M.LT. Laboratory for Computer Science March 22, 1978

Computer Systems Research Division Request for Comments No. 162

Some Results on File Allocation in a Local Network

By Allen W. Luniewski

This paper considers the allocation of files in a distributed computer system operating in a
local network environment so as to improve the response of the system to query and update requests
on those files. Although the allocation of files in the most general case is hard [4], the allocation of
files in a local network, under suitable models of updates, can be ‘analyzed. This paper presents
results for two ways of performing updates that show that under these update strategies an allocation

policy exists that is simple, low in overhead, optimal and has no undesirable centralized control of

allocation.

1. Single File Allocation

The model of file allocation presented in [4] consisted of a cost model based upon the delay a
requestor sees before his request to access (or update) a file is completed. A set of constraints that
reflected the physical limits (e.g. storage capacity) of the system and the desired limits on response
by the system to requests was developed. These constraints cause the linear programming problem
corresponding to the file allocation problem to be "coupled”; that is, the allocation of one file will
effect the correct allocation of other files, potentially al‘l of them. This occurs since placing one file at
a node may make it physically impossible, due to storage limitations, to place another file at that same
node. Such placement may be required to meet the limitations imposed upon the access times that
some nodes must have to some files. Also placing a file at some node in the network may effect the
access times seen by other nodes to other files due to the queueing delays within the communication
network that are induced by traffic to the first file. If we ignore these constraints then it is possible

to 'consider the aliocation of one file independently of the allocation of other files. This is the

This note is an informal working paper of the MIT. Laboratory for Computer Science, Computer
Systems Research Division. It should not be reproduced without the author’s permission, and it should
not be cited in other publications.

-2- March 22, 1978

‘approach taken in this paper since it causes the file allocation problem to be greatly simplified.1
When the file allocation problem is uncoupled by ignoring storage constraints, the linear

programming problem that remains contains few constraints. The remaining constraints are:

1. At least one copy of the file must exist.

2. The access (update) times that some {perhaps all) nodes achieve must be
bounded.

3. Some nodes must always (never) have a copy.

In the remainder of this paper the second two constraints will not be explicitly considered in the
analysis however the first will be considered. This approach will permit analysis of the allocation
problem in a straight forward manner. A later section section of this paper will consider the last two

constraints.

2. The Local Network Assumption

One of the characteristics of a general communication network is that messages bleltween
nodes in the network experience differing delays due to different routing decisions and due to varying
queueing delays in delivering the mességes. This means that the distance between nodes (in terms of
messagé delay) is potentially different for all pairs of nodes and, moreover, the delay between two
nodes may vary over time. Incorporating .this variability into a model leads to a model of the file
allocation problem that is difficuit to analyze. Thus this paper will make an assumption in order to
make this variability disappear. .

This paper will model the distributed system as a local network and make "the local network”
assumption: the delay between nodes in the distributed system is a fixed constant independent of the
identity of the communicating nodes and any routing decisions made for the communication. On the
surface this assumption may %eem unreasonable, but an examination of the technologies used to

construct geographically localized networks indicates otherwise. In both the ring net [3] and the

1. This approach has also been taken in [2] by Casey.

-3- March 22, 1978

ethernet [5] the transmission delay between nodes is almost independent of the identity of the
communicating nodes since, due to the nearness of the nodes on the communication medium, the
transmission delay is very small and aimost negligible, Rather, the delay to requests is due almost
entirely to the time required to process the request.

The local network model also assumes that every node can respond to requests in
approximately the same time each time so requested. If this were not the case variations in message
delay, as perceived by the sender before a response is received, would be noticed. Basically,
queueing delays in processing messages are ignored in this formulation. This assumption is somewhat
stronger than the one in the previous paragraph and may, in fact, not be justified. It is made,
however, since it results in a simplified analysis and will hopefuily lead to some insight into the
problem of file allocation.

The result of these two assumptions is‘ that the delay that a requestor experiences before he
receives a response to his request is a constant no matter which other node the request is directed
to. The time to reference a local copy can, however, be different and, for the purposes of this paper,
will be considered to be zero.

In the file allocation problem the inaccuracies inherent in the local network assumption are
probabiy not overly important. As argued in [4] the optimal allocation of files is a very hard problem
and what a practical system should do is to approximate the opt.imal allocation. The soluﬁon that
results from the local network assumption will, hopefully, be a close approximation to the optimal
allocation although only simulation and experience with a real system will indicate whether or not this

is so,

3. The Basic Model

The basic model to be considered in the remainder of this paper consists of an expression that
reflects the system wide expected delay in accessing a specific file. Thus this kind of model has to be

constructed for every file in the system.

-4 - March 22, 1978

The basic cost model is the following:
C(X) = EXi min a;, (X) + g; min u, (X), i a node.
i Xk=1 Xk= .
where C(X) = Cost for the file in question when using the allocation X.
')‘i = The rate at which the it node accesses the file in question.

B = The rate at which the ith

node updates the file in question.

aj, (X) = Cost for the ith node to reference a copy of the file on node k.

uj(X) = Cost for the ith node to update the file by sending the update request to node k.
X = The allocation of files = {x;|x;=1 if the file isbon node i and 0 otherwise}.

The local network assumption for query accesses to the file can be expressed as:

a (X) = 0 if i=K (i.e. a local copy is referenced)
ik A if i#k (i.e. a non-local copy is referenced)

where A is a fixed, network dependent, constant. This reflects the fact that all non-local references.
cbst the same and that local references are for practical purposes free,

In order to simplify the following discussion we will define N to be the total number of copies
of the file kept by the system (ie. N = I x;).

The one aspect of this model Ief|t unspecified up to this point is the cost of updates.
Determining this cost depends upon a particular model of updates. In the remainder of this paper two
models of updates wili be considered. The first will allow updates to be sent to any copy of the file

and the second will only allow updates to be sent to a master copy of the file.

4. Unsynchronized Update Model

Perhaps the simplest way to perform updates in a distributed environment is to allow updates
to be sent to ‘any copy of the file.d This copy then sends the update to all other copies of the file.

After all copies2 have acknowledged the update, the copy that originally received the updale will

1. In general the update is actually sent to the node in the distributed system containing the copy,
but for this discussion it is easier to abbreviate this by referring to requests as being sent to the
copy itself.

2. For this discussion the possibility of copies of the file being inaccessible is not considered. Thus
‘this model addresses the normal case in which all copies of the file are accessible.

4

-5 - March 22, 1978

acknowledge completion of the update to the originator of the update. It is only at this point that the
originator of the update considers it complete. Note that this is a very simple update protocol since
there is no attempt to maintain consistency between the various copies of the file. This is not
proposed as a reasonable model of updates, rather it is used since it lends itself to analysis and the
techniques used will be very similar to those used in the more realistic update model presented later.
It should be noted, however, that in SDD-1 [6] updates are performed in a manner that is similar to
this model although the details of that procedure are too complicated to include in the simple model
presented in this paper.

In tl'ns model of updates the update cost, uik(X), can be represented as:

Uik(X) = min &, (X) + ug + (N-1ug

Xy =1
where ug = the cost to send the update to one node containing a copy.

u; = the overhead cost for updating the first copy and broadcasting the update to other

copies. |

The first term reflects the cost to reference the initial copy of the file. The second term reflects the
overhead that the first copy experiences in coordinating the update. It may include the cost to set up
a process to do the update, the cost of doing access qhecking and the cost to prepare an update
message for sending to the other copies of the file. The third term reflects the per-copy cost that
the first node experiences in coordinating the update. It may include the cost to send the update to
each copy and it may include the cost to receive the acknowledgement for the update from each copy.
In either case, Up represents the incremental cost, to a node i i, of adding a new copy of the file and is
constant for all nodes.

Using this model of updates the optimal strategy for allocating files can be derived. The
complete cost function is given by:

C(X) = T\, min a; ik(X) + u(min a, ikX) + (N- Lug + up)
i Xk =] XK =]

Now let Aj= min aj(X) = 0, x;=1 (node i can reference a local copy)
X, =1 A, x;=0 (a non-local copy is referenced)
.C(X) Z)\A + wa; + w(N- l)uo+u,u1

= EA iNj*s) + Up(up +(N-1)ug)

-6 - March 22, 1978

where Ur = Zui = the total update rate of the file in question throughout the system.
Now consider"giving a copy of the file to a node | that did not previqusly have a copy. The change in
the cost function C(X) is then given by AC:!

| AC = C(N+1 copies, x;=1) - C(N copies, x;=0)

= { ZON+)A; + Oy + Urlug +Nug)}

-{';(xiw;)ai + (\+uay + Uplu g +(N-1ug)}

=‘(X':‘+lu|)*(0—A) + ugUy

The fir§t terms canceled since 4; is the same with and without xj=1, the second term produces the

firét product since A is O when node | has a copy and A when it does not. Thus giving node | a copy

of the file improves system performance if and only if AC<0. The case of AC=0 is included since the
cost of the allpcation under this cost model is not increased by giving node | a copy, but it does
increase the reliability of the system due to the presence of another copy. Thus we add node | if and
only if -A(N+u)) + ugUy<0, or if N+u2ugUt/A. Conversely, a node | that has a copy should be deleted
from an N+1 node allocation if N +u;<ugUr/A.

This derivation showed how to allocate the second and subsequent copies of the file. It is not
valid for the one copy case since it took the form "What is the incremental cost reduction for adding
anothejr file". Fortunately the one copy case is simple to analyze:

C(1 copy, x=1) =?(7\i+yi)Ai + Ulug +(N-1)ug)

= '.E (N+uDA + Upup + (N+a)yy
Thus making node | the on‘elto have the single copy is optimal when Aj+y) is maximal over all nodes
since the term (A,w,)A, becomes zero in that case and the term UTul has the same value no matter
which node is chosen (e.g. a result of the local network assumption). This condition is a relatively
easy one to test since all accesses are now done to o_q_e_cbpy of the file where appropriate

measurements may be taken.

1. For the rest of this paper the notation C(text) will be used for the cost function where "text”
describes the allocation used to compute the cost.

()

-7 - March 22, 1978

Putting the results of the previous paragraphs together leads to a distributed file allocation
procedure. Once the parameters of the model are known, each node can decide independer'ntly
whether or not to have a copy of the file. If node i finds that N+u2ugUr/A then it should have a
cépy, otherwise it should not. If no nodes satisfy this condition then only one copy is needed and the
node with the largest value of Ai+u; gets the copy.

It is now necessary to show that this distributed allocation algorithm is optimal; that is given
tﬁe constants {\}, {mh A Ug and uy the allocation chosen by this algorithm, after all nodes have made
their decision, has minimum cost over all possible allocations.

The following lemma will be needed for the proof. Consider the following allocation procedure,
called the greedy procedure: Given that the allocation will contain N copies of the file, choose as the N

nodes to have a copy those nodes with the largest (N +;).

Lemma: The allocation achieved by the greedy allocation procedure has minimum cost over all possible
N node allocations. Conversely, any minimum cost N node allocation can be realized by the greedy
allocation procedure.

Proof: Let S1 be the set of nodes chosen by the greedy allocation procedure. Let $2 be any other N

node allocation. Now calculate C(S1) and C(S2):

C(sl1) = Z (NA+ #(A+(N-1)ug + ug))
i¢€S1US2
* T (N0 + (0 + (N-Tug + up))
i€eS1-S2
+ T (A0 + (0 + (N-IDug + u))
ieS1NS2
+ b)) (NA + p(A + (N-1ug +up)
i€S2-Si
C(s2) = T (NA A+ (N-1ug + uy))
igS1US2

+ 2 ONA A+ (N-Dug +u))
1€51-52

+ 2 (N0 + (0 + (N-1ug + u)
ieS1Ns2

+ Z (N0 + (0 + (N-1)ug + uy)
i€S2-S1

-8 - March 22, 1978

= C(S2)-C(51) = pX (Xiﬂli)A - p) (Riﬂli)A 20
i€S1-52 i€S2-51
The first term is larger since: 1. There are as many elements in $1-S2 as in S2-Sl,1 and 2. As a result

of the manner in which the elements in S1 were chosen, each term in the first summation is at least as
large as each term in the second summation. Thus C(52)-C(S1)20 and the allocation that is achieved
by the greedy allocation procedure is optimal over all N node allocations; that is, there does not exist
a better N hode allocation. |

To show the converse, let S2 be a minimum cost N node allocation and let S1 be the allocation
chosen by the greedy allocation procedure. Now compute C(S2)-C(S1) as above. In order for S2 to
be optimal, C(52)-C(S1) must be <0. There are two ways in which this can hap'pen. First,
S1-52=52-Sl=g in which case $1=52 and the converse is trivially true. Second the sets S1-52 and
S$2-5S1 may be non-empty (although they still must have the same number of elements). In this case
remember that the set of \+u4, in S1 are maximal over all nodes. Thus C(S2)-C(S1)20 as in the
previous part of this proof. Therefore, in order for S2 to be optimal, C(S2)-C(S1) must be identically
zero. These two facts in turn impl.y that each term in the summation over S1-52 has a term of equal
value in the summation over $2-5S1 (i.e. the set of values N+p; in S1-S2 is the same as in 52-S1).
Thus S2 is an allocation that is also achievable by the greedy algorithm.2 Thus the converse of the
lemma is proven.|

Now consider the distributed allocation procedure presented earlier in this section. After all
n;)des have decided whether or not to have a copy of the file, those nodes that have chosgn to have a
cépy will all have the property that)\i+ui2u0UT/A. Moreover all nodes not chosen have the property
that A\ +pj<ugUy/A. Therefore the distributed allocation procedure is an optimal N node allocation since
it produces an allocation that is the same as that produced by the greedy allocation procedure (where

N is the number of nodes chosen by the distributed allocation procedure).

1. This is because S1 and S2 have the same number of elements, N.

2. The fact that S2%S1 simply means that there is an arbitrary choice to be made in choosing the
allocation and that that choice does not effect the cost of the allocation. This can occur if many nodes
have the same value of A +uge '

-9- March 22, 1978

In order to complete the proof of optimality of the distributed allocation procedure it is
necessary to show that it chooses N optimally. Assume that the distributed allocation procedure
chooses N nodes. First we show that this N node allocation is better than any allocation of less than N
nodes: Any allocation of less than N nodes must have left out nodes which satisfy N +u2ugUt/A since
there are exactiy N such nodes. But from the way in which the distributed allocation procedure was;
derived adding any nodes so left out must reduce the system cost, thus the optimal allocation contains
at least N nodes. Second consider an allocation of greater than N nodes. From the lemma, any such
allocation must have the N nodes of the N node allocation as a component. Thus we may consider
getting to this larger ‘aIIOca!ion by adding nodes to the N node allocation achieved by the distributed
allocation procedure. However from the derivation of the distributed allocation procedure it is kndwn
that adding any more nodes increases the system cost. Thus no allocation of greater than N nodes
can have lower cost than the allocation achieved by the distributed allocation procedure. Thus the
distributed allocation procedure chooses optimaily. Therefore the allocation achieved by the
distributed allocation procedure has minimum.cost over all possible allocations and optimality of the

allocation has been shown.

5. The Master-Siave Model of Updates

Another model of updates is the broadcast model proposed in {1). Under this model one copy
of the file is designated as the master copy and the rest as slave copies. All updates to the file are
sent to the master copy. It then broadcasts the update to the other copies. Query requests are sent
to any available copy of the file. In this section this model of updates is analyzed and some criteria
for the allocation of files within a local network derived.

Let node M be the node that has the master copy of the file. Then the cost for node i to
perform an update is just the cost to send the update to node M plus the cost for the master node to
broadcast the update to all the slave copies.1 Thus we have that:

U|k(X) = a'M(X) + (N—l)Uo + Ul

1. Again, for the purposes of this discussion the possibility of unavailable copies and their effect on
the cost of queries/updates is ignored.

-10 - March 22, 1978

The constants ug and u; have the same meaning as in the last section although, of course, their actual
values may be different. Also note that ug may be 0 if the master copy does not require the
requestor of the update to wait for completion of the update on all copies.

Thus the cost function C is given by:

C(X) = Z\; min a, (X) + #i(ajpX)IHN-1Dug+u;)

i x=l

= Z(xiAiwia;M(x» + ((N-1Dug+u Uy

i
A node can be in one of three states at any given time. It can have no copy of the file, it can have a
slave copy of the file or it can have the master copy of the file. The remainder of this section will
consider three transitions: from no copy to a siave copy, from a slave copy to the master copy and
from no copy to the master copy.

First consider giving node | a slave copy of the file when it had no copy previously.
Proceeding as in the previous section we calculate AC as:

AC = C(N+1 copies, x=1 as slave copy) - C(N copies, x=0)

= {ifl(XiAﬁuiaiM(X)) + N4+ mapg(X) + UpiNug+u)}

—{.2 N+ apAX)) + Moy + mapyX) + Up((N-Dug+up)}

=)\:(;Z)I—A) + m(A-A) + Utug

= Ugug - AN
Giving node | a slave copy of the file improves the system cost if and only if AC<0O. Thus node |
should have a slave copy of the file if Utug-AN<0 or if NM2Utug/A. This criterion, as was the one in
the last section, is good for di.stributed control of this part of the allocation decision.

Now consider the case of giving node | the master copy when it currently has none. The old
master copy will become a slave copy (the possibility of taking away the old master’s copy is ignored
for the moment). Proceeding as before we calculate AC:

AC = C(N+1 copies, x;=1 as the master node, node M as a slave copy)
-C(N copies, x=0, M the master copy)
= { ‘;El;M)‘iAi + N+ NAM + Za“()()ui + Up(Nug+up}
#l, 1

-{ _j:MXiAi + NO+ A'AM + ;:aiM(X)ui + UT((N-I)UO+U1)}
i#, i

-11- March 22, 1978

= N(0-A) + A\4(0-0) + ugUt + Z(aj (X)-ajp g XNy
0 if i#l and i'#M
Now a;(X)-a;\(X) = {—A if i=|
A if i=M
~AC = -A\ + ugUt - A + myA
Thus giving node | the master copy reduces the system cost if and only if AC<0. In other words if
-A)\,+uOUT-)‘|A+uMASO. Or if 7\|+u|ZuM+UTUo/A- This condition is again a simple condition for deciding
when to give a node the master copy. Unfortunately it does not have the distributed control property
that the previous results had since knowledge of the master copy’s update rate is needed! at each
node. The next paragraph of this paper will show that this is not really a problem as the allocation
problem can be broken into two parts; the first the decision as to whether or not to give a node a
cépy and the second to decide which of the nodes having a copy should be the master copy; the first
can be made in a distributed manner while the second can be made by the master copy.
Finally consider changing the status of node | from that of a slave copy to that of master copy
a;wd at the same time make the old master copy a slave copy. Once again AC js calculated:
~AC = C(N, node | has a slave copy, node M has the master copy)
- C(N copies, | has the master copy, M has a slave copy)
= {inAi + Zujaj(X) + UN-1)ug+u Ut}
‘{:.Z"iAi + é,:"iaiM(x) + ((N-Dug+uur}
= ?Li(ai|(X)-'aiM<X))
| 0 if i, i#M

But a;(X)-a;4(X) = {—l/\k i'ff ii::\A

~AC = -mA + A
Making node I’s copy the master copy and the current master copy a slave copy reduces the overall
system cost if and only if AC<0. Or if “mA + mpgA<0, or if u>ups (The case AC=0 is ignored since

there is no reliability issue here).

1. A strategy whereby the master node periodically broadcasts its update rate to other nodes in
order to allow them to say "Now I should be the master copy" is, of course, possible. However the
next few paragraphs will show that such a strategy is not needed.

-12 - March 22,1978

The one copy case remains to be investigated. As in the last section it is easily analyzed,
noting that the one copy case is also the master copy:
Clx=1) = .E()‘iAi"“iaiM(x» + ((N-Dug+u Ut + (NA+map(X))

= T;Jl(kiwi)A + (4 + ugUp
Thus, by tII:‘s': same reasoning as in the previous section, we make node | the one copy (and hence also
the master copy) if it has the maximum A+m over all nodes.

The optimality of this allocation follows from the local netwofk assumption in a manner similar
to that given in the previous section. For that reason it is not repeated here and, rather, is left as. an
exercise for the reader. |

Now the complete allocation strategy for the local network case under the master-slave model
of updates can be described. A node should have a copy of the file if it updates the file frequently
enough; e.g. when A2ugUy/A. The master copy is chosen from those nodes that have a copy of the
file.by making it the node that updates the file at the greatest rate. Both criteria have a nice intuitive
feeling to them which is reassuring in validating the model. Aithough this strategy employs centralized

control to determine the master copy, this decision is always easily made by the current master copy

since, by definition, it handles all update traffic.

6. The Constraints

At the beginning of this paper three constraints were presented that a valid solution to the
allocation problem must satisfy. The first constraint has already been dealt with - there must always
be at least one copy every file.

A second constraint is that some nodes must experience bounded access times. Under the
local network assumption there are only two possible access times, 0 and A. 1f the bound is less than
A for some node then that node must have a copy of the file. If the bound is gfeater than or equal to

A then no special action is needed since any allocation will meet that bound.

-13 - : March 22, 1978

Another constraint is that the time to perform an update must be bounded. From the cost of
updates this immediately implies an upper bound on the number of copies of the ‘file that can be in the
system since update cost is a linear function of the number of copies. The effect of this on allocating
copies is that if too many nodes are eligible to receive copies then only the most eligible (those that
produce the most reduction in system widg cost) should be allowed to receive copies. Unfortunately
this means that centralized control is needed to make this decision.

The last constraint is that some nodes must always (never) have a copy. If some node must
never have a copy this presents no problem - it simply never considers making a copy locally. If
some node must always have a copy this also creates no problem since it is given a copy and the
remaining nodes can still make their decision in the manner outlined earlier in this paper. This comes
about since the decision algorithm has been derived in the form "Given N copies, when are N+1 copies

better?" and this derivation still is valid.

7. Conclusions

This paper has considered the issue of file allocation in a local network environment. Under
two models of updates - unsynchronized updates and the master-slave model - some simple criteria
for' deciding whether or not a node should have a copy of the file have been derived. These criteria
all have the very desirable property of not requiring centralized control.

The local network assumption is a very strong one. In a local network this assumption is
probably very close to exact. In more general networks the assumption begins to break down. The
hope, to be verified by further research, is that the allocation in general networks resulting from this
assumption is not far from optimal.

This paper is not the end-all of the local network file allocation problem either. The issues of
transactions and inter-file consistency have been ign.ored. Since transactions access sequences of
files, can this information be used to produce a good allocation? How do methods to maintain mutual
consistency effect the cost of queries/opdates? Must these considerations inevitably lead to the

coupling of one files aliocation to another?

-14 - March 22, 1978

Acknowledgment

Special thanks to Warren Montgomery for suggesting the local network assumption at a time when the

file allocation problem seemed insurmountable.

- 15 - March 22, 1978

Bibliography

[1] Alsberg, P.A, et. al, "Multi-Copy Resiliency Techniques", University of Illinois, CAC Document 8202,
May, 1976.

[2] Casey, R.G., "Allocation of a File in an Information Network", AFIPS Conference Proceedings, 1972
SJCC, Volume 40.

(3] Farber, D.J,, Larson, K., "The Structure of a Distributed Computer System - Communications”,
- Proceedings of the Symposium on Computer-Communications Networks and Teletraffic,
Microwave Research Institute of Polytechnic Institute of Brooklyn, 1972,

[4] Luniewski, Allen W., "File Allocation in a Distributed System", MIT Laboratory for Computer Science,
Computer Systems Research Division RFC 152, December 19, 1977.

(5] Metcalfe, RM,, et al,, "Ethernet: Distributed Packet Switching for Local Computer Networks,”
CACMI19, No. 7, pp. 395-404, July, 1976.

(6] Rothnie, 4B, Bernsteiﬁ, P.A., Goodman, N., and Papadimitriou, C.A., "The Redundant Update
Methodology of SDD-1: A System for Distributed Databases,” Computer Corporation of America
Technical Report, February, 1977.

