to distribute computations and data bases. More generally, it is necessary to
understand the measurement tools needed for distributed systems, generation of

test workloads, and applicability of analytical modeling and simulation.

While for many applications a distributed system is a more natural
realization than a system based on a single large central processor,

undoubtedly there are applications that do require just such a centralized

system. The decision of what type of system is more appropriate is a
difficult one. 1It concerns more than just performance and cost of the
hardware and software. In particular, it may have a strong impact on how
people in an organization perceive and relate to their computer system; this
in turn has an impact on the effectiveness of the people involved, both the

users and the managers.*

The area of "distributed systems” has become a popular source of systems
research projects. It has also become an important term in marketing computer
equipment. Unfortunately, because of this popularity, the terms "distributed
systems'" and "distributed processing' are frequently misused, often referring
to such conventional concepts as remote job entry, use of terminal
concentrators, or multiprocessor organizations. Thus before it is possible to
talk about performance problems in distributed systems and the applicable
tools, it is necessary to discuss what distributed systems are and what

motivates their use.

Characteristics of distributed systems

Distributed systems discussed in this paper can be defined loosely as
organizations of highly autonomous information processing modules that
cooperate in a manner that produces an image of a coherent system on a certain
defined level. The autonomy is the key characteristic that eliminates most
multiprocessor organizations from the class of distributed systems.

Certainly, a distributed system has more than one processor; however, in a

distributed system, the processors are highly independent, each having its own

* Of course, managers can also be users.

primary memory, possibly even some secondary storage, and its own interface
through which it communicates with its environment (e.g., user terminals,
sensors) . These individual subsystems, called members in this paper,* are
connected by a communication network. Each processor has access to its own
memory only; that is, in a distributed system inter-processor communication is
possible only by explicitly exchanging messages, not through shared memory.
Finally, in a distributed system, control of the system”’s internal resources

is decentralized.**

The type of communication network used in a distributed system will vary
widely with the georgraphical dispersion of the system, the purpose of the
system, and the performance requirements. Computer networks are often
categorized as global networks and local networks, where global networks span
large geographical distances and local networks connect computers located in
the same building or a building compound. The best known example of a global
network is ARPANET [24), a store-and-forward packet switching network.
Communication processors on the ARPANET (IMPs) receive packets from the
ARPANET hosts or other IMPs, and forward them to the destination host or
another IMP on the path towards the destination. This technique is
unnecesarily expensive for local networking. In situations where individual
nodes are sufficiently close, a single communication channel (bus) accessible

to all nodes is sufficient. Since it is assumed that a distributed system

* 'In computer networks, such subsystems are usually called "hosts". The term
"member" is used here to suggest participation and cooperation.

% There still may be a "central" component in such a system for a certain
class of decisions or services (e.g., central file system), but it is assumed
that most of the decisions concerning requests coming from the member’s own
terminals are made locally.

does not have a central control element, each member has to be able to decide
for itself when it can use the communication channel. 1local networking has
become quite popular in recent years. The two best known local networks are
the Ethernet [19], a cable that operates as a bidirectional broadcast
contention (random access) channel,* and the DCS ring [9], where a control
token is passed from one member to the next member to indicate when a member
is allowed to transmit a message. In a local network, it is possible to use a
channel with a very high bandwidth such that the delays due to the
communication network are practically negligible. 1In geographically
distributed systems, the delays in the communication network cannot be
overlooked. The significance of these delays is especially felt when it is

necessary to synchronize operations of several distant members.

A computer system cannot be viewed separately from the application it is
to support. The hardware and software organization ought to reflect the
structure and the needs of the contéining system (bank, factory, university,
etc.). As said earlier, for many applications, a distributed system
represents a more natural realization than a system built around a single
large central processor. The reasons are many, but the primary forces are
functional separability and a non-uniform distribution of the use of data
bases. Functional distribution means that different processors support

different services. Such systems scem natural for control of industrinl

* The "random access" approach (that is, a member wanting to transmit a
message can do so immediately, regardless of the plans of the other members)
is used only when the FEthernet is found to be idle. Each member monitors the
state of the Ethernet, and defers to passing messages. Also, once it starts
transmitting, it checks for possible collisions of its own message with
messages from other members. If a collision is detected, the transmission is
aborted.

processes, where different processors control different parts of a process, or
in such systems as aircraft, where different processors process information
from different sensors. However, this approach scems to be also advantageous
in scrvice sectors such as banking. For cxample, the First National City Bank
(based in New York City) separated different kinds of services provided for
the corporate customers on different computers systems.* This move resulted in
a lower cost for computer services, since separation greatly reduced the

complexity of information processing within the bank.

Another category of distributed systems is a system where individual
processors support the same services but on a different part of a data base.
A typical example is a bank with many branch offices. Fach branch has its
local accounts, but it should be able to serve a bank’s customer whose account
is at another branch. Since such remote requests are much less frequent than
manipulation of the local accounts, partitioning of the bank’s accounts data
base (that is, maintaining accounts on a computer at their local branch) is a
natural approach. Tt needs to be said, however, that the division between
functional distribution and data base distribution is not clean; in most

cases, a distributed system will to some extent include both.

In addition to the "naturalness" of distributed systems for some
applications, distributed systems offer several important advantages over

central processor systems. Availability of information can be increased by

replicating it in several members. This arrangement not only increases the

* The computer facilities in the First National City Bank do not represent a
distributed system, since individual computers dedicated to specific services
are not connected. However, the bank is building a computer communication
network that will tie together all the existing systems, thus setting the
ground for distributed processing.

-’

access bandwidth to the information, but in case of a failure of one of the
members or some communication links, the information remains accessible. 1t
is also believed that distributed systems provide a better enviromment for
protecting information stored in the system and coping with run-time errors
resulting from hardware failures or residual design and implementation errors.

In support of this claim, two factors should be considered:

i. the actual physical separation of indepedent or loosely coupled

computations and information that belongs to different users

ii. as a possible side effect of such separation, a reduction ia the

software complexity

The physical boundaries of individual members provide "firewalls" that (if
properly designed) will prevent spreading of errors originating from a
particular member to the rest of the system and protect information stored at
individual members from unauthorized access or modification by other members.
As the most severe protection measure, a self-contained member can be
puarantced privacy during some sensitive operations by physically detaching it
from the rest of the system. Also, distribution reduces the level of hardware
resource sharing, and consequently, may reduce the complexity of software for
resource allocation, scheduling, and protection. Lower software complexity

makes verification of design and implementation more feasible.

Finally, distributed systems offer expandability. As more users' join the
system or new services are added, it is not necessary to make any physical
replacements; rather, one or more new members need to be added to the system.
Distributed systems can grow more gradually than systems with a large central

processor.

Distributed systems have been emerging in three different ways:

i. Distribtion of an existing information processing (or process control)
system: new hardware (and software as necessary) replaces the old
organization based on a large central processor to support (initially)

the same set of applications.

ii. New systems: a distributed system is designed to support a new

application, for cxample, office automation.

iii. Integration of existing computer systems: self-contained computers
supporting specific (possibly diverse) applications are connected by a
communication network with the aim of sharing hardware resources and

information.

The last category often represents a very difficult problem. Since individual
sel f-contained computers evolved in their own ways, building a coherent system
that shields the user from the idiosyncrasies of individual members may be an
impossible task. Yet there seems to be a great need for building new systems
through integration. The ARPANET project demonstrated the feasibility of a
computer network composed of diverse computer systems. The Resource Sharing

Fxecutive (RSEXEC) [29] and the National Software Works (NSW) [20] are

distributed systems built on the top of the ARPANET. Computer manufacturers
feel the pressure to support computer networking; DECNET [30] was develora2d o0
facilitate building of networks that may include any type of system
manufactured by the Digital Equipment Corporation. However, many underlying
problems of making a network of highly autonomous computer systems look like a
coherent system for queries or computations that require participation of

several such systems have not yet been mastered. One problem that repeatedly

comes up in decisions what mechanisms should be provided to the programmers to
support implementation of distributed applications is the lack of
understanding of such applications. This is of course a well known problem,

that also hinders evaluation of computer system performance.

Performance evaluation issues

The very fundamental problem of computer performance evaluation is the
problem of defining "performance". Performance of a system can be discussed

from two different positions:
i. how effective the system appears to its users

ii. how efficiently the system uses its internal resources in order to

satisfy the demands of its users

"Effectiveness" is very difficult to measure, not speaking about trying to
express it in a quantitative form. Thus performance evaluation usuallv
concentrates on measurable quantities that reflect the system efficiency.
However, effectiveness has to be considered, especially when choosing a system
for a new applicaton. Effectiveness is a result of the set of tools provided
to the users, characteristics of the actual physical interface between the
user and the system, system reliability and response time to user requests,
but it also may be influenced by such intangibles as how much control the user
feels to have over the execution of his programs. Distributed systems scem to

offer definite advantages regarding the effectiveness [6].

The question whether a centralized or a distributed system should be
adopted for a particular environment and application has been addressed by

many people, including professionals from both the computer field and

10

management . Advantages and disadvantages concerning management of system
development and system operations, personnel, cost, and political problems are
usually discussed [25]. Differences between distributed and centralized
systems in the above categories make the selection process very difficult and
definitely beyond the scope of the conventional tools (benchmarks, simulation)
used to select a system from among similar system organizations offered by
different manufacturers. Finally, even if it is determined that a network of
small scale computers will serve the needs of a particular environment better
than a system based on a large central processor, different applications
executed on the system may need a different degree of distribution, that is,

each application ought to be analyzed separately for its "distributability".

Tuning and load sharing

The widest class of performance evaluation projects is concerned with
system "tuning"”. Tuning on conventional computer systems generally strives
for the highest possible utilization of all resources (maximize throughput),
while guaranteeing reasonable response time to the users. This is done by
balancing the load either externally (the order in which jobs are submitted to
the system) or internally (the order in which jobs are made eligible for
multiprogramming, the order in which jobs are assigned to a processor). The
other aspect is the criticality of individual jobs. The more critical a job,
the higher priority it should be given when assigning resources. This policy
of course works against the load balancing attempts. The importance of the
speed of the response vs. system throughput has been stressed by several
people in the past, based mostly on the "cost" of a programmer compared with
the cost of the system [8). With the cost of the hardware rapidly decrecasing,

it makes sense to place even more emphasis on response time (and other

11

effectiveness aspects). That is, individual members should have sufficient
capacity of provide good response time; it should not matter if they are

underutilized.*

One incentive for building distributed systems by integration is the
possibility of load sharing. That is, if one member is overloaded, requests
from its local users can be sent to another (lightly loaded) member for
execution. How dynamic such a load sharing scheme can be made is a difficult
question. 1In a geographically distributed system, shipping an entire job to
another member may be costly. Also, because of the delays, it is difficult to
know the current state of all suitable members; the member that was chosen to
come to the rescue can suddenly become heavily loaded, or may even fail.
Tuning this kind of system may be an impossible task. However, in a more
static situation, load sharing might be clearly desirable and easy. For
example, computers in different time zones experience peak loads at different
times. It might be possible to work out a schedule such that during certain
hours some of the capacity of a specific computer would be made available to
users from the busier time zone. Still, the communication cost of shipping
all needed programs and data to another member may render this strategy

infeasible.

The crucial problem in design or selection of a computer system, and also

in later tuning efforts, is understanding how the system will be or is used.

* Another class of distributed systems that is coming into existence is a
network of personal computers. A personal computer can be used by a single
individual only; a personal computer is always available, and ought to provide
good response to tasks performed by the user. Utilization of a personal
computer is completely irrelevant. Availability and quick response is what
matters.

12

From the performance evaluation point of view, the problem is to understand
the demands on system resources, that is, the workload. Characterization of
workload is possibly the most difficult and certainly the least understood
part of a performance evaluation project. This is because each user
community, each enviromment, will represent a different workload. Workload is
usually characterized by the distributions of requests for individual
resources and the length of time needed to satisfy a request. 1In distributed
systems, because of potentially long communication delays, the frequency of
requests that cannot be satisfied locally* and must be sent to a remote membher

is a very important parameter.

Reliabilitz vs. speed

Another influencial factor in computer system evaluation is reliability.
In the literature on performance evaluation, reliability (mostly in the sense
of availability, that is, the percentage of time the system is available to
its users) is sometimes listed as a measure of performance. Reliability,
however, is more than that the system is operational and available to its
uscers. Reliability also means that while the system is operational, it
operates correctly, and that the information entrusted to it is not lost or
damaged. Reliability often represents a tradeoff in terms of the efficiency
of a centralized system, and the significance of this tradeoff seems to be
more prominent in distributed systems, in particular, systems supporting
distributed data bases. Physical distribution of computational tasks and

information is both a means for achieving robustness and a source of new

* A request may not be satisfiable locally because the particular member does
not have the data requested. Note: this is conceptually an entirely
different problem than load sharing.

13

reliability problems requiring new solutions. It can be assumed that the most
common failure in a distributed system is that one of the members involved in
a communication does not respond any more. A failure of a particular member
should not affect the rest of the system, that is, cause a failure of another
member or unnecessafily delay those operations of other members that do not
depend oﬁ the failed member. By properly engineering the system, the first
possibility can be eliminated. For example, communication protocols have been
designed that are prepared to deal with the problem of a non-responding member
[23]. Paradoxically, the possibility of a delay caused by a failure of some
member may be a result of an attempt to enhance reliability, in particular,
availability of information. As mentipned earlier, availability can be
increased by providing multiple copies of files at different members. These
copies ought to be kept consistent in face of concurrent asynchronous update
requests originating from different members. The protocols that update all of
the copies simultaneously are very complex and the possibility that a failure
occurring during such an update will cause a long delay (possibly infinite, if
no external means for recovery are provided) to unrelated requests is very
real. A similar problem exists when it is necessary to atomically update
different files maintained by different members. An atomic update means that
either all or none of the changes requested are done before anybody else is
allowed to sece the affected data. Current research in this area concentrates
on minimiznig the time window in a distributed update during which a failure
of one of the participating members will lead to a situation when it is
impossible to make a decision whether the update should be completed or
aborted, thus delaying other requests until this situation is resolved [15],

{10].

14

Partitioning of computations and data bases

Partitioning of computations and data bases is definitely the most
fundamental problem in a distributed system. 1In fact the very decision
whether a distributed or a centralized approach should be used depends on the
feasibility of partitioning to more less independent units. Tf it is not
possible to identify modules such that frequency of communication between
modules is relatively low compared to the work done by individual modules,
there is no point to think about distribution.* Similarly, when information in
the data base is used approximately with the same intensity by the entire user
population, the data base should remain centralized. It has been suggested
that distribution of a data base is preferable if 80% of the access requests
to each partition is generated locally [11). This rough rule has not been

verified yet; also, the cutoff may be different for different applications.

Fxisting systems are an invaluable source of information for designers of
new systems. Once it is understood how computer systems are used (and
misusced) , better hardware and software support can be planned. Measurements
of various applications run on existing computer systems provide a very good
insight; Such empirical studies are also needed to assess the
"distributability" of an application. One such study was performed on the
Multics system at M.I.T.; a series of experiments was conducted to determine

the degree and type of information sharing among the Multics users [21].%%

* That is, the type of distribution considered in this paper.

** Unfortunately, the degree of sharing in the Multics system is extremely
difficult to measure; only rough estimates can be obtained.

15

Mathematical models have been developed that attempt to find the optimal
allocation of files in a distributed system {11, [3], [5], [16]. The usual
considerations are the cost of the communication and the cost of storage. The'
models assume tha& the costs (measured in delays) of reading and updating
individual files is known. These costs will depend not just on the location
of the files, but also on the type of communication network used and the
update strategy employed. Even if these costs ére known, solving such models
is a non-trivial problem. Some helpful simplifications can be made for a
localized distributed system, such that for some update strategies, the model
is easy to use. However, for more complex update strategies, for example, the
atomic updates described earlier, the costs that are the parameters of the

model are very difficult to estimate.

More comprehensive analysis is needed to aid in the decision whether the
data base should be centralized or distributed. In such a decision, not just
the cost of performing an update, but also the cost of implementing update
protocols for a distributed system should be considered. In addition, the
very fact that the system supports a complex update protocol may resuTtvin nn-
overhead that is independent of theiactual use of fhat protocol., If it is
preferable to use a distributed data base, it is quite possible that the
"optimal" distribution is obvious, that is, following the theory of
"naturalness" of distribution, the files that should be local to a particular
member are clearly distinct from local files of other members, where this

distinction is determined by the responsibilities of and the work done at ecach

of the members.

16

Performance evaluation techniques and tools

Performance evaluation methods traditionally have been divided into three
categories: measurement, analytical modeling, and simulation. In most
performance evaluation projects, some combination of all three types is
usually used. 1In particular, measurement and modeling are complementary
processes. A model provides a framework for measurement, while measurement
provides data for validating the model and verifying correctness of
predictions made with the aid of the model. As it is well known from
performance studies of conventional systems, it is usually impossible to
incorporate all the relevant aspects into a single model. Performance
evaluation has to be performed on may different levels, incorporating the
results from one level into a model of a higher level. For example, it is
necessary to combine the characteristics of the primary memory and the paging
device with a particular paging algorithm and particular page demand pattern
to be able to understand’how much primary memory is needed per user and how to
model the usage of the processor, given that rescheduling takes place at an
occurrence of a page fault. The processor may then be a part of another model
that includes peripheral devices and user terminals, such that user demands on
the processor are the results derived from the previous model. Such a
hierarchical approach of course is needed in distributed systems too. In
addition to various levels within individual members, it is necessary to

incorporate into the final model the communication network.

Analytical models

An analytical model is a mathematical expression of the behavior of a

system derived from a model of the system and a model of the system’s

- 17

workload. Analytical studies of computer pérformance require many simplifying
assumptions about the modeled system and its workload, since the class of
problems that is solvaﬂle with existing mathematical methods is rather
limited. Despite the forced simplifications, analytical models play an
imﬁortant role in performance evaluation: they provide insight and a
relatively quick first-order approximation of system performance. Analytical
models are more suitable for studies of individual system components. In
distributed systems, a good candidate for mathematical analysis is the
communication network. The communication network is a shared medium and its
performance depends on its physical organization, bandwidth of the physical
communication medium and the multiplexing strategy used. A large body of

analytical models and results for computer networks is assembled in [12].

Although&new techniques have been found that facilitate solution of large
qucucing networks, this does not seem to help much with performance analysis
of distributed systems, since the queueing networks solvable with these
techniques are not sufficiently general [4]. 1In a distributed system, each
member has its own source of input and may generate requests for services
provided by other members; that is, requests to each individual member are
coming from outside the system (local requests) and from other members in the
system via the communication network (remote requests). In addition, a reply
(wvhich results in a creation of a new task at thé member that sent the
original requést) has to be. sent back in response to.a reﬁote request. This
sitgation for a two-member network is depicted in Figure 1. In a more general
case, queucing would also occur for the communication network. Tt may be
possible to estimate throughput and response time of individual members by

reducing the model to a single member and the communication network, where the

17 A

communication
member A network member B

- s - e o e o - o - -

local ,_<:::y_
requests;

local

]
[}
° []
. []
[]
[]
[}
[}
H requests
]
[]
L
[]
[}
[]
[]
§
[}
]
[]
3
L]

mmeeoabecsceenesfacncenecace e
E R L L LYY

remote requests from A to B
and reply to requests from B to A

L----remote requests from B to A
and reply to requests from A to B

Figure 1: A queuecing model for a tvo-merbex
distributed system.

18

remote requests are represented by independent Poisson processes [2]. How
recalistic it is to use such an approximation can be decided only through an
empirical validation. 1In my opinion, to get a reasonably good understanding
of the behavior of the type of model shown in Figure 1, it is necessary to use

simulation.

Simulation
L larion

The technique of simulation can be viewed as a combination of modeling
and measurement. It again requires a model of the system and a model of the
system’s workload, but these models can be more complex and more detailed than
if the performance is to be determined mathematically. A simulator simulates
the behavior of the system under the specified workload and collects the data
required for performance evaluation. Depending on the type of system
simulated, a simulator may be a very large and complex program. This can be
expected in simulation of distributed Systems, in particular when the system
has many members, and each member may behave differently. As with any large

piece of software, a simulator should be designed in a structured way.

One approach to Structuring a complex system is to use abstractions. An
abstraction is a construct that represents objects of a particular type (e.g.,
queue) and supports a well-defined set of operations on those objects (e.g.,

enqueue, dequeue, test if queue is empty). These operations are the only
operations that a user (a higher level abstraction) of such an object can

apply to that object.

19

The representation of the object is completely hidden to the user.* For
example, the system model is the highest level abstraction. The model 1is
représented by lower level abstractions -~ models of individual components
that can be representated by yet lower level components until finally at some
level the representation has to be made up of the basiq data structures of the
computer system on which the simulator is implemented. Since the same type of
component may be needed in several places in this hierarchy, it makes sense to
provide an abstract type, a construct that serves as a prototype for creating

specific objects of the given type.

To study different configurations, it should be possible (and easy) to
assemble and simulate different system models from the models of the
components. Again, this is particularly important in configuring distributed
systems, where it is necessary to experiment with a varying number of members

and different communication networks (13].

Computer system simulators are in general implemented as discrete event
simulators. A discrete event simulator maintains its own clock (simulation
clock) that is simply advanced to the time of the next event that needs to be
simulated. That is, the clock is incremented by a variable amount

corresponding to the time that in the real system would elapse between

* Abstractions can be classified as data abstractions, function abstractions
and control abstractions. Most programming tasks seem to involve operations
on (possibly complex) data Structures, yet data abstractions are not supported
by conventional programming languages. New programming languages are
currently being developed that support data abstractions (CLU [17], Alphard
[311). 1t is interesting that while this approach has not found strong
proponents in the field of simulation, it was a simulation language, Simula
[7]1, that first used data abstractions. However, Simula does not enforce the
constraint that access to objects may occur only through a specified set of
operations.

20

subsequent events, where an event is a change in the state of the selected
system model. In a model of a distributed system, it may be necessary to
simulate both local events, that is, events that affect one member only (e.g.,
new local request) and global events that need to be recognized on ;he system
level (e.g., initiation of a remote request that results in a request for thé
cnmﬁunication network, and the appropriate remote member). As it is in the
real system, the actual ordering of two local events belonging to different
members is irrelevant. However, the simulator has to keep track of all events
to be sure that the global events are scheduled properly. While it may be
possible to simulate a distributed system on a multiprocessor system (e.g.,
each member simulated by a different processor), the control of simulation, in
contrast to the operations of the real system, needs to be centralized; all

processors must always see the same simulated time.

One of the most important problems in both analytical modeling and
simulation is proving the validity of the model, that is, proving that the
model is an accurate representation of the evaluated system. A performance
model is usually considered representative of the system in question if the
two yield the same performance. Validity of a model that is supposed to
represent a concrete existing system can be tested against measurements
obtained from the real system. Simulation is often used to validate
analytical models, since the simulated model can be made more realistic than
the model used to derive the mathematical solution. Simulation, however, has
another problem: the simulation algorithm or its implementation may be
incorrect. Thus, in the case of simulation, it is necessary to verify that
the simulator correctly simulates the specified model. The other question of

course is if the specified model (correctly simulated) is a sufficiently good

21

representation of the studied system. The verification of the correctness of
the simulator can be achieved by carefully designed tests, the correct outcome

of which can be determined outside of the simulator [13].
Measurement

The most fundamental technique used in performance evaluation is
measﬁrement. Measurement can be used to assess the effect of different
configurations or resource allocation strategies on the performance of the
system, but primarily measurement is essential to understanding how a
particular system is used, and how users’ requests translate to requests for

the internal system resources.

A distributed system has many different active points that together
effect the performance of the entire system. Thus to understand the system’s
performance, it is necessary to monitor all of those parallel activities.
Actually this problem arises even in systems with a single central processor;
as a well known example, movement of data to and from a disk device normally
proceeds in parallel with central processor activities. To understand how the
operations of the central processor and the disk are related (under particular

workload), the central processor and the disk controller should be monitored

in parallel. Usually, a hardware monitor is needed for such combined

measurement [27].

In a distributed system, there may need to be a monitor for each member,
especially if the distribution is also geographical. This local monitor

should be able to monitor

-’

22
i) tasks generated and processed locally
ii) requests sent to other members
iii) requests received from other members

To understand the behavior of the distribufed system as a whole, it may
be necessary to obtain a trace (history) of relevant events observable by
individual members such that these individual histories can be later merged
and analyzed. Successful merge of histories of individual members requires
that events be timestamped such that the timestamps reflect the true ordering
among global events, and ordering of global events to local events of members
affected by the global event. This means that the clocks used to timestamp
measurement data should be synchronized.* O0f course, the timestamps are needed
not just to correctly order the observed events, but to measure the time
duration of various tasks and waiting periods. The measurement data can be
accumulated at individual members and the entire file then shipped to a
measurement center where required analyses are performed. It is assumed here
that the measurement center is a part of the system, that is, accessible
through the same communication network as the regular members. An alternative
strategy is to report each interesting event to the measurement center by
sending it a message [18]. It is also possible to have several measurement
centers that collect different types of events (for different types of

analyses). Of course, to use such a strategy, the event messages must not

interfere unduly with the "useful" traffic in the communication network, that

* Depending on how accurate the individual clocks are and to what degree they
have to be synchronized, the synchronization may be a difficult problem by
itself [141].

23
is, it is feasible only for some relatively low-frequeney cevents.,

[F the communication network is of a broadeast type, that is, all
messages from all member anywhere in the network, much of the measurement
conCerned with global events can be done by a singlg "spy" monitor that
monitors all traffic paésing through the cbmmunication neéwork [28]. Such a
spy monitor would have to be fast enough to absorb information at the rate
equal to the transmission rate of the communication network. In addition, a
substantial amount of storage may be needed to store all information until it
can be properly analyzed. Of course, to understand what is happening in
individual members, it is still necessary to have a local monitor for local

events.

A system can be measured under its real workload, but often it is
necessary to use artificial workloads ([27). Alternate choices in system
configuration and resource allocation policies must be evaluated for the same
workload, or the differences in the workload must be factored out prior to
assessing the effect of the system changes on performance. The latter is
often a difficult if not an impossible problem. The purpose of artificial
workload is to provide a controllable reproducible environment for performance
optimization studies. Artificial workload is also used for comparative
evaluation of different systems. For an interactive system, the workload must
represent the users as well as their programs. Such workload is generated by
a special generator that simulates the actions and random delays (think and

type time) of the users.*

* To understand the system performance, it is necessary to understand the
characteristics of the workload. If the workload is generated artificially,
such understanding may be thought of as being implicit. However, the

24

In a distributed system, each member should be exercised in a way similar
to its actual use, but at the same time in a way that produces a reproducible
workload in a global sense. Thus the actual implementation of the workload
generator requires a special driver for each member, or at least several
members, depending on the purpose of the measurement experiment. The design
of such a distributed driver is an interesting project by‘itself. It is of
course possible to turn on each of the local drivers individually, wait for
some time to be sure that all of them have initialized properly and are indeed
generating requests, and start measuring. A better alternative, but more
difficult to implement, is to start the measurements automatically after the

individual drivers have confirmed that the initiation is complete.

Extensive measurement facilities were designed for some computer
networks, but the measurements have been concerned with the performance of the
communication network rather than the performance of the entire system under
some distributed application. The ARPANET designers realized the need for
measurement early in the design of the network. Measurement capabilities were
built into the IMPs and also into selected hosts [12]. The measurement tools
include artificial message generation, a trace mechanism that keeps track of
messages as they pass through a sequence of IMPs, accumulation of various
statistics and snapshots of queue lengths, and finally a package for control,

collection and analysis of data sent from individual IMPs to the Network

workload used to drive a system during a measurement experiment may be
specified in terms of user commands; for performance analysis the workload
should be specified in terms of demands for the internal system resources.
Thus even when artificial workload is used in an experiment, it may be

necessary to measure the actual characteristics of the workload on the level
of interest.

25

Measurement Center at UCLA. A comprehensive computer network monitoring
system is being implemented at the University of Waterloo [22]. The basic
elements of this system are modular hybrid monitors, each being able to
monitor a computer system and a set of communication links to terminals and
other computers. These hybrid monitors are remotely controlled from the
network measurement cenfer. Fach monitor has accéss to a single standard>
clock. An artificial workload generator (network traffic generator) has also
been implemented that can simulate several interactive users. Measurement
tools are also being designed for DECNET, specifically, a distributed message
generator, where several members participate in the workload generation [26].
Finally, the Laboratory for Computer Science at M.I.T. is building a local
(broadcast) network that will serve as a base for a distributed system.
Measurement facilities utilizing the particular structure of the network are

currently being planned [28].
Conclusion

This paper is by no means a complete survey of performance issues in
distributed systems. Nor is it a complete survey of existing projects in this
- area. A great amount of work has already been done; the references in this
paper cover only a relatively small fraction of it. Yet distributed systems
are a fairly new field and many of the associated performance problems
probably have not been discovered yet. It is first necessary to get more
experience with design and use of distributed systems. The same has to be
said about the performance evaluation techniques and tools. This paper made
some suggestions concerning the characteristies and implementation of various
tools, but only experience with working distributed systems will show what is

really needed.

(1]

[2]

[3]

[4]

(5]

(6]

(7]

(8]

[9]

[10]

(11]

(12]

[13]

[14]

26

References

Akoka, J., Chen, P., "Optimization of Distributed Database Systems and
Computer Networks," M.I.T. Sloan School of Management, WP916-77, March
1977.

Babic, G.A., Liu, M.T., Pardo, R., "A Performance Study of the
Distributed Loop Computer Network (DLCN)," Proc. of Computer Networking
Symposium, NBS, Gaithersburg, Maryland, December 1977, pp. 66-75.

Casey, R.G., "Allocation of Copies of a File in an Information Network,"
Proc. AFIPS SJCC 1972, pp. 617-625.

Chandy, K.M., "Models of Distributed Systems," Proc. of Third
International Conference on Very Large Data Bases, October 1977, pp.
105-120. . v

Chu, W.W., "Optimal File Allocation in a Multicomputer Information
Center," IEEE Trans. on Computers, Vol. C-18, No. 10, October 1969,
885-889.

D’Oliveira, C.R., "An Analysis of Computer Decentralization," M.I.T.
Laboratory for Computer Science TM-90, October 1977.

Dahl, 0.J., Myhrhaug, B., and Nygaard, K., "The SIMULA 67 Common Base
Language,'" Publication $-22, Norwegian Computing Center, Oslo, 1970.

Erikson, W.J., "The Value of CPU Utilization as a Criterion for Computer
System Usage," Proc. Second SIGMETRICS Symposium on Measurement and
Evaluation, September 1974, pp. 180-187.

Farber, D.J., Larson, K.C., "The Structure of a Distributed Computer
System," Proc. Symposium on Computer- Communications Networks and
Teletraffic, Polytechnic Institute of Brooklyn, April 1972, pp. 21-27.

Gray, J.N., "Notes on Data Base Operating Systems," Advanced Course on
Operating Systems, Technical University, Munich, Germany, 1977.

Howard, P.C., "Performance Considerations for Distributed Data
Processing Systems," Proc. SIGMETRICS/CMG VIII Conference, November
1977, pp. 237-246.

Kleinrock, L., Queuing Systems, Vol. 2: Computer Applications, John
Wiley & Sons, 1976.

Krizan, B.C., "A Minicomputer Network Simulation System," M.I.T.,
Department of Electrical Engineering and Computer Science, M.S. thesis,
September 1977.

Lamport, L., "Time, Clocks, and the Ordering of Events in a Distributed

System," Massachusetts Computer Associates Technical Report
CA-7603-2911, March 1976.

[15]

[16]
(17]

(18]
(19]

[20]
[21]

[22]
[23]
[24]
[25]
[26]

[27]

[28]

27

Lampson, B., Sturgis, H., "Crash Recovery in a Distributed Data Storage
System,'" Xerox Palo Alto Research Center, 1976 (to appear in Comm. of
ACM) .

Levin, K.D., Morgan, H.L., "Optimizing Distributed Databases -- A
Framework for Research,”" Proc. AFIPS NCC, 1975,

Liskov, B., Snyder, A., "Abstraction Mechanisms in CLU," Comm. of -ACM,
Vol. 20, No. 8, August 1977, pp. 564-576.

McDaniel, G., "METRIC: A Kernel Instrumentation System for Distributed
Environments," Proc. of Sixth ACM Symposium on Operating Systems
Principles," November 1977, pp. 93-99.

Metcalfe, R.M., Boggs, D.R., "Ethernet: Distributed Packet Switching
for Local Computer Networks," Comm. of ACM, Vol. 19, No. 7, July 1976,
pp. 395-404.

Millstein, R.E., "The National Software Works: A Distributed Processing
System," Proc. of ACM Conference, October 1977, pp. 44-52,

Montgomery, W.A., "Measurement of Sharing in Multics," Proc. of Sixth
ACM Symposium on Operating Systems Principles, November 1977, pp. 85-90.

Morgan, D.E., Banks, W., Goodspeed, D.P., Kolanko, R., "A Computer
Network Monitoring System," IEEE Trans. on Software Engineering, Vol.
SE-1, No. 3, September 1975, pp. 299-311.

Reed, D.P., "Protocols for the LCS Network," M.I.T. Laboratory for
Computer Science, Computer Systems Research Division, Local Network Note
No. 3, November 1976.

Roberts, L.G., Wessler, B.D., "Computer Network Development to Achieve
Resource Sharing," Proc. AFIPS SJCC, 1970.

Rockart, J.F., Bullen, C.V., Leventer, J.S., "Centralization vs.
Decentralization of Information Systems: A Preliminary Model for
Decision Making," M.I.T., Sloan School of Management, working paper
(draft), 1977.

Strazdas, R.J., "A Network Traffic Generator for DECNET," M.I.T.,
Department of FElectrical Engineering and Computer Science, M.S. thesis
(in preparation), 1978.

Svobodova, L., Computer Performance Measurement and Evaluation Methods:
Analysis and Applications, American Elsevier, 1976.

Svobodova, L., "Comparative Study of the Ethernet and the Ringnet:
Measurement Techniques and Tools," M.I.T. Laboratory for Computer
Science, Computer Systems Research Division, Local Network Note No. 15,
October 1977.

~v'

P

[29]

[30]

[31]

28

Thomas, R.H., "A Resource Sharing FExecutive for the ARPANET," Proc.
AFIPS NCC, 1973, pp. 155-163.

Wecker, S., "The Design of DECNET - A General Purpose Network Base,"
Proc. IEEE ELECTRO/76, Boston, Massachusetts, May 1976.

Wulf, W.A., London, R., Shaw, M., "An Introduction to the Construction
and Verification of Alphard Programs," IEEE Trans. on Software

Engineering, Vol. SE-2, No. 4, December 1976, pp. 253-263.

